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Abstract

Let X ⊂ Pr be a smooth projective variety embedded by the complete linear system associated to a very
ample line bundle L on X. In this paper, we prove that if X satisfies property Np for p � 1, then every
isomorphic inner projection X̃ ⊂ Pr−1 of X satisfies Np−1. We also give some applications of our results
to various examples.
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1. Introduction

For a smooth projective variety X ⊂ P(H 0(L)) embedded by the complete linear system of a
very ample line bundle L on X, one can ask more detailed information about defining equations
of X, i.e., the syzygies of X. As M. Green defined [11], we can say that L satisfies property N0 if
it gives the projectively normal embedding and L satisfies property N1 if property N0 holds and
X is cut out by quadrics. In general, L satisfies property Np , p � 1, if X is projectively normal
and the projective coordinate ring S(X) of X has the following minimal free resolution of the
simplest type up to pth steps as a graded S-module:

→ ·· · → Ep → Ep−1 → ·· · → E1 → S → S(X) → 0,

where S = Sym(H 0(L)) and Ei = ⊕βi,1 S(−i − 1) for all 1 � i � p. In other words, prop-
erty Np means the minimal free resolution of the homogeneous coordinate ring S(X) of the
projectively normal embedding of X is linear until the pth step.

In general, we can consider two kinds of subsystems of H 0(L) with respect to projections.
One gives an isomorphic outer projection of X ⊂ P(H 0(L)) with the center outside Sec(X)

which is not linearly normal and the other is a subsystem with base points that is the very ample
complete linear system of the blow-up of X and gives an inner projection of X. Recently, we
have been interested in the geometric and syzygetic effects of property Np of X ⊂ P(H 0(L)) to
the isomorphic projection of X in P(W) by a very ample subsystem W ⊂ H 0(L).

More precisely, a generalization of property Np to a smooth nonlinearly normal variety X ⊂
P(W) can be made as follows [13]: X satisfies property NS

p if for R = ⊕
�∈Z

H 0(X,L�), it has
the following minimal free resolution of the simplest type as a graded SW -module:

→ ·· · → Ep → Ep−1 → ·· · → E1 → SW ⊕ SW(−1)t → R → 0,

where SW = Sym(W), t = codim(W,H 0(L)) and Ei = SW (−i − 1)⊕βi,1 for all 1 � i � p. In
other words, property NS

p means the minimal free resolution of R as a graded SW -module is
linear until the pth step. Generally speaking, for a nonlinearly normal embedding of X, it is hard
to find defining equations or to control the degree bound of defining equations of X in P(W).
However, it can be shown that if X ⊂ P(H 0(L)) satisfies property Np then the isomorphic pro-
jection of X in P(W) satisfies property NS

p−t for t = codim(W,H 0(L)) � p. Furthermore, if X

satisfies property NS
1 , then defining equations of X in P(W) have degree at most (t +2), see [13]

for details.
In the present paper, we are mainly interested in an inner projection of X which is given

by subsystem W of H 0(L) with given base points in X. Let X be a smooth projective variety
in P(H 0(L)). For a closed point q ∈ X, the inner projection πq :X ��� P(W) defined by πq(p) =
qp ∩ P(W), p �= q , is a rational map. We can understand this situation in the following diagram;
for the blow-up Blq(X) of X at q , one has the regular morphism π̃q : Blq(X) → P(W) with the
following commutative diagram:

Blq(X)

π̃q

σ

X ⊂ P
(
H 0(L)

)
πq

X′ = πq

(
X \ {q}) ⊂ P(W)
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It is said that X admits an inner projection at a point q ∈ X if the morphism π̃q : Blq(X) →
πq(X \ {q}) is an embedding, i.e., σ ∗L− E is very ample. When one considers this situation in
the projective embedding, we have a nice criterion for σ ∗L− E to be very ample. Note that the
inner projection π̃q : Blq(X) → P(W) with center q ∈ X is a closed embedding if and only if q /∈
Trisec(X) where Trisec(X) is the union of all trisecant lines to X and all lines contained in X [8,
pp. 268–275]. In this case, π̃q(Blq(X)) is equal to πq(X \ {q}), the Zariski closure of πq(X\{q}).

With these in mind, we get the following theorem without any assumption on a very ample
line bundle L.

Theorem 1.1. Let X ⊂ P(H 0(L)) be a smooth irreducible projective variety. Suppose L satisfies
property Np for p � 1. For any q ∈ X\Trisec(X), π̃q(Blq(X)) = πq(X \ {q}) in P(W) is smooth
and satisfies property Np−1, i.e., property Np−1 holds for (Blq(X),σ ∗L− E).

Let σ : X̃ → X be the blowing-up at distinct s points q1, q2, . . . , qs in X with the exceptional
divisors E1, . . . ,Es . If L′ := σ ∗L(−E1 − · · · − Es) on X̃ is very ample and L satisfies Np for
p � 1, then we can check from Theorem 1.1 that L′ satisfies Np−s for p � s.

As another simple corollary, we have the following:

Corollary 1.2. Let X ⊂ P(W) be a smooth variety with property NS
p and t = codim(W,H 0(L)).

Then, for any q ∈ X \ Trisec(X) we have:

(1) An inner projection πq(X \ {q}) ⊂ P
N−1 satisfies property NS

p−1.

(2) The defining equations of πq(X \ {q}) in P
N−1 have degree at most p + 2 for p � 2.

By using Koszul cohomology technique due to M. Green and the vanishing of higher coho-
mology groups of related vector bundles, we can show inductively TorSW

i (R′,C)i+j = 0, 0 � i �
p − 1 and j � 2, for a finitely generated graded SW module R′ = ⊕

�∈Z
H 0((σ ∗L − E)⊗�). In

Section 3, we prove the main Theorem 1.1 for curves and then, we deal with the higher dimen-
sional case in Section 4.

As a typical example of our main Theorem 1.1, it is well known that a Del Pezzo surface
υ3(P

2) of degree 9 in P
9 satisfies property N6 (and fails to hold N7) and by taking successive

inner projections at general points {q1, q2, . . . , qi, i � 6}, we get smooth Del Pezzo surfaces
of degree 9 − i in P

9−i with property N6−i . In general, it would be very interesting to know
syzygies of the form σ ∗L(−m1E1 − m2E2 − · · · − mαEα) if it is very ample where σ : X̃ → X

is the blowing-up with exceptional divisors Ei , i = 1,2, . . . , α.
In Section 5, we give some applications of our results to various varieties and their embed-

dings, such as the inner projections of Veronese embeddings, Calabi–Yau manifolds, rational
surfaces, and adjoint linear series of projective varieties. We also relate multisecant spaces of X

to syzygies of X.

2. Notations and preliminaries

2.1. Notations

Throughout this paper the following are assumed.

(1) We work throughout over the complex numbers.
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(2) For a finite dimensional vector space V , P(V ) is the projective space of one-dimensional
quotients of V .

(3) When a projective variety X is embedded in a projective space P
r , we always assume that it

is nondegenerate, i.e., does not lie on any hyperplane in P
r .

(4) For a smooth projective variety X ⊂ P
r embedded by the complete linear system associated

to very ample line bundle L on X and a closed point q ∈ X, we use the following notations:
• V = H 0(X,L) = H 0(Pr ,OPr (1)).
• S = ⊕

�∈Z
Sym�(V ) = ⊕

�∈Z
H 0(Pr ,OPr (�)): the homogeneous coordinate ring of P

r .
• R = ⊕

�∈Z
H 0(X,L�) = ⊕

�∈Z
H 0(Pr ,OX(�)): the associated graded S-module of OX .

• X̃ = Blq(X): a blowing-up of X at a point q with a morphism σ : X̃ → X.
• E: the exceptional divisor of X̃.
• W = H 0(X̃, σ ∗L(−E)) = H 0(X,L(−q)).
• SW = ⊕

�∈Z
Sym�(W): the homogeneous coordinate ring of P(W) = P

r−1.
• R′ = ⊕

�∈Z
H 0(X̃, (σ ∗L− E)�): the associated graded SW -module.

2.2. Criteria for Np property

Suppose that X ⊂ P(V ) is defined by the complete linear system associated to very ample line
bundle L on X and consider the natural exact sequence

0 →MV → H 0(X,L) ⊗OX
ϕ→ L→ 0,

where MV is the kernel of the surjective map ϕ. Taking (i + 1)st exterior powers and twisting
by Lj−1 yield

0 → ∧i+1MV ⊗Lj−1 → ∧i+1H 0(X,L) ⊗Lj−1 → ∧iMV ⊗Lj → 0.

Let R = ⊕
�∈Z

H 0(X,L⊗�) and V = H 0(X,L). Then TorSi (R,C)i+j fits in the following exact
sequence:

0 → TorSi (R,C)i+j → H 1(X,∧i+1MV ⊗Lj−1) → ∧i+1V ⊗ H 1(X,Lj−1)

→ H 1(X,∧iMV ⊗Lj
) → ·· · .

Note that βi,j = dim(Tor)Si (R,C)i+j where βi,j is the Betti number of the minimal free resolu-
tion of a graded S-module R.

Lemma 2.1. A smooth variety X satisfies property Np if and only if the homomorphism

∧i+1V ⊗ H 0(X,Lj−1) → H 0(X,∧iMV ⊗Lj
)

is surjective, equivalently the homomorphism

H 1(X,∧i+1MV ⊗Lj−1) → ∧i+1V ⊗ H 1(X,Lj−1)

is injective for 0 � i � p and j � 2.

Proof. See [12, Section 1]. �
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2.3. Blow-up and regularity

Let F be a coherent sheaf on a smooth projective variety X, and let L be a very ample line
bundle on X. A coherent sheaf F is said to be m-regular with respect to L in the sense of
Castelnuovo–Mumford if Hi(X,F ⊗ Lm−i ) = 0 for i � 1. It was shown in [15, Lecture 14],
[14] that if F is m-regular, then F is (m + 1)-regular. So one can define the regularity of F with
respect to L to be the least integer m such that F is m-regular, i.e.,

reg(F ,L) = min{m ∈ Z | F is m-regular with respect to L}.
On the other hand, if a graded S-module M has the following minimal free resolution

· · · → Fi → ·· · → F1 → F0 → M → 0,

where Fi = ⊕
S(−i − j)βi,j , then regularity of M is defined by reg(M) = max{j | βi,j �= 0 for

all i � 0}. Let F be a coherent sheaf on the projective space P
r , and let F = ⊕

�∈Z
H 0(Pr ,F(�))

be the corresponding graded S-module of twisted global sections. If F is finitely generated as a
graded S-module, it is proved in [5, Exercise 20.20] that reg(F ,OPr (1)) = reg(F ).

We have the following well-known cohomological properties between a smooth variety X and
its blow-up X̃.

Lemma 2.2. Let Z ⊂ X be a smooth codimension e subvariety of a smooth variety X, let
σ : X̃ = BlZ(X) → X be the blowing-up of X along Z, and let E ⊂ X̃ be the exceptional di-
visor.

(1) If 0 � t � e − 1, then

Hi
(
X̃, σ ∗F ⊗O

X̃
(tE)

) = Hi(X,F) for i � 0,

for any locally free sheaf F on X.
(2) If t > 0, then

Hi
(
X̃, σ ∗F ⊗O

X̃
(−tE)

) = Hi
(
X,F ⊗ I t

Z

)
for i � 0,

for any locally free sheaf F on X where IZ is the sheaf of ideals defining Z.

Proof. See [1, p. 592]. �
When σ ∗L − E is very ample, R′ = ⊕

�∈Z
H 0(X̃, (σ ∗L − E)⊗�) is a finitely generated

SW -module. In particular, we have the following fact about the regularity of R′.

Proposition 2.3. Assume that L and (σ ∗L− E) are very ample line bundles on varieties X and
X̃ = Blq(X), respectively. Then reg(OX,L) = m if and only if reg(O

X̃
, (σ ∗L− E)) = m.

Proof. It is enough to show that OX is m-regular with respect to L if and only if O
X̃

is m-regular
with respect to σ ∗L(−E), i.e., for all i � 1,

Hi
(
X,Lm−i

) = 0 if and only if Hi
(
X̃, (σ ∗L− E)m−i

) = 0.
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(1) 1 � i < m. By the above Lemma 2.2, Hi(X̃, (σ ∗L− E)m−i ) = Hi(X,Lm−i ⊗ mm−i
q )

where mq is the sheaf of ideals corresponding to the point q ∈ X.
For 2 � i < m, from the following exact sequence

0 → Lm−i ⊗ mm−i
q → Lm−i →OX/mm−i

q → 0

and dim Spec(OX/mm−i
q ) = 0, we get

Hi
(
X,Lm−i

) � Hi
(
Lm−i ⊗ mm−i

q

) � Hi
(
X̃, (σ ∗L− E)m−i

)
.

For i = 1, notice that the natural morphism H 0(Lm−1) → H 0(OX/mm−1
q ) is surjective. In

fact, we have the following natural isomorphism as a C � k(q) = OX/mq vector spaces:

OX/mm−1
q � OX/mq ⊕ mq/m2

q ⊕ m2
q/m3

q ⊕ · · · ⊕ mm−2
q /mm−1

q ,

and H 0(Lm−1) → OX/mm−1
q � ⊕m−2

i=0 mi
q/mi+1

q is surjective since L is very ample and

mi
q/mi+1

q � Si(mq/m2
q) for a smooth point q ∈ X where Si denotes the ith symmetric power.

Thus,

H 1(X,Lm−1) � H 1(X̃, (σ ∗L− E)m−1).
(2) m � i � dim(X). Since m � 1, we have 0 � i − m � dim(X) − m � dim(X) − 1 = e − 1

where e is the codimension of q in X. By Lemma 2.2,

Hi
(
X,Lm−i

) � Hi
(
X̃, (σ ∗L− E)m−i

)
, i � m. �

We have the following easy corollary which we need in the subsequent sections.

Corollary 2.4. Under the same conditions as in Proposition 2.3, we have Hi(X̃, (σ ∗L−E)j ) =
Hi(X̃, σ ∗Lj (−kE)) for i � 1 and 0 � k � j .

Proof. In Proposition 2.3, we showed that Hi(X̃, (σ ∗L − E)j ) � Hi(X,Lj ), i � 1. From the
short exact sequence 0 → Lj ⊗ mk

q → Lj → OX/mk
q → 0 and the same argument as in Propo-

sition 2.3, we are done. �
3. Syzygies of inner projections of curves

In this section, we assume that X ⊂ P(H 0(L)) is a smooth projective curve embedded by
complete linear system of a very ample line bundle L on X. If X has no trisecant line, then the
inner projection πq(X) for a point q ∈ X is embedded in P(W) where W = H 0(L(−q)). Let
SW be the coordinate ring of P(W) and R′ = ⊕

�∈Z
H 0(X,L(−q)⊗�) a finite SW -module. The

following theorem is a generalization of Theorem 1 in [4].

Theorem 3.1. Let X ⊂ P(H 0(L)) be a smooth irreducible curve with property Np , p � 1. For
every point q ∈ X, the Zariski closure of the linear projection πq(X \ {q}) has property Np−1.
In other words, L(−q) satisfies Np−1 for every point q ∈ X.
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Proof. Note that L(−q) is very ample for any point q ∈ X since L satisfies property N1, i.e.,
X has no trisecant line. Consider the following diagram:

0 0 0

0 MW W ⊗OX L(−q) 0

0 MV V ⊗OX L 0

0 OX(−q) OX k(q) 0

0 0 0

The above commutative diagram induces the following diagram:

0 0 0

0 ∧i+1MW ∧i+1W ⊗OX ∧iMW ⊗L(−q)

α

0

0 ∧i+1MV ∧i+1V ⊗OX ∧iMV ⊗L 0

0 ∧iMW ⊗OX(−q) ∧iW ⊗OX cokerα 0

0 0 0

(3.1)

Here, α is a composition map ∧iMW ⊗L(−q) → ∧iMV ⊗L(−q) → ∧iMV ⊗L. Twisting
through by L⊗(j−1) in diagram (3.1) and taking cohomology, we have the following diagram:

∧i+1W ⊗ H 0
(
Lj−1

) γ̃i,j

H 0
(∧iMW ⊗Lj (−q)

)
H 1

(∧i+1MW ⊗Lj−1
) δ̃i,j ∧i+1W ⊗ H 1

(
Lj−1

)

∧i+1V ⊗ H 0
(
Lj−1

) αi,j

μi,j

H 0
(∧iMV ⊗Lj

)

νi,j

H 1
(∧i+1MV ⊗Lj−1

) βi,j

ξi,j

∧i+1V ⊗ H 1
(
Lj−1

)

∧iW ⊗ H 0
(
Lj−1

) γi,j

H 0
(
cokerα ⊗Lj−1

)
H 1

(∧iMW ⊗Lj−1(−q)
) δi,j ∧iW ⊗ H 1

(
Lj−1

)

0 H 1
(∧iMW ⊗Lj (−q)

) δi,j+1

ωi,j

∧iW ⊗ H 1
(
Lj

)

ρi,j

H 1
(∧iMV ⊗Lj

) βi−1,j+1 ∧iV ⊗ H 1
(
Lj

)
(3.2)

Observe in the above diagram that μi,j is surjective and ρi,j is injective for all i � 0 and j � 0.
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Now suppose that Np holds for (X,L), i.e., αi,j is surjective for 0 � i � p and j � 2. Then
we claim that δi,j is injective for all 1 � i � p and j � 2. Since H 1(∧iMW ⊗ Lj (−q)) = 0
for all j 
 0, δi,j+1 is injective for all sufficiently large j . Then from the previous diagram, we
have, for 1 � i � p,

δi,j+1 is injective ⇐⇒ ωi,j is injective

⇐⇒ νi,j is surjective

⇐⇒ γi,j is surjective

⇐⇒ δi,j is injective

until j � 2. Therefore, δi,j is injective for 1 � i � p and j � 2.
To show that (X,L(−q)) has property Np−1, it suffices to show that, for all 0 � i � p − 1

and j � 2,

∧i+1W ⊗ H 0(L(−q)⊗(j−1)
) → H 0(∧iMW ⊗L(−q)⊗j

)

is surjective, or

H 1(∧i+1MW ⊗L(−q)⊗j−1) β̃i,j−→ ∧i+1W ⊗ H 1(L(−q)⊗(j−1))

is injective.
Now, consider the following diagram for 0 � i � p − 1 and j � 2:

H 1
(∧i+1MW ⊗Lj−1

(−(j − 1)q
)) β̃i,j

(∗)i,j

∧i+1W ⊗ H 1
(
Lj−1

(−(j − 1)q
))

H 1
(∧i+1MW ⊗Lj−1(−q)

) δi+1,j ∧i+1W ⊗ H 1
(
Lj−1

)

where (∗)i,j is the identity map when j = 2.
By the below Lemma 3.2, (∗)i,j is injective for j � 2 and for all i. Therefore, β̃i,j is injective

for all 0 � i � p − 1 and j � 2 and (X,L(−q)) has property Np−1. �
Lemma 3.2. Let E = ∧i+1MW ⊗Lj−1((−k + 1)q). From the exact sequence 0 →OX(−q) →
OX → k(q) → 0, we have the following exact sequence:

0 → E(−q) → E → E ⊗ k(q) → 0.

Then H 1(X,E(−q))
(∗)i,j,k−→ H 1(X,E) is an isomorphism for j � 2 and 2 � k � j .

Proof. It is enough to show that the morphism H 0(E) → H 0(E ⊗ k(q)) is surjective. This sur-
jectivity is equivalent to the fact that E is globally generated at q ∈ X. From the exact sequence

0 → ∧i+2MW → ∧i+2W ⊗OX → ∧i+1MW ⊗L(−q) → 0,
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we know that ∧i+1MW ⊗L(−q) is globally generated. Now

∧i+1MW ⊗Lj−1((−k + 1)q
) = ∧i+1MW ⊗ (

L(−q)
)k−1 ⊗Lj−k

= ∧i+1MW ⊗L(−q) ⊗ (
L(−q)

)k−2 ⊗Lj−k.

Since ∧i+1MW ⊗ L(−q) is globally generated and L(−q)k−2 ⊗ Lj−k is very ample for j � 2
and 2 � k � j except for j = k = 2 (in this case, it is trivial), E = ∧i+1MW ⊗Lj−1((−k + 1)q)

is globally generated. �
Corollary 3.3. Let X be a smooth curve and L a very ample line bundle on X satisfying property
Np for p � 1. For any s points (including infinitely near points) {q1, q2, . . . , qs} in X, if s � p,
then L(−q1 −q2 −· · ·−qs) satisfies Np−s . In particular, L(−q1 −q2 −· · ·−qp) is always very
ample for any points q1, q2, . . . , qp ∈ X and normally generated.

Corollary 3.4. Let X ⊂ P
N be a smooth linearly normal projective curve. If X has a (p + 2)-

secant p-plane, then property Np fails for X.

Proof. Assume that X has property Np . Then, by Corollary 3.3, L(−q1 − q2 − · · · − qp−1)

satisfies property N1 for any points q1, q2, . . . , qp−1 ∈ X. But if X has a (p + 2)-secant p-plane,
the projection at (p − 1) points has a trisecant line. This gives that the projection of X at these
(p − 1) points fails to hold property N1, which is a contradiction. �
4. Inner projections of higher dimensional projective varieties

For a higher dimensional smooth variety X, we need many technical lemmas to prove the
main theorem in this section.

Let X be a smooth projective variety of P
r and q a closed point of X. The inner projec-

tion πq :X ��� P
r−1 is a rational map which is well defined outside q . Let σ : Blq(X) → X

be a blowing-up of X at q . Then one has the regular morphism π̃q : Blq(X) → P
r−1 with the

following diagram:

X̃ = Blq(X)

π̃q

σ

X ⊂ P
r

πq
X′ = πq

(
X \ {q}) ⊂ P

r−1

If π̃q : Blq(X) → P
r−1 is an embedding, then the exceptional divisor E is linearly embedded via

π̃q in P
r−1, i.e., π̃q(E) = P

l−1 ⊂ P
r−1, l = dim(X).

Proposition 4.1. Assume that X is a smooth nondegenerate projective variety in P
r and q ∈ X

is a closed point. Then, the morphism π̃q : Blq(X) → P
r−1 is a closed embedding if and only if

q /∈ Trisec(X) where Trisec(X) is the union of all lines � with the property that either � ⊂ X or
� ∩ X is a subscheme of length � 3.

Proof. For details, see [8, pp. 268–269]. �
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Let W = H 0(X̃, σ ∗L − E) ⊂ H 0(X,L) = V . If σ ∗L − E is very ample on Blq(X), the
morphism π̃q : X̃ = Blq(X) → P(W) is a closed embedding defined by the global sections of
σ ∗L− E and there is a natural exact sequence

0 →MW → W ⊗O
X̃

φ−→ σ ∗L− E → 0,

where MW is the kernel of φ.

Lemma 4.2. R1σ∗(∧iMW ⊗ (σ ∗L− E)k) = 0 for k � 0 and i � 0.

Proof. Consider the following exact sequence:

0 → ∧i+1MW ⊗ (σ ∗L− E)k−1 → ∧i+1W ⊗ (σ ∗L− E)k−1 → ∧iMW ⊗ (σ ∗L− E)k → 0.

Since Riσ∗(σ ∗L⊗O
X̃
(−tE)) = L⊗ Riσ∗(OX̃

(−tE)) = 0 for i � 1 and t � 0,

R1σ∗
(∧iMW ⊗ (σ ∗L− E)k

) = 0 ⇐⇒ R2σ∗
(∧i+1MW ⊗ (σ ∗L− E)k−1) = 0

⇐⇒ R3σ∗
(∧i+2MW ⊗ (σ ∗L− E)k−2) = 0

. . .

⇐⇒ Rk+1σ∗
(∧i+kMW

) = 0.

Therefore it is enough to show that Riσ∗(∧tMW) = 0 for all positive integers t and i. Let
E = ∧tMW and E i = Riσ∗(E). Since σ is an isomorphism of X̃−E onto X−q , Riσ∗(E)|X−q =
0. Therefore, the sheaves E i for i > 0 have support at q . By the theorem on formal functions
[9, p. 277],

Ê i ∼= lim←− Hi(En,E |En),

where En is the closed subscheme of X̃ defined by In, where I is the ideal sheaf of E in X̃.
There are natural exact sequences

0 → In/In+1 → OEn+1 → OEn → 0

for each n. Since q is a smooth point, we have I/I2 = OE(1) and In/In+1 ∼= Sn(I/I2) ∼=
OE(n).

Claim. Hi(E,E ⊗OE(n)) = 0 for i > 0 and all n � 0.

If the claim is true, then we conclude from the long exact sequence of cohomology, using
induction on n, that Hi(E |En) = 0 for all i > 0 and all n > 0. It follows that Ê i = 0 for i > 0.
Since E i is a coherent sheaf with support at q , so E i = 0. �
Proof of Claim. Since the exceptional divisor E is a projective space of dimension l − 1 where
l = dim(X), we have the following commutative diagram:
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0 0

0 ME H 0
(
OE(1)

) ⊗OE OE(1) 0

0 MW |E W ⊗OE OE(1) 0

W ′ ⊗OE W ′ ⊗OE

0 0

where ME = ΩPl−1(1) and W ′ is a quotient vector space of W by H 0(OE(1)) and dim(W ′) =
r − l.

From the exact sequence 0 → ME → MW |E → W ′ ⊗ OE → 0, there is a finite filtration
of ∧tMW |E ,

∧tMW |E = F 0 ⊃ F 1 ⊃ · · · ⊃ F t ⊃ F t+1 = 0

with quotients

Fp/Fp+1 ∼= ∧p(ME) ⊗ ∧t−p(W ′ ⊗ OE)

for each p. Since Hi(∧jΩ(k)) = 0 unless i � 1 and k � 1 by Bott formula, we get
Hi(∧tMW |E) = 0. For Hi(∧tMW ⊗OE(n)) = 0, use induction on l. For l = 2, the vanishing
is clear since E = P

1 and ∧tMW |E is a sum of line bundles on E. For l > 2, the vanishing
follows from the exact sequence:

0 → ∧tMW ⊗OE(n) → ∧tMW ⊗OE(n + 1) → ∧tMW ⊗OH (n + 1) → 0,

where H is a hyperplane in E. �
Lemma 4.3. σ∗(∧iMW ⊗ σ ∗Lj (−kE)) is globally generated for i � 0, j � 1 and 1 � k � j .

Proof. Since

σ∗
(∧iMW ⊗ σ ∗Lj (−kE)

) = σ∗
(∧iMW ⊗ (σ ∗L− E)k ⊗ σ ∗Lj−k

)

= σ∗
(∧iMW ⊗ (σ ∗L− E)k

) ⊗Lj−k,

it is enough to show that σ∗(∧iMW ⊗ (σ ∗L− E)k) is globally generated.
By taking the pushforward σ∗ to the exact sequence

0 → ∧i+1MW ⊗ (σ ∗L− E)k−1 → ∧i+1W ⊗ (σ ∗L− E)k−1 → ∧iMW ⊗ (σ ∗L− E)k → 0
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we have

0 → σ∗
(∧i+1MW ⊗ (σ ∗L− E)k−1) → σ∗

(∧i+1W ⊗ (σ ∗L− E)k−1)

→ σ∗
(∧iMW ⊗ (σ ∗L− E)k

) → R1σ∗
(∧i+1MW ⊗ (σ ∗L− E)k−1) → ·· · .

By Lemma 4.2, R1σ∗(∧i+1MW ⊗ (σ ∗L − E)k−1) = 0 for k � 1. Since L is very ample,
σ∗(∧i+1W ⊗ (σ ∗L−E)k−1) = ∧i+1W ⊗ (L⊗mq)k−1 is globally generated. From the following
commutative diagram

∧i+1W ⊗ H 0(L⊗ mq)(k−1) ⊗OX H 0
(∧iMW ⊗ (σ ∗L− E)k

) ⊗OX

∧i+1W ⊗ (L⊗ mq)(k−1) σ∗
(∧iMW ⊗ (σ ∗L− E)k

)

we are done. �
Lemma 4.4. Assume that L and σ ∗L − E are very ample line bundles on X and X̃ = Blq(X),
respectively. Then the natural morphism

H 1(∧iMW ⊗ σ ∗Lj
(
(−k − 1)E

)) → H 1(∧iMW ⊗ σ ∗Lj (−kE)
)

(4.1)

is injective for all i � 0, j � 1 and 1 � k � j .

Proof. Let E = ∧iMW ⊗ σ ∗Lj (−kE). From the natural exact sequence 0 → E(−E) → E →
E |E → 0, the injectivity of morphism (4.1) is equivalent to the surjectivity of the morphism
H 0(X̃,E) → H 0(E |E). Note again that by Lemma 4.2,

R1σ∗
(∧iMW ⊗ σ ∗Lj

(
(−k − 1)E

)) = R1σ∗
(∧iMW ⊗ (σ ∗L− E)(k+1)

) ⊗Lj−k−1 = 0.

Thus, we have an exact sequence

0 → σ∗E(−E) → σ∗E → σ∗(E |E) → 0.

Since σ∗(E) is globally generated by Lemma 4.3, we have surjective morphisms

H 0(X̃,E) ⊗OX → σ∗(E) → σ∗(E |E) = H 0(E |E). �
Remark 4.5. In Lemma 4.4, it can be shown that the given morphism is not always injective for
k = j + 1.

Theorem 4.6. Let X ⊂ P(H 0(L)) be a smooth irreducible variety of dim(X) � 2 with prop-
erty Np , p � 1. For any q ∈ X \ Trisec(X), π̃q(Blq(X)) = πq(X \ {q}) in P(W) is smooth and
satisfies property Np−1, i.e., property Np−1 holds for (Blq(X),σ ∗L− E).
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Proof. By Proposition 4.1, we know π̃q(Blq(X)) = πq(X \ {q}) in P(W) is smooth. From the
restriction of the Euler sequence on P(W) to X̃ = Blq(X), we have the following diagram

0 0 0

0 MW W ⊗O
X̃ σ ∗L(−E) 0

0 σ ∗MV V ⊗O
X̃ σ ∗L 0

0 O
X̃
(−E) O

X̃ OE 0

0 0 0

The above commutative diagram induces the following diagram:

0 0 0

0 ∧i+1MW ∧i+1W ⊗O
X̃ ∧iMW ⊗ σ ∗L(−E)

α

0

0 ∧i+1σ ∗MV ∧i+1V ⊗O
X̃ ∧iσ ∗MV ⊗ σ ∗L 0

0 ∧iMW ⊗O
X̃
(−E) ∧iW ⊗O

X̃ cokerα 0

0 0 0

(4.2)

Twisting through by σ ∗Lj−1 in diagram (4.2) and taking cohomology, one gets the following
diagram:

∧i+1W ⊗ H 0
(
σ ∗Lj−1

)
H 0

(∧iMW ⊗ σ ∗Lj (−E)
)

H 1
(∧i+1MW ⊗ σ ∗Lj−1

)

∧i+1V ⊗ H 0
(
σ ∗Lj−1

) αi,j

μi,j

H 0
(∧iσ ∗MV ⊗ σ ∗Lj

)

νi,j

H 1
(∧i+1σ ∗MV ⊗ σ ∗Lj−1

) βi,j

ξi,j

∧iW ⊗ H 0
(
σ ∗Lj−1

) γi,j

H 0
(
cokerα ⊗ σ ∗Lj−1

)
H 1

(∧iMW ⊗ σ ∗Lj−1(−E)
) δi,j

0 H 1
(∧iMW ⊗ σ ∗Lj (−E)

)

ωi,j

H 2
(∧i+1MW ⊗ σ ∗Lj−1

)

H 1
(∧iσ ∗MV ⊗ σ ∗Lj

)

(4.3)
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Observe the following from the above diagram:

(1) μi,j is always surjective.
(2) By hypothesis of property Np of (X,L) (see Lemma 2.1) and Lemma 2.2, αi,j is surjective

for 0 � i � p and j � 2.
(3) Blq(X) ⊂ Pr−1 satisfies property Np−1 for σ ∗L(−E) if

δi,j is injective for all 1 � i � p and j � 2

by Lemma 4.4 and the following diagram:

H 1
(∧iMW ⊗ (σ ∗L− E)j−1

) ∧iW ⊗ H 1
(
(σ ∗L− E)j−1

)

� (by Corollary 2.4)

H 1
(∧iMW ⊗ σ ∗Lj−1(−E)

) δi,j ∧iW ⊗ H 1
(
σ ∗Lj−1

)

(4) For 1 � i � p and j � 2, the following holds since μi,j and αi,j are surjective:

δi,j is injective ⇐⇒ γi,j is surjective

⇐⇒ νi,j is surjective

⇐⇒ ωi,j is injective.

(5) We also have the following commutative diagram of cohomology groups:

H 1
(
X̃,∧iMW ⊗ σ ∗Lj (−E)

) δi,j+1

ωi,j

∧iW ⊗ H 1
(
X̃, σ ∗Lj

)

ρi,j

H 1
(
X̃,∧iσ ∗MV ⊗ σ ∗Lj

) βi−1,j+1 ∧iV ⊗ H 1
(
X̃, σ ∗Lj

)

From this diagram, observe the following:
• ρi,j is always injective.
• βi−1,j+1 is injective for 1 � i � p + 1 and j � 1 by property Np of (X,L).
Thus for 1 � i � p + 1 and j � 1,

δi,j+1 is injective if and only if ωi,j is injective.

Note that δi,j+1 is injective for a sufficient large j since H 1(X̃,∧iMW ⊗ σ ∗Lj (−E)) =
H 1(X,σ∗(∧iMW ⊗O ˜ (−E)) ⊗Lj ) = 0, j 
 0. Hence the following holds for 1 � i � p:
X
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δi,j+1 is injective for all j 
 0 �⇒ ωi,j and δi,j are injective

�⇒ ωi,j−1 and δi,j−1 are injective

. . .

�⇒ ωi,2 and δi,2 are injective.

Therefore it is proved that δi,j is injective for all 1 � i � p and j � 2. �
Let X be a smooth projective variety of dimension n and L a very ample line bundle on X.

Let σ : X̃ → X be the blowing-up at distinct s points q1, q2, . . . , qs in X with the exceptional
divisors E1, . . . ,Es . Suppose L′ := σ ∗L(−E1 − · · · − Es) on X̃ is very ample. Then we have
the following corollary from Theorem 4.6 immediately.

Corollary 4.7. If L satisfies Np for p � 1, then L′ satisfies Np−s for p � s. In particular,
σ ∗L(−E1 − · · · − Ep) is very ample and normally generated.

We also get the generalization of Corollary 3.4 with extra conditions.

Corollary 4.8. Let X ⊂ P
N be a smooth linearly normal variety satisfying Hi(X,O(j)) = 0 for

all 1 � i < dimX and j � 0. If X has a (p + 2)-secant p-plane Λ such that X ∩ Λ is a finite
curvilinear scheme, then property Np fails for X.

Proof. From the given cohomological and curvilinear conditions, we can possibly get the lin-
early normal smooth curve section containing (p + 2)-secant p-plane Λ and its graded Betti
numbers are same as those of X by Green theorem [11, 3.b.7]. Thus we are done by Corol-
lary 3.4. �
Corollary 4.9. Let X ⊂ P(W) be a smooth variety with property NS

p and t = codim(W,H 0(L)).
Then, for any q ∈ X \ Trisec(X) we have:

(1) An inner projection πq(X \ {q}) ⊂ P(W ′) satisfies property NS
p−1.

(2) The defining equations of πq(X \ {q}) in P(W ′) have degree at most t + 2 for p � 2.

Proof. We can prove this by the exactly same methods as those shown in Theorem 4.6 except
taking subsystems of the complete linear system of global sections. For a proof of (2), note that
t = codim(W,H 0(L)) = codim(W ′,H 0(σ ∗L− E)). Thus, it follows from Theorem 1.1 in [13]
because an inner projection of X satisfies NS

1 property for p � 2. �
Remark 4.10. We would like to mention that Corollary 4.8 can be proved with no extra coho-
mological conditions due to Eisenbud, Green, Hulek and Popescu [6, Theorem 1.1].

5. Applications to some examples and questions

The main theorems can be applied to the following examples.
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• Veronese embedding of P
n. Let ν2,d : P2 ↪→ P

r , r = (
d+2

2

) − 1, be the Veronese embedding
associated to the complete linear system |OP2(d)|. The image of the embedding ν2,d with d � 3
satisfies property Np if and only if p � 3d − 3 (see [17]). Let q1, . . . , qm be distinct m points
of P

2 for m � 3d − 3, and let X̃ be the blowing-up at q1, . . . , qm with the exceptional divisors
E1, . . . ,Em. A. Noma proved in [16] that the line bundle L := σ ∗OP2(d)⊗O

X̃
(−E1 −· · ·−Em)

is very ample if and only if, for all l with 1 � l � m, any l-points of {q1, . . . , qm} do not lie on
any rational normal curve of degree l on ν(P2) ⊂ P

r . From Corollary 4.7, L satisfies property
N3d−3−m if it is very ample.

For arbitrary n, let νn,d : Pn ↪→ P
r , r = (

d+n
n

) − 1, be the Veronese embedding associated to
the complete linear system |OPn(d)|. It is well known that νn,d with d � 2 satisfies Np for p � d

and the line bundle L := σ ∗OPn(d)⊗O
X̃
(−E1 −· · ·−Ed) is very ample [3, Theorem 1], where

X̃ is the blowing-up at general d points x1, . . . , xd with the exceptional divisors E1, . . . ,Ed .
Thus, Corollary 4.7 implies that L is normally generated.

On the other hand, it can be shown by using Corollary 4.8 that the image νn,d(Pn) fails to
hold property N3d−2. This was first proved by Ottaviani and Paoletti [17], and then by Eisenbud,
Green, Hulek and Popescu [6, Proposition 3.2].

Proposition 5.1. The image νn,d(Pn) for d � 3 fails to hold property N3d−2.

Proof. Since the image νn,d(Pn) is projectively Cohen–Macaulay, the hypotheses of Corol-
lary 4.8 are satisfied. We can also show that the image νn,d(Pn) has 3d-secant (3d −2)-plane (see
[6, Proposition 3.2] for details). Therefore, νn,d(Pn) for d � 3 fails to hold property N3d−2. �
• Calabi–Yau manifolds. Let X be an n-dimensional smooth projective variety with KX = OX

and let L be a very ample line bundle on X. Then L⊗n+p+1 satisfies to hold Np (see [7]).
Assume that p � 2n. In [3], for general p points x1, . . . , xp with p � N − 2n − 1 where N =
dimH 0(X,L⊗n+p+1), L′ := σ ∗Ln+p+1(−E1 − · · · − Ep) is very ample. So, we conclude that
L′ is normally generated.

• Rational surfaces. Gallego and Purnaprajna give a nice sufficient condition for a line bun-
dle L on a rational surface X to hold property Np .

Theorem 5.2. [10] Let X be a rational surface, and let L be an ample line bundle on X. If L is
base-point-free and −KX ·L� p + 3, then L satisfies property Np .

If −KX · L � p + 3, then −K
X̃

· (σ ∗L − E) � p + 2. So, this theorem is consistent with
Theorem 4.6. Note also that Del Pezzo surfaces as the blow-ups of P

2 are rational surfaces.

Remark 5.3. Many works have been done to show that some very ample line bundles on smooth
projective varieties satisfy property Np . For example:

• (Green [11]) Let X be a smooth projective curve of genus g and let L be a line bundle on X

of degree d . If d � 2g + 1 + p, then (X,L) satisfies property Np .
• (Butler [2], Park [18]) Let C be a smooth projective curve of genus g. For a vector bundle E

of rank n over C, let X = P(E) be the associated projective bundle with tautological line
bundle H with projection map π :X → C. For a line bundle L = aH + π∗B on X with
a � 1 and B ∈ PicC, assume that μ−(π∗L) � 2g + 2p for some 1 � p � a. Then Butler
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proved that (X,L) satisfies property Np . For the cases of a = 1, n = 2 and n = 3, a = 2, Park
extended Butler’s result to show property Np for μ−(π∗L) � 2g + 2p with no assumption
1 � p � a.

• (Ein–Lazarsfeld [7]) Let X be a smooth complex projective variety of dimension n with
the canonical sheaf KX . For A,B ∈ PicX, assume that A is very ample and B is numeri-
cally effective. Then, for p � 0, KX + (n + p)A + B satisfies property Np except the case
(X,A,B) = (Pn,OPn(1),OPn) and p = 0.

Note in these examples that Hi(X,O(j)) = 0 for all 1 � i < dimX and j � 0 if dim(X) � 2.
On the other hand, it has been very important to show very ampleness of the form of line bundles
σ ∗L(−m1E1 −· · ·−msEs). However, we are interested in the syzygies of the embedding defined
by the line bundle σ ∗L(−m1E1 − · · · − msEs).

Finally, it seems to us that the following questions related to our paper are interesting. Note
that if the line bundle σ ∗L(−2E) is very ample then the embedding of X̃ by σ ∗L(−2E) is the
Zariski closure of the tangential projection of X from the projective tangent space of X at q . It
would be very interesting to get any structural results on these linear systems with multiple base
points.

• Question 1. What can we say about syzygies of the line bundle σ ∗L(−m1E1 − · · · − msEs),
i.e., of the linear system of multiple base points if it is very ample?

Another question is about the converse of Theorems 3.1 and 4.6.

• Question 2. We ask whether the converse of Theorems 3.1 and 4.6 hold or not. More specifi-
cally, assume that L is a very ample line bundle on a projective variety X. For an embedded pro-
jective variety X ⊂ P(H 0(L)) � Pr by the complete linear system of L, property Np holds for X

if and only if property Np−1 holds for the projection φq(X) of X for any point q /∈ Trisec(X).
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