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Let X be a reduced closed subscheme in P
n . As a slight generaliza-

tion of property Np due to Green–Lazarsfeld, one says that X sat-
isfies property N2,p scheme-theoretically if there is an ideal I gen-
erating the ideal sheaf IX/Pn such that I is generated by quadrics
and there are only linear syzygies up to p-th step (cf. Eisenbud et
al. (2005) [8], Vermeire (2001) [20]). Recently, many algebraic and
geometric results have been proved for projective varieties satisfy-
ing property N2,p (cf. Choi, Kwak, and Park (2008) [6], Eisenbud et
al. (2005) [8], Kwak and Park (2005) [15]). In this case, the Castel-
nuovo regularity and normality can be obtained by the blowing-up
method as reg(X) � e + 1 where e is the codimension of a smooth
variety X (cf. Bertram, Ein, and Lazarsfeld (2003) [3]). On the other
hand, projection methods have been very useful and powerful in
bounding Castelnuovo regularity, normality and other classical in-
variants in geometry (cf. Beheshti and Eisenbud (2010) [2], Kwak
(1998) [14], Kwak and Park (2005) [15], Lazarsfeld (1987) [16].
We first prove the graded mapping cone theorem on partial elim-
inations as a general algebraic tool to study syzygies of the non-
complete embedding of X . For applications, we give an optimal
bound on the length of zero-dimensional intersections of X and
a linear space L in terms of graded Betti numbers. We also deduce
several theorems about the relationship between X and its projec-
tions with respect to the geometry and syzygies for a projective
scheme X satisfying property N2,p scheme-theoretically. In addi-
tion, we give not only interesting information on the regularity of
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fibers of the projection for the case of Nd,p , d � 2, but also geo-
metric structures for projections according to moving the center.

© 2010 Published by Elsevier Inc.
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1. Introduction

Let V be a vector space of dimension n + 1 over an algebraically closed field k of characteristic
zero with basis x0, . . . , xn . If X is a non-degenerate reduced closed subscheme in Pn

k = P(V ) we write
I X for the saturated defining ideal of X in the coordinate ring R = k[x0, . . . , xn] of P(V ).

Eisenbud et al. in [8] introduced the notion Nd,p for some d � 2. We say that X satisfies property
Nd,p if TorR

i (R/I X ,k) is concentrated in degree less than d+ i for all i � p. This is the same as property
Np defined by Green and Lazarsfeld in [10] if X is projectively normal and d = 2.

As a slight generalization, one says that X ⊂ Pn satisfies property N2,p scheme-theoretically if there
is an ideal I generating the ideal sheaf IX/Pn such that I is generated by quadrics and there are only
linear syzygies up to the p-th step (see [8,20]). This condition is weaker than property N2,p , but
useful for local study via sheafification.

One of the main interesting problems is to understand geometric properties of projective schemes
satisfying property N2,p . A great deal of research has been conducted with the aim of extracting
geometric informations from the condition N2,p . The papers [1,11,8,2,3,14–16] give a small sample of
the kinds of investigations that have been carried out in this direction.

This paper falls into that tradition of trying to understand the geometric consequences obtained
from property N2,p . Our main goal is to present a method for bounding the Castelnuovo–Mumford
regularity, higher normality and other classical invariants of the projection image of X satisfying prop-
erty N2,p scheme-theoretically. For this purpose, we establish the graded mapping cone associated to
the projection from a point, and then we deduce the long exact sequence of Tor-modules coming
from the partial eliminations (Theorem 3.2). Unlike the Koszul techniques of Green and Lazarsfeld
used in [5,6,15], our construction turns out to be useful for dealing with non-complete embeddings
of X satisfying property N2,p . (cf. Theorems 3.10, 4.2 and 4.8). A significant portion of our work is to
generalize earlier results in [6] and [15] from complete to non-complete linear systems. We also pro-
vide some illuminating examples of our results via calculations done with Macaulay 2 (Examples 3.12,
4.4 and 4.13).

Organization of the paper. In Section 2 we recall some notations and definitions which will be used
throughout the remaining part of the paper. In Section 3 we make use of the graded mapping cone
theorem (Theorem 3.2) to bound the number of zero-dimensional intersections of X with a plane
when it satisfies N2,p and N3,p+1 scheme-theoretically (Theorem 3.10). We also give Example 3.12
showing that this result is sharp. Finally, Section 4 is devoted to investigate the influence of property
N2,p on syzygies, higher normality and other invariants of the projected images of X when moving
the center in Pn . Some remarks and examples are also provided.
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2. Notations and definitions

• We work over an algebraically closed field k of characteristic zero.
• For an (n+1)-dimensional k-vector space V with basis x0, . . . , xn , we form the symmetric algebra

R = Sym(V ) = k[x0, . . . , xn]. If W is a subspace of V with a basis xt , . . . , xn we write St for the
symmetric algebra Sym(W ) = k[xt , xt+1, . . . , xn].

• Unless otherwise stated, X is a non-degenerate and reduced closed subscheme in Pn
k = P(V ),

which is not necessarily a complete embedding.
• Let Λ be a linear subvariety in Pn

k = P(V ) with homogeneous coordinates x0, . . . , xt−1. Consider
an outer projection of X from the center Λ

πΛ : X → Pn−t
k = P(W ).

We write Yt ⊂ Pn−t
k for the image πΛ(X).

• For a finitely generated graded R-module M = ⊕
��0 M� , consider a minimal free resolution

· · · →
⊕

j

R(−i − j)βi, j(M) → ·· · →
⊕

j

R(− j)β0, j(M) → M → 0

of M as a graded R-modules. Thus βR
i, j(M) := dimk TorR

i (M,k)i+ j . We say that M is m-regular if
βi, j(M) = 0 for all i � 0 and j � m. The Castelnuovo–Mumford regularity of M is defined by

reg(M) := min{m | M is m-regular}.
• For a coherent sheaf M on P(V ), let M = ⊕

�∈Z
H0(M(�)) be its associated graded R-module.

Then we write

reg(M) := min
{
m

∣∣ Hi(M(m − i)
) = 0 for all i � 1

}
.

In this case, it is well known that reg(M) = reg(M).
• For a closed subscheme X ⊂ Pn , we say that X is m-normal if H1(IX/Pn (m)) = 0. The normality

index of X is defined by

αX := min{m | X is d-normal for all d � m}.
3. The graded mapping cone theorem and its applications

The graded mapping cone construction on partial eliminations and its related long exact sequence
are our starting point to understand algebraic and geometric structures of projections.

Let us consider the following situation which is associated with a simple projection from one
point: let W = ⊕n

i=1 k · xi and V = ⊕n
i=0 k · xi be vector spaces over k with symmetric algebras S1 =

k[x1, . . . , xn] and R = k[x0, . . . , xn] respectively. Let M be a graded R-module. Then we can also think
of M as a graded S1-module by the inclusion S1 ↪→ R . One can define the graded Koszul complex
K S1• (M) of M as follows:

0 →
∧n

W ⊗ M → ·· · →
∧2

W ⊗ M → W ⊗ M → M → 0

where K S1
i (M)i+ j = ∧i W ⊗ M j for all i, j.

Now consider the map ϕ between graded complexes of S1-modules

ϕ : K S1•
(
M(−1)

) ×x0−→ K S1• (M),
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which is induced by the multiplicative map ϕ : M(−1)
×x0−→ M . Then there is the mapping cone

(C•(ϕ), ∂ϕ) by the map ϕ such that we have the following long exact sequence (Proposition A3.19
in [7]):

· · · → TorS1
i (M,k)i+ j → Hi

(
C•(ϕ)

)
i+ j

→ TorS1
i−1(M,k)i+ j−1

δ=×x0−→ TorS1
i−1(M,k)i+ j → ·· · . (3.1)

In the following Lemma 3.1, we claim that TorR(M,k) can be obtained from the homology of the
mapping cone.

Lemma 3.1. Let M be a graded R-module. Then we have the following natural isomorphism:

TorR
i (M,k)i+ j � Hi

(
C•(ϕ)

)
i+ j.

Proof. Let K R• (M) be the Koszul complex of a graded R-module M . Then the graded component in
degree i + j of K R

i (M) is K R
i (M)i+ j = ∧i V ⊗ M j . Note that

∧i
V ∼=

∧i
W ⊕

[
x0 ∧

(∧i−1
W

)]
,

Ci(ϕ)i+ j =
(∧i

W ⊗ M j

)
⊕

(∧i−1
W ⊗ M j

)
.

Hence we see that the Koszul complex K R
i (M) has the following canonical decomposition in each

graded component:

K R
i (M)i+ j

∼=
(∧i

W ⊗ M j

)
⊕

[(
x0 ∧

(∧i−1
W

))
⊗ M j

]
∼= Ci(ϕ)i+ j. (3.2)

Using the decomposition (3.2), one can verify that the following diagram is commutative:

K R
i (M)i+ j

∼=−→ Ci(ϕ)i+ j⏐⏐�∂

⏐⏐�∂ϕ

K R
i−1(M)i+ j

∼=−→ Ci−1(ϕ)i+ j

(3.3)

Therefore, we have a natural isomorphism TorR
i (M,k)i+ j � Hi(C•(ϕ))i+ j . �

From the long exact sequence (3.1) and Lemma 3.1, we have the following theorem which will be
crucial throughout the remaining part of the paper.

Theorem 3.2 (Graded mapping cone theorem). For a graded R-module M which is also a graded S1-module,
we have the following long exact sequence:

· · · → TorS1
i (M,k)i+ j → TorR

i (M,k)i+ j → TorS1
i−1(M,k)i+ j−1

δ−→ TorS1
i−1(M,k)i+ j → TorR

i−1(M,k)i+ j → TorS1
i−2(M,k)i+ j−1

δ−→ · · ·
whose connecting homomorphism δ is the multiplicative map ×x0 .
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Note that Theorem 3.2 gives us useful information about syzygies of outer projections (i.e. iso-
morphic or birational projections) of projective varieties. As a first step, we obtain this interesting
information on the minimal free resolution of R/I as a graded S1-module.

Corollary 3.3. Let I ⊂ R be a homogeneous ideal such that R/I is a finitely generated S1-module. Assume that
I admits d-linear resolution as an R-module up to the p-th step for some p � 2. Then, for 1 � i � p − 1,

(a) the minimal free resolution of R/I as a graded S1-module is

→ Lp−1 → ·· · → L1 → S1(−d + 1) ⊕ · · · ⊕ S1(−1) ⊕ S1 → R/I → 0,

where Li = S1(−d + 1 − i)β
S1
i,d−1 for all 1 � i � p − 1;

(b) in particular, β S1
i,d−1 = (−1)i + ∑

1� j�i(−1) j+iβR
j,d−1(R/I).

Proof. (a) First, consider the exact sequence

· · · → TorR
1 (R/I,k) j → TorS1

0 (R/I,k) j−1

δ−→ TorS1
0 (R/I,k) j → TorR

0 (R/I,k) j → 0.

Since TorR
1 (R/I,k) j = 0 for all j �= d and TorR

0 (R/I,k) j = 0 for all j �= 0, we see that βR
0,0 = β

S1
0, j = 1 for

all 0 � j � d − 1 and β
S1
0, j = 0 for all j /∈ {0,1, . . . ,d − 1} from the finiteness of R/I as an S1-module.

Note that TorR
i (R/I,k)i+ j = 0 for 1 � i � p and j �= d − 1 by assumption that I is d-linear up to

the p-th step. Applying Theorem 3.2 for M = R/I , we have an isomorphism induced by δ = × x0:

TorS1
i−1(R/I,k)(i−1)+ j

δ−→ TorS1
i−1(R/I,k)(i−1)+( j+1)

for 1 � i � p and for all j /∈ {d − 2,d − 1}. Hence we conclude that

TorS1
i−1(R/I,k)(i−1)+ j = 0 for 2 � i � p and j �= d − 1,

since R/I is finitely generated as an S1-module, which means that

Li = S1(−d − i + 1)
⊕β

S1
i,d−1 for 1 � i � p − 1.

(b) Note that we have

0 → TorS1
i (R/I,k)i+d−1 → TorR

i (R/I,k)i+d−1 → TorS1
i−1(R/I,k)i+d−2 → 0

for 1 � i � p − 1, consequently

β
S1
i,d−1(R/I) = βR

i,d−1(R/I) − β
S1
i−1,d−1(R/I).

Then, by induction on p, we get the desired result. �
From now on, we consider an outer projection πΛ : X → Yt ⊂ P(W ) where dimΛ = t − 1 � 0.

Then, the following basic sequence

0 → R/I X → E → H1∗(IX ) → 0 (as St-modules)
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is also exact as finitely generated St -modules by Lemma 3.4. Furthermore, it would be very useful to
compare their graded Betti tables by the graded mapping cone theorem.

Lemma 3.4. Let I be a homogeneous ideal defining X scheme-theoretically in Pn. Then R/I and E =⊕
�∈Z

H0(X,OX (�)) are finitely generated St -modules.

Proof. For 0 � i � t − 1, let pi = [0, . . . ,0,1,0, . . . ,0] ∈ Λ be the point whose (i + 1)-th coordinate
is 1. Since pi /∈ X , for some mi > 0, there is a homogeneous polynomial f i in I which is of the
form f i = xmi

i + gi where gi ∈ k[x0, x1, . . . , xn] is a homogeneous polynomial of degree mi with the
power of xi less than mi . Hence R/I is generated by monomials of the form xn0

0 · · · x
nt−1
t−1 , ni < mi for

all 0 � i � t − 1 as an St -module. Next, from the exact sequence 0 → R/I X → E → H1∗(IX ) → 0 as
St -modules, E is also a finitely generated St -module. �
Remark 3.5. For an inner projection of X from the center q ∈ X , let Y1 = πq(X) be the Zariski-closure
of πq(X) in Pn−1. Then R/I X is not finitely generated as a graded S1-module.

The following theorem is a generalization of Corollary 3.3, which is related to the existence of
multisecant plane (cf. Theorem 3.10).

Theorem 3.6. Suppose that X satisfies property Nd,p scheme-theoretically with an ideal I . Consider an outer
projection πΛ : X → P(W ) from the center Λ = P(U ) = Pt−1 . Then, R = R/I�d has the simplest syzygies up
to (p − t)-th step as St -module for 1 � t � p,

→ Lp−t → ·· · → L1 →
d−1⊕
i=0

Symi(U ) ⊗ St(−i) → R → 0 (3.4)

where Li = St(−i −d+1)
β

St
i,d−1 for 1 � i � p −t and Symi(U ) = H0(OΛ(i)) is a vector space of homogeneous

forms of degree i generated by U .
In particular, if d = 2 then the minimal free resolutions of R/I is

→ St(−p + t − 1)
β

St
p−t,1 → ·· · → St(−2)

β
St
1,1 → St ⊕ St(−1)t → R/I → 0.

Proof. Let St = k[xt , . . . , xn] be a polynomial ring for 0 � t � p and let

→ Lp−t → ·· · → L1 → L0 → R → 0

be the minimal free resolution of R as an St -module. We will give a proof by induction on t � 1. For
t = 1, the result (3.4) follows directly from Corollary 3.3. For t > 1, by induction hypothesis, we can
assume that for 1 � α � p − (t − 1),

TorSt−1
α (R,k) j = 0 if j �= α + d − 1.

Using an exact sequence by the mapping cone theorem for α � 1,

· · · → TorSt−1
α+1(R,k) j → TorSt

α (R,k) j−1

δ−→ TorSt
α (R,k) j → TorSt−1

α (R,k) j → ·· ·
we can also show, by an argument similar to that of Corollary 3.3, that
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TorSt
α (R,k) j = 0 if j �= α + d − 1;

equivalently, Lα = St(−α − d + 1)
β

St
α,d−1 for 1 � α � p − t .

It remains to show that L0 = ⊕d−1
i=0 Symi(U ) ⊗ St(−i). Note that the set {Symi(U ) | 0 � i � d − 1}

should be contained in any generating set of R as an St -module because there is no relation of
degree at most d − 1 in R . So, we have to show that {Symi(U ) | 0 � i � d − 1} is actually the set of all
generators. This can be done by dimension counting. Let us prove this by induction on t . In the case
of t = 1, the result easily follows from Corollary 3.3(a). If t > 1 then, by the induction hypothesis, we
see that for all i � d − 1,

dimk TorSt−1
0 (R,k)i =

(
i + t − 2

t − 2

)
, TorSt−1

1 (R,k)i = 0

and we have the following sequence from the mapping cone construction

0 → TorSt
0 (R,k)i−1 → TorSt

0 (R,k)i → TorSt−1
0 (R,k)i → 0,

for each 0 � i < d. Hence, we obtain

dimk TorSt
0 (R,k)i =

i∑
m=0

(
m + t − 2

t − 2

)
=

(
i + t − 1

t − 1

)
,

as we wished. �
Definition 3.7. (See [15].) Consider three vector spaces W ⊂ V ⊂ H0(X,OX (1)) and suppose that
t = codim(W , V ) and α = codim(W , H0(OX (1))). We say that R/I X (resp. E) satisfies property NS

p if
R/I X (resp. E) have the simplest minimal free resolutions up to the p-th step as graded St -modules:

· · · → E p → E p−1 → ·· · → E1 → St ⊕ St(−1)⊕α → E → 0 (3.5)

where Ei = St(−i − 1)⊕βi,1 for 1 � i � p, and

· · · → L̃ p → L̃ p−1 → ·· · → L̃1 → St ⊕ St(−1)⊕ t → R/I X → 0 (3.6)

where L̃i = St(−i − 1)⊕β̃i,1 , 1 � i � p.

On the other hand, we have a similar result for E = ⊕
�∈Z

H0(X,OX (�)) as the following proposi-
tion shows.

Proposition 3.8. With the same hypotheses as Theorem 3.6, suppose E (or R/I X ) satisfies property NS
p as an

R-module for some p � 2. Then E (or R/I X ) also satisfies property NS
p−t as an St -module under the projection

morphism πΛ : X → Yt ⊂ Pn−t = P(W ), 1 � t � p.

Proof. When t = 1, we can similarly show that E satisfies property NS
p−1 as an S1 module by using

Theorem 3.2 for M = E and the vanishing βR
i, j(E) = 0 when 0 � i � p and j � 2. As a consequence, E

has the following simplest resolution:

· · · → E p−1 → E p−2 → ·· · → E1 → S1 ⊕ S1(−1)⊕α → E → 0 (3.7)
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where Ei = S1(−i − 1)⊕βi,1 for 1 � i � p − 1. For t � 2, letting Si = k[xi, xi+1, . . . , xn], we inductively
check that if E satisfies property NS

p−i as an Si -module, then E also satisfies property NS
p−i−1 as an

Si+1-module by the same argument as in Theorem 3.6. For R/I X , the proof is exactly the same. �
Remark 3.9. For isomorphic projections, the above Proposition 3.8 is in fact a simple algebraic re-
statement of Theorem 2 in [6], Theorem 1.2 in [15], and for birational projections, see a part of
Theorem 3.1 in [19]. Indeed, for any regular projection πΛ : X → Yt ⊂ Pn−t = P(W ), 1 � t � p, there
is an exact sequence:

0 → TorSt
i (E,k)i+ j → H1

(∧i+1
M ⊗ πΛ∗OX ( j − 1)

)
αi, j−→

∧i+1
W ⊗ H1(πΛ∗OX ( j − 1)

) → ·· · . (3.8)

From the following commutative diagram:

H1(Yt,
∧i+1 MW ⊗ πΛ∗OX ( j − 1))

αi, j−→ ∧i+1 W ⊗ H1(πΛ∗OX ( j − 1))

‖ ‖

H1(X,
∧i+1 π∗

ΛMW ⊗ OX ( j − 1))
α̃i, j−→ ∧i+1 W ⊗ H1(OX ( j − 1))

it was shown (cf. [6,15,19]) that α̃i, j is injective for all 1 � i � p − t and j � 2. Thus, E satisfies
property NS

p−t as St -module. �
In the following theorem, we make use of the graded mapping cone theorem to bound the number

of zero-dimensional intersection of X with a plane. As a special case, we recover Theorem 1.1 in
[8] with a different method. This gives us a geometric meaning of property Nd,p with respect to
multisecant planes.

Theorem 3.10. Suppose that X satisfies property Nd,p scheme-theoretically in Pn. Consider the projection
πΛ : X → Yt ⊂ Pn−t from the center Λ = P(U ) = Pt−1, t � p. Then:

(a) Every fiber of πΛ is (d − 1)-normal, i.e. reg(π−1
Λ (y)) � d for all y ∈ Yt . So, length(π−1

Λ (y)) �
(t+d−1

t

)
.

(b) reg(X ∩ L) � d for any linear section X ∩ L as a finite scheme where L = Pm, 1 � m � p. In particular, for
a projective variety satisfying property N2,p , there is no (p + 2)-secant p-plane.

(c) Suppose X satisfies N2,p and N3,p+1 scheme-theoretically with an ideal I for some p � 1. If there is an
�-secant (p + 1)-plane to X then

� � p + 2 + min
{

p + 1, βR
p+1,2(R/I)

}
.

Proof. Choose an ideal I with property Nd,p defining X scheme-theoretically. For a proof of (a), con-
sider the minimal free resolution of R/(I)�d as St -module given in Proposition 3.6, namely,

· · · → St(−d)
⊕β

St
1,d−1 →

d−1⊕
Symi(U ) ⊗ St(−i) → R/(I)�d → 0
i=0
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where Symi(U ) = H0(OΛ(i)) is a vector space of homogeneous forms of degree i generated by U . By
sheafifying this exact sequence and tensoring

⊗
OPn−t (d − 1), we have the surjective morphism of

sheaves

· · · →
d−1⊕
i=0

Symi(U ) ⊗ OPn−t (d − 1 − i) → πΛ∗OX (d − 1) → 0.

For all y ∈ Yt , we have the following surjective commutative diagram (∗) by Nakayama’s lemma:

⊕d−1
i=0 Symi(U ) ⊗ OPn−t (d − 1 − i) ⊗ k(y) � πΛ∗OX (d − 1) ⊗ k(y)

‖ (∗) ‖
H0(〈Λ, y〉,O〈Λ,y〉(d − 1)) � H0(OπΛ

−1(y)(d − 1))

Therefore, as a finite scheme, πΛ
−1(y) is (d − 1)-normal for all y ∈ Yt .

For a proof of (b), suppose that reg(X ∩ L) > d for some linear section X ∩ L as a finite scheme
where 1 � m = dim(L) � p. Then we can take a linear subspace Λ1 ⊂ L of dimension m − 1 disjoint
from X ∩ L. Then X ∩ L is the fiber of a projection πΛ1 : X → Pn−m−1 at πΛ1 (L). However, this
contradicts (a).

Let’s proceed to prove (c). Suppose that I satisfies N2,p and N3,p+1. If βR
p+1,2 = 0 then it is clear

by (b). So let us assume that βR
p+1,2 is nonzero and βR

p+1, j = 0 for all j � 3. Suppose that L is an
�-secant (p + 1)-plane to X , and then choose a linear subspace Λ of dimension p disjoint from X
with homogeneous coordinates x0, . . . , xp . Let S p+1 = k[xp+1, xp+2, . . . , xn] ⊂ S p = k[xp, xp+1, . . . , xn].
Then it follows from Theorem 3.6 that the minimal free presentation of R/I as an S p-module is of
the form:

· · · → F1 → S p ⊕ S p(−1)p → R/I → 0.

Now consider the following long exact sequence for each j = 0,1,2,

· · · → Tor
S p

1 (R/I,k) j → Tor
S p+1
0 (R/I,k) j−1

δ=×xp−→ Tor
S p+1
0 (R/I,k) j → Tor

S p

0 (R/I,k) j → 0. (3.9)

By property N3,p+1 of R/I , we can easily verify that the minimal free resolution of R/I as an S p+1-
module is of the form

· · · → S p+1 ⊕ S p+1(−1)p+1 ⊕ S p+1(−2)α → R/I → 0 (3.10)

for some α in Z�0. Then it follows from 3.9 and j = 2 that

dimk Tor
S p+1
0 (R/I,k)1 = p + 1 � α.

On the other hand, we have the following surjections from the fact that TorSi
p+1−i(R/I,k)p+1−i+3 =

0 for 1 � i � p + 1 (cf. Proposition 3.8):



JID:YJABR AID:13049 /FLA [m1G; v 1.45; Prn:12/08/2010; 10:17] P.10 (1-20)

10 J. Ahn, S. Kwak / Journal of Algebra ••• (••••) •••–•••
TorR
p+1(R/I,k)p+1+2 → TorS1

p (R/I,k)p+2
×x0−→ TorS1

p (R/I,k)p+3 = 0,

TorSi
p+1−i(R/I,k)p+1−i+2 → TorSi+1

p−i (R/I,k)p−i+2
×xi−→ TorSi+1

p−i (R/I,k)p−i+3 = 0,

Tor
S p

1 (R/I,k)3 → Tor
S p+1
0 (R/I,k)2

×xp−→ Tor
S p+1
0 (R/I,k)3 = 0

for all 0 � i � p + 1, which implies that

dimk TorR
p+1(R/I,k)p+3 = βR

p+1,2(R/I) � α = dimk Tor
S p+1
0 (R/I,k)2.

So, we have the inequality

α � min
{

p + 1, βR
p+1,2(R/I)

}
.

By the sheafification of the sequence (3.10), the length of any fiber of

πΛ : X → Pn−p−1

is at most 1 + (p + 1) + α. This completes the proof of (c). �
Remark 3.11. In the process of proving (a) in Theorem 3.10, we learn that the global property Nd,p
scheme-theoretically gives local information on the length of fibers in any linear projection from the
center Λ of dimension at most p − 1. The commutative diagram (∗) in the proof of (a) can also be
understood geometrically as follows:

BlΛ(Pn) = P(OPn−t (1) ⊕ U ⊗ OPn−t )

σ ρ

Pn
πΛ

Pn−t

where σ : BlΛ Pn → Pn is a blow-up of Pn along Λ.
Note that ρ∗σ ∗OPn (d − 1) = Symd−1(OPn−t (1) ⊕ U ⊗ OPn−t ). We actually showed that the natural

morphism of sheaves

ρ∗σ ∗OPn(d − 1) → ρ∗σ ∗OX (d − 1) = πΛ∗OX (d − 1)

is surjective from property Nd,p because the following morphism

Symd−1(OPn−t (1) ⊕ U ⊗ OPn−t ) ⊗ k(y) � πΛ∗OX (d − 1) ⊗ k(y)

‖ ‖⊕d−1
i=0 Symi(U ) ⊗ OPn−t (d − 1 − i) ⊗ k(y) � H0(OπΛ

−1(y)(d − 1))

is surjective for all y ∈ Yt . Similar constructions were used in bounding regularity of smooth surfaces
and threefolds in [14] and [16].

The following examples show that the upper bounds of (a) and (c) in Theorem 3.10 are sharp.
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Table 1
Linear projection πq(C) ⊂ P

9 from q ∈ S5(C) \ S4(C).

Total 0 1 2 3 4 5 6 7 8 9

1 34 151 315 371 265 125 43 10 1

0 1 . . . . . . . . .
1 . 34 151 314 365 230 69 7 . .
2 . . . 1 6 35 56 36 10 1

Example 3.12. (a) Let S�(C) be the �-th higher secant variety of a rational normal curve C in Pn . Then
the defining ideal of S�(C) is generated by maximal minors of a 1-generic matrix of linear forms of
size � + 1 in S = C[x0, . . . , xn]. It is known that S�(C) is arithmetically Cohen–Macaulay of degree(n−�+1

�

)
having a (� + 1)-linear resolution from the Eagon–Northcott complex. Now, consider a linear

projection from a general linear space Λ = Pn−2� . The length of a general fiber is the degree of S�(C)

and thus the bound in Theorem 3.10(a) is sharp.
(b) Let C be an elliptic normal curve of degree d in Pd−1 which satisfies property Nd−3 but fails to

satisfy property Nd−2 with βR
d−2,2 = 1. Since deg(C) = d = d − 1 + min{d − 2, βR

p+1,2(R/I)}, the bound
in Theorem 3.10(c) is also sharp.

(c) (Macaulay 2 in [13]) Let C = ν10(P
1) be a rational normal curve in P10. Let S�(C) be the �-th

higher secant variety of dim S�(C) = min{2� − 1,10}. Then,

C � Sec(C) = S2(C) � S3(C) � · · · � S6(C) = P10.

Then, for any point q ∈ S5(C) \ S4(C), πq(C) ⊂ P9 is a smooth rational curve with Betti Table 1.
Note that πq(C) ⊂ P9 satisfies property N2,2 with βR

3,2 = 1. Since πq(C) has a 5-secant 3-plane

in P9, the bound in Theorem 3.10(c) is also sharp. If q ∈ P10 \ S5(C) then πq(C) satisfies N2,3 with
β4,2 = 6.

(d) Note that two optimal examples (b) and (c) that we found in Example 3.12 all satisfy

� = p + 2 + min
{

p + 1, βR
p+1,2(R/I)

} = p + 2 + βR
p+1,2(R/I).

It would be interesting to find other examples having optimal bound � = 2p + 3 when p + 1 <

βR
p+1,2(R/I) for some p � 2.

4. Effects of property N2,p on projections and moving the center

For a projective variety X ⊂ Pn , property N2,p is a natural generalization of property Np to the
case of non-complete linear systems. Note that a smooth variety X ⊂ Pn satisfying property N2,p ,
p � 1, scheme-theoretically has reg(X) � e + 1 where e = codim(X,Pn) and so X is m-normal for all
m � e (cf. [3]). The main theorems in this section show that property N2,p plays an important role to
control the normality and defining equations of projected varieties under isomorphic and birational
outer projections up to the (p − 1)-th step.

Proposition 4.1. Suppose that X ⊂ Pn satisfies property N2,p scheme-theoretically for some p � 2. Consider
an isomorphic projection πΛ : X → Yt ⊂ Pn−t for some 1 � t � p − 1. Then we have

H1(IX/Pn (m)
) = H1(IYt/Pn−t (m)

)
for all m � t + 1. Thus, if X is m-normal for all m � αX then Yt is m-normal for all m � max{αX , t + 1} and
reg(Yt) � max{reg(X), t + 2}.
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Proof. Let R = k[x0, x1, . . . , xn] and St = k[xt , xt+1, . . . , xn] be the coordinate rings of Pn and Pn−t

respectively. Choose an ideal I defining X with N2,p scheme-theoretically. Then, by Theorem 3.6, we
have the minimal free resolution of R/I as a graded St -module:

→ St(−p + t − 1)⊕βp−t,1 → ·· · → St(−2)⊕β1,1 → St ⊕ St(−1)⊕ t ϕ0−→ R/I → 0.

Note that πΛ∗ (OX ) � OYt and (R/I)d = H0(OYt (d)) for all d � 0. Therefore, by sheafifying the resolu-
tion of R/I , we have the following familiar two diagrams by using Snake Lemma (see [12,15]):

0 0

↓ ↓
0 → IYt/Pn−t → OPn−t → OYt → 0

↓ ↓ ‖
0 → L → OPn−t (−1)⊕t ⊕ OPn−t

ϕ̃0−→ OYt → 0

↓ ↓
OPn−t (−1)⊕t = OPn−t (−1)⊕t

↓ ↓
0 0

(4.1)

and in the first syzygies of R/I , we have the following diagram:

0

↓
0 IYt/Pn−t

↓ ↓
0 → K → OPn−t (−2)⊕β1,1 → L → 0

↓ ‖ ↓
0 → N → OPn−t (−2)⊕β1,1 → OPn−t (−1)⊕t → 0

↓ ↓
IYt/Pn−t 0

↓
0

(4.2)

Claim. From the commutative diagrams (4.1) and (4.2):

(a) reg(N) � t + 2.
(b) For all m � t + 1, we have the isomorphisms on m-normality: H1(IYt/Pn−t (m)) � H2(K(m)) �

H1(L(m)) � H1(IX/Pn (m)).

Proof of Claim. First of all, we can control the Castelnuovo-regularity of N (cf. [12,15,17]) by using
the Eagon–Northcott complex associated to the exact sequence

0 → N → OPn−t (−2)⊕β1,1 → OPn−t (−1)⊕t → 0.
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As a consequence, reg(N) � t + 2. Thus, from the leftmost column and first row of (4.2), we have the
following isomorphisms for all m � t + 1:

H1(IYt/Pn−t (m)
) � H2(K(m)

) � H1(L(m)
)
. (4.3)

On the other hand, by taking global sections and using simple linear syzygies of R/I as an St -
module, we have the following commutative diagram:

0 → H0∗(L) → St(−1)⊕ t ⊕ St
H0∗(ϕ̃0)−→ ⊕

�∈Z
H0(OYt (�)) � H1∗(L)

↑ ‖ ↑
0 → K0 → St(−1)⊕ t ⊕ St

ϕ0−→ R/I → 0

Since im H0∗(ϕ̃0) = R/I X and
⊕

�∈Z
H0(OYt (�)) = ⊕

�∈Z
H0(OX (�)), we have H1∗(L) = H1∗(IX/Pn ). Com-

bining this with (4.3), we obtain the proof of Claim (b). Hence we conclude that

H1(IX/Pn (m)
) = H1(IYt/Pn−t (m)

)
for all m � t + 1 and thus reg(Yt) � max{reg(X), t + 2}, as we wished. �
Theorem 4.2 (Isomorphic projections for the case of N2,p). Suppose that X ⊂ Pn satisfy property N2,p for
some p � 2. Consider an isomorphic projection πΛ : X → Yt ⊂ Pn−t for some 1 � t � p − 1. Then IYt is also
cut out by equations of degree at most t + 2 and further satisfies property Nt+2,p−t .

Proof. Let us use the same notation as that in Proposition 4.1. Let I = I X be the defining ideal of X .
From the leftmost column of (4.2), consider the following diagram for all � � 1:

H0(OPn−t (�)) ⊗ H0(N(t + 2)) � H0(N(t + 2 + �)) → 0

↓ ↓
H0(OPn−t (�)) ⊗ H0(IYt/Pn−t (t + 2)) � H0(IYt (t + 2 + �)) → 0

↓ ↓
0 0

Note that surjectivity of the first row is given by reg(N) � t + 2 and surjectivity of two vertical
columns are given by the fact that H1∗(K) = 0. Thus, the second row is also surjective and conse-
quently Yt is cut out by equations of degree at most (t + 2). For the syzygies of IYt , consider the
exact sequence by taking global sections

0 → H0∗(K) → H0∗(N) → IYt → H1∗(K) = 0.

Since H0∗(K) = K1 is the first syzygy module of R/I X , H0∗(K) has the following resolution:

→ St(−p + t − 1)⊕βp−t,1 → ·· · → St(−4)⊕β3,1 → St(−3)⊕β2,1 → H0∗(K) → 0

and so, TorSt
i (H0∗(K),k)i+ j = 0 for 0 � i � p − t − 2 and j � 4. On the other hand, we have the

following equivalence:

reg H0∗(N) = reg(N) � t + 2 ⇐⇒ TorSt
i

(
H0∗(N),k

) = 0 for i � 0, j � t + 3.
i+ j
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Table 2
Linear projection C3 = πΛ(C) ⊂ P

10.

Total 0 1 2 3 4 5 6 7 8 9 10

1 39 183 415 627 728 643 395 153 33 3

0 1 . . . . . . . . . .
1 . 39 183 387 424 245 69 7 . . .
2 . . . 28 203 483 574 388 153 33 3

Table 3
Linear projection C4 = πp(C3) ⊂ P

9.

Total 0 1 2 3 4 5 6 7 8 9

1 31 142 351 548 568 391 168 40 4

0 1 . . . . . . . . .
1 . 28 103 161 134 50 6 . . .
2 . 3 39 190 414 518 385 168 40 4

Thus, from the long exact sequence:

TorSt
i (H0∗(K),k)i+ j → TorSt

i (H0∗(N),k)i+ j → TorSt
i (IYt ,k)i+ j

δ−→ TorSt
i−1(H0∗(K),k)i+ j → TorSt

i−1(H0∗(N),k)i+ j → TorSt
i−1(IYt ,k)i+ j,

we get TorSt
i (IYt ,k)i+ j = 0 for 0 � i � p − t − 1 and j � t + 3, and Yt satisfies property N2+t,p−t . �

Remark 4.3. (a) As a special case of Proposition 4.1 and Theorem 4.2, the same results were proved
in [6] and [15] for the complete linear embedding X ⊂ P(H0(OX (1))).

(b) A. Alzati and F. Russo gave a necessary and sufficient condition for the isomorphic projection
of an m-normal variety to be also m-normal. As an application, they showed that for a variety X ⊂
Pn satisfying property N2, one point isomorphic projection of X in Pn−1 is k-normal for all k � 2
(Theorem 3.2 and Corollary 3.3 in [1]). Theorem 4.2 generalizes the results in [1] to non-linearly
normal embeddings.

Example 4.4 (Macaulay 2 in [13]). Let C be a rational normal curve in P13 and Sm(C) be the m-th
higher secant variety of dimension min{2m − 1,13}. Now choose three points q1, q2 in S6(C) \ S5(C)

and q3 ∈ P13 \ S6(C). If we let � = q1q2 and Λ = 〈q1,q2,q3〉 then it follows from computations with
Macaulay 2 that we have:

(a) C1 = πq(C) ⊂ P12 is a smooth rational curve with property N2,3;
(b) C2 = π�(C) ⊂ P11 is a smooth rational curve with property N2,3;
(c) C3 = πΛ(C) ⊂ P10 is a smooth rational curve with property N2,2.

Moreover, if we consider a projection of C3 = πΛ(C) from a point p ∈ S5(C) \ S4(C) then C4 =
πp(C3) ⊂ P9 satisfies property N3,1, which fails to be property N2,1. By Proposition 4.1, we know
that curves C1, C2, C3 and C4 are all m-normal for all m � 2 and 3-regular (see Tables 2 and 3).

On the other hand, for a point q ∈ Sec(X) ∪ Tan(X) we can also consider a birational projec-
tion and syzygies of the projected varieties. To begin with, let us explain the basic situation and
information on the partial elimination ideals under outer projections. For q = (1,0, . . . ,0,0) /∈ X ,
consider an outer projection πq : X → Y1 ⊂ Pn−1 = Proj(S1), S1 = k[x1, x2, . . . , xn]. Suppose the
ideal I define X scheme-theoretically. For the degree lexicographic order, if f ∈ I has leading term
in( f ) = xd0

0 · · · xdn
n , we set d0( f ) = d0, the leading power of x0 in f . Then it is well known that
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K0(I) = ⊕
m�0{ f ∈ Im | d0( f ) = 0} = I ∩ S1 and defines Y1 scheme-theoretically. More generally, let

us give the definition and basic properties of partial elimination ideals, which was introduced by
M. Green in [9].

Definition 4.5. (See [9].) Let I ⊂ R be a homogeneous ideal and let

K̃ i(I) =
⊕
m�0

{
f ∈ Im

∣∣ d0( f ) � i
}
.

If f ∈ K̃ i(I), we may write f uniquely as xi
0 f̄ + g where d0(g) < i. Now we define Ki(I) by the image

of K̃ i(I) in S1 under the map f �→ f̄ and we call Ki(I) the i-th partial elimination ideal of I . Note
that K̃ i(I) and Ki(I) are graded S1-modules.

Proposition 4.6. (See [9].) Set theoretically, the i-th partial elimination ideal Ki(I) is the ideal of Zi = {q ∈
Y1 | multq(Y1) � i + 1} for every i � 1.

Lemma 4.7. Let X ⊂ Pn be a reduced non-degenerate projective variety satisfying property N2,p , p � 2,
scheme-theoretically. Consider a projection πq : X → Y1 ⊂ Pn−1 where q /∈ X. Let

Σq(X) := {
x ∈ X

∣∣ πq
−1(πq(x)

)
has length � 2

}
be the nonempty secant locus of one-point projection. Then,

(a) Σq(X) is a quadric hypersurface in a linear subspace L and q ∈ L;
(b) πq(Σq(X)) = Z1 is a linear space which is the support of cokernel of OY1 ↪→ πq∗(OX );
(c) for a point q ∈ Sec(X) \ Tan(X) ∪ X, Σq(X) = {two distinct points}.

Proof. Since X satisfies N2,p , p � 2, there is no 4-secant 2-plane to X by Theorem 3.10(b). Let Z1 :=
{y ∈ Y1 | πq

−1(y) has length � 2} and choose two points y1, y2 in Z1. Consider the line � = y1, y2 in
Pn−1. If 〈y1, y2〉 ∩ Y1 is finite, then we have 4-secant plane 〈q, y1, y2〉 which is a contradiction. So,
Sec(Z1) = Z1 and finally, we conclude that Z1 is a linear space. Since πq : Σq(X) � Z1 ⊂ Y1 is a 2:1
morphism, Σq(X) is a quadric hypersurface in L = 〈Z1,q〉. For a proof of (c), if dim Σq(X) is positive,
then clearly, q ∈ Tan Σq(X) ⊂ Tan(X). �

As shown in Lemma 4.7, the fact that Z1 is a linear space is crucial in the proof of the following
theorem.

Theorem 4.8 (Birational projections for the case of N2,p). Let X ⊂ Pn be a reduced non-degenerate projective
variety satisfying property N2,p scheme-theoretically for p � 2. Consider a projection πq : X → Y1 ⊂ Pn−1

where q ∈ Sec(X) ∪ Tan(X) \ X. Then we have the following:

(a) H1∗(IX/Pn ) = H1∗(IY1 ). Thus, Y1 is m-normal if and only if X is m-normal for all m � 1, and reg(Y1) �
max{reg(X), reg(OY1 ) + 1}.

(b) Y1 is cut out by at most cubic hypersurfaces and satisfies property N3,p−1 .

Proof. We may assume that q = (1,0, . . . ,0) ∈ Sec(X) ∪ Tan(X) \ X . Let R = k[x0, x1, . . . , xn] be a
coordinate ring of Pn , S1 = k[x1, x2, . . . , xn] be a coordinate ring of Pn−1. Let the ideal I define X with
the condition N2,p scheme-theoretically. Then, it is easily checked that K0(I) also defines Y1 scheme-
theoretically. By Theorem 3.6, we have the minimal free resolution of R/I as a graded S1-module:

· · · → S1(−p)⊕βp−1,1 → ·· · → S1(−2)⊕β1,1
ϕ1−→ S1 ⊕ S1(−1)

ϕ0−→ R/I → 0.
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Furthermore, we have the following diagram:

0 0 0

↓ ↓ ↓
0 → K0(I) → S1 → S1/K0(I) → 0

↓ ↓ ↓ α

0 → K̃1(I) → S1 ⊕ S1(−1)
ϕ0−→ R/I → 0

↓ ↓ ↓
0 → K1(I)(−1) → S1(−1) → coker α → 0

↓ ↓ ↓
0 0 0

Note that ϕ0( f , g) = f + g · x0 and thus, K1(I) is the first partial elimination ideal of I associated
to the projection πq . Since K̃1(I) has the following minimal free resolution as a graded S1-module:

· · · → S1(−p)⊕βp−1,1
ϕp−1−→ · · · → S1(−2)⊕β1,1

ϕ1−→ K̃1(I) → 0,

we know that K1(I) is generated by linear forms and

reg
(

K1(I)(−1)
) = 2, cokerα = S1/K1(I)(−1).

Moreover, by usual Tor-computations, Y1 satisfies property N3,p−1.
On the other hand, consider the following exact sequence

0 → OY1

α̃−→ πq∗(OX ) → coker α̃ → 0. (4.4)

By Lemma 4.7, since coker α̃ has the support Z1 which is a linear space in Pn−1 and πq : Σq(X) � Z1
is 2:1, we have

πq∗(OX )|Z1 = OZ1 ⊕ OZ1(−1) and coker α̃ = OZ1(−1).

Therefore, H0∗(cokerα) = S1/I Z1(−1). Then, by taking global sections from the above sequence (4.4),
we have the following commutative diagram as S1-modules with exact rows and columns:

0 0 0

↓ ↓ ↓
0 → S1/IY1 → ⊕∞

m=0 H0(OY1(m)) → H1∗(IY1) → 0

↓ ↓ ↓
0 → R/I X → ⊕∞

m=0 H0(OX (m)) → H1∗(IX/Pn ) → 0

↓ ↓ ↓
S1/I Z1(−1) = S1/I Z1(−1) 0

↓ ↓
0 0
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The reason why the left column is exact is that K1(I) = I Z1 for any ideal I defining X scheme-
theoretically. Thus, H1∗(IY1 ) � H1∗(IX/Pn ) and so, X is m-normal if and only if Y1 is m-normal. So we
complete the proof of (a) and (b). �
Remark 4.9. For a complete embedding of X ⊂ P(H0(O(1))) satisfying property Np , Lemma 4.7 and
Theorem 4.8 was proved in [19] with different method. However, the point is that we can also deal
with non-complete embeddings of X in Pn satisfying property N2,p by virtue of the graded mapping
cone theorem without using Green–Lazarsfeld’s vector bundle technique on restricted Euler sequence
on X .

So far, we proved the uniform properties of higher normality and syzygies of projections when
a variety X satisfies property N2,p , p � 2, scheme-theoretically. On the other hand, by moving the
center, we have a lot of interesting varieties with different structures in geometry and syzygies as the
following example shows:

Example 4.10. Let C = νd(P
1) in Pd be a rational normal curve. Consider the following filtration on

the �-th higher secant variety S�(C) of dimension min{2� − 1,d}:

C � Sec(C) = S2(C) � S3(C) � · · · � S� d
2 �(C) � S� d

2 �+1(C) = Pd.

Then we have (see [6,18]):

(a) πq(C) ⊂ Pd−1 satisfies property N2,d−2 for q ∈ C ,
(b) πq(C) ⊂ Pd−1 is a rational curve with one node satisfying property N2,d−3 for q ∈ Sec(C) \ C ,
(c) πq(C) ⊂ Pd−1 satisfies property N2,�−3 for q ∈ S�(C) \ S�−1(C).

Note that all projected curves are m-normal for all m � 2 and thus 3-regular.

Note that for varieties of next to minimal degree, the arithmetic properties of projected varieties
by moving the center were investigated in [4] for the first time. The following proposition show that
the number of quadrics and the depth of projected varieties depend on the position of the center. For
a complete embedding X ⊂ P(H0(L)), the same result is given in [19]. Let s = dimΣq(X) and if the
secant locus Σq(X) = ∅, then s = −1.

Proposition 4.11 (Moving the center: quadrics and depths). Let X ⊂ Pn be a reduced non-degenerate projec-
tive variety satisfying property N2,p , p � 2. Consider the projection πq : X → Y1 ⊂ Pn−1 where q /∈ X. Let
Σq(X) be the secant locus of the projection πq. Then the following hold:

(a) h0(Pn−1, IY1 (2)) = h0(Pn, IX/Pn (2)) − n + s,
(b) depth(Y1) = min{depth(X), s + 2} under the condition that

Hi(OX ( j)
) = 0, ∀ j � −i, 1 � i � dim(X).

Proof. (a) First, for the isomorphic projection case, we obtained the following fact from the commu-
tative diagram (3.2):

reg(N) = 3, h1(IY1(�)
) = h2(K(�)

) = h1(L(�)
) = h1(IX/Pn (�)

)
for � � 2.
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From the basic equalities

⎧⎪⎪⎨
⎪⎪⎩

h0(IX/Pn (2)
) + h0(OX (2)

) =
(

n + 2

2

)
+ h1(IX/Pn (2)

)
and

h0(IY1(2)
) + h0(OY1(2)

) =
(

n + 1

2

)
+ h1(IY1(2)

)
,

we get h0(IY1 (2)) = h0(IX/Pn (2)) − n − 1. In the case of finite birational projections, the secant locus
Σq(X) is not empty and πq(Σq(X)) = Z1 = Ps . In the proof of Theorem 4.8, we got the following fact:

H1∗
(
Pn−1, IY1

) � H1∗
(
Pn, IX/Pn

)
, 0 → S1/IY1 → R/I X → S1/I Z1(−1) → 0.

Therefore, by simple computation we have h0(IY1 (2)) = h0(IX/Pn (2)) − n + s. For a proof of (b), con-
sider the following exact sequence

0 → OY1

α−→ πq∗(OX ) → OZ1(−1) → 0. (4.5)

If s = −1, then Z1 = ∅ and H1(IY1 (1)) �= 0. So, depth(Y1) = 1. Suppose depth(X) = 1, s � 0. Then, by
Theorem 4.8(a), H1∗(IY1 ) � H1∗(IX/Pn ) �= 0 and depth(Y1) = 1.

Now, suppose depth(X) � 2, s � 0. When s = 0, then Z1 is one point. Therefore we have

0 → H0(OZ1(� − 1)
) → H1(OY1(�)

) → H1(OX (�)
) → 0

and 0 �= H0(OZ1 (� − 1)) ⊂ H1(OY1 (�)) for all � � 0. So, depth(Y1) = 2 = min{depth(X), s + 2}. For
s � 1 and depth(X) � s + 2, we obtain the sequence

0 → Hs∗
(
OZ1(−1)

) → Hs+1∗ (OY1) → Hs+1∗ (OX ) → 0,

Hi∗(OY1 ) � Hi∗(OX ) = 0 for all 1 � i � s and Hs∗(OZ1 (−1)) �= 0. Thus, depth(Y1) = s + 2 =
min{depth(X), s + 2}. Finally, in the case of 2 � depth(X) � s + 1, s � 1, under the assumption that
Hi(OX ( j)) = 0, ∀ j � −i, we can easily check that depth(Y1) = depth(X) = min{depth(X), s + 2}. �
Example 4.12. (A non-normal variety with non-vanishing cohomology.) We give some examples re-
lated to our proposition. For a projective normal variety X , we define

δ(X) := min{depthOX,x | x is a closed point}.

Then Hi(OX (�)) = 0 for all � � 0 and i < δ(X) by vanishing theorem of Enriques–Severi–Zariski–Serre.
In the proof of Proposition 4.11, for s = 0 we have an interesting example Y1 such that Y1 has only
one isolated non-normal singular point and in fact, H1(OY1 (�)) �= 0 for all � � 0. As examples, suppose
that a projective variety X has no lines and plane conics in Pn with the condition N2,p , p � 2 (e.g., the
Veronese variety υd(P

n), d � 3, or its isomorphic projections). Then, the singular locus of any simple
projection is either empty or only one point because the secant locus is a quadric hypersurface in
some linear subspace.

Example 4.13 (Macaulay 2 in [13]). Consider a rational normal 3-fold scroll S1,1,4 = P(OP1 (1) ⊕
OP1 (1) ⊕ OP1 (4)) in P8. From the Eagon–Northcott complex, we obtain the minimal free resolution of
S1,1,4 as follows:

0 → R(−6)5 → R(−5)24 → R(−4)45 → R(−3)40 → R(−2)15 → I S1,1,4 → 0.
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As the center of projection q ∈ P8 moves toward S1,1,4, we will see that the number of cubic genera-
tors decreases and the number of quadric generators increases in the following:

(a) Let q ∈ P8 \ Sec(S1,1,4). The isomorphic projection Y ⊂ P7 has the following resolution with
depth(Y ) = 1

· · · → S(−4)40 ⊕ S(−3)8 → S(−3)10 ⊕ S(−2)6 → IY → 0.

(b) Suppose q ∈ Sec(S1,1,4) \ Tan(S1,1,4). Then s = 0 and IY has the following resolution with
depth(Y ) = 2:

· · · → S(−4)19 ⊕ S(−3)8 → S(−3)3 ⊕ S(−2)7 → IY → 0.

(c) For a point q ∈ Tan(S1,1,4)\ S1,1,4, Y has different two types of resolutions: First, consider a linear
span P3 = 〈�1, F 〉 where �1 is a line embedded by P(OP1 (1)) ↪→ P(OP1 (1)⊕OP1 (1)⊕OP1 (4)) ⊂ P8

and F be any fiber of the morphism ϕ : S1,1,4 → P1. For a general point q ∈ P3 = 〈�1, F 〉, Y has a
singular locus P1, only one cubic generator and the following minimal resolution of length 5:

· · · → S(−4)4 ⊕ S(−3)12 → S(−3) ⊕ S(−2)8 → IY → 0.

Second, take a general point q ∈ P3 where the quadric hypersurface P(OP1 (1) ⊕ OP1 (1)) ⊂ P3

is a subvariety of S1,1,4 ⊂ P8. Then the projected variety Y clearly has the singular locus P2,
depth(Y ) = 4 and the following resolution:

0 → S(−6) → S(−4)9 → S(−3)16 → S(−2)9 → IY → 0.

(d) For a general point q ∈ S1,1,4, an inner projection Y is a smooth 3-fold scroll of type S1,1,3 and
has the following resolution:

0 → S(−5)4 → S(−4)15 → S(−3)20 → S(−2)10 → IY → 0.

From [8], we know that if X satisfies the condition N2,p, p = codim(X,Pn) then there are no
outer projections πq(X) satisfying property N2,p−1. However, we proved that πq(X) satisfies at least
property N3,p−1 by Theorems 4.2 and 4.8.

In contrast with the outer projections, it is known that for a non-degenerate smooth variety X in
P(H0(L)) with property Np , the inner projection πq(X) satisfies Np−1 for a point q ∈ X \ Trisec(X)

where Trisec(X) is the union of all proper trisecant lines or lines in X (see [5] for details).
We close the paper with the following question.

Question 4.14. Let X be a projective reduced scheme in Pn satisfying property N2,p , p � 1. Consider
the inner projection πL(X \ L) from a linear subvariety L ⊂ X in Pn−t−1 where dim L = t < p. Is it
true that πL(X \ L) satisfies N2,p−t−1?
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