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Abstract. A projective scheme X is called ‘quadratic’ if X is scheme-theore-

tically cut out by homogeneous equations of degree 2. Furthermore, we say that
X satisfies ‘property N2,p’ if it is quadratic and the quadratic ideal has only
linear syzygies up to the first p-th steps. In the present paper, we compare the
linear syzygies of the inner projections with those of X and obtain a theorem
on ‘embedded linear syzygies’ as one of our main results. This is the natural
projection-analogue of ‘restricting linear syzygies’ in the linear section case.
As an immediate corollary, we show that the inner projections of X satisfy
property N2,p−1 for any reduced scheme X with property N2,p.

Moreover, we also obtain the neccessary lower bound (codimX)·p− p(p−1)
2

,
which is sharp, on the number of quadrics vanishing on X in order to satisfy
N2,p and show that the arithmetic depths of inner projections are equal to
that of the quadratic scheme X. These results admit an interesting ‘syzygetic’
rigidity theorem on property N2,p which leads the classifications of extremal
and next-to-extremal cases.

For these results we develop the elimination mapping cone theorem for
infinitely generated graded modules and improve the partial elimination ideal
theory initiated by M. Green. This new method allows us to treat a wider
class of projective schemes which cannot be covered by the Koszul cohomology
techniques because these are not projectively normal in general.
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2 K. HAN AND S. KWAK

Introduction

Let X be a nondegenerate reduced closed subscheme in a projective space PN

over an algebraically closed field k of characteristic zero and R = k[x0, . . . , xN ]
be the coordinate ring of PN . The equations defining X and the syzygies among
them have played a central role to study projective schemes in algebraic geometry.
Further the syzygy structures and their geometric implications have been intensively
focused for the most interesting case, i.e. projective schemes having property N2,p;
for the last twenty years, see [CKK06, EGHP05, EGHP06, EHU06, GL88]. They are
closely related to the Eisenbud-Goto conjecture on Castelnuovo-Mumford regularity
and other conjectures on linear syzygies in classical algebraic geometry. The linear
sections and projections of X have been very useful to understand those problems.

For the linear sections, we have interesting results on ‘Restricting linear syzygies’
due to Eisenbud, Green, Hulek, and Popescu; see [EGHP05]. Along this line, a
natural question could be raised:

What is the relation between the syzygies of projections and X?

In the present paper, we especially consider the relations between the linear
syzygies of inner projections and those of X. Note that the inner projection has
been a standard issue classically since del Pezzo and Fano used this projection for
the classification of del Pezzo surfaces and Fano 3-folds; see [Reid00]. There are
also some known results about nonbirational loci of these projection morphisms and
geometric structures of the projection images; see [BHSS00, CC01, Seg36, Som79].

Problems. We list our main problems in detail:

(a) (Embedded linear syzygies) Let X be a nondegenerate reduced scheme in
PN satisfying property N2,p (p ≥ 1). Consider the linear projection from
a linear subvariety Λ ⊂ PN of dimΛ = t < p with Λ ∩ X �= ∅, 〈Λ ∩X〉 =
Λ and XΛ = πΛ(X \ Λ) in PN−t−1. How do the syzygies behave under
projections? D. Eisenbud et al. showed that, under some N2,p-assumption,
the syzygies of X restrict surjectively to the syzygies of linear sections in
their paper ‘Restricting linear syzygies’, [EGHP05]. Is there any natural
projection-analogue of the linear section case? Bearing on this problem, we
also expect that XΛ satisfies property N2,p−t−1.

(b) (Necessary lower bound for property N2,p) For a quadratic scheme X satis-
fying N2,p, it is roughly believed that the more quadratic equations X has,
the further steps linear syzygies proceed to. Therefore one can ask ‘how
many quadrics does X require to satisfy property N2,p?’ This is a natural
question, but not yet known.

(c) (Syzygetic rigidity theorem) In [EGHP05, EGHP06] they also show that
a closed subscheme X ⊂ PN is 2-regular if X satisfies property N2,codimX

and characterize all 2-regular algebraic sets geometrically for this extremal
case. What about the ‘next-to-extremal case’, i.e. a scheme X satisfy-
ing N2,codimX−1? How do we classify or characterize them in a suitable
category?

For those problems, we develop the elimination mapping cone theorem for in-
finitely generated graded modules and improve the partial elimination ideal theory
initiated by M. Green for the inner projection. This allows us to treat a wider class
of projective schemes which cannot be covered by the Koszul cohomology tech-
niques because these are not projectively normal in general. We have also found it
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SOME INFINITE MODULES, INNER PROJECTION, AND APPLICATIONS 3

very interesting to understand some relations between the syzygies of its projections
and those of X as we move the center of projection.

Organization of the paper. We recall basic definitions and preliminaries in Sec-
tion 1. In Section 2, we set up the elimination mapping cone construction for
infinitely generated graded modules and the partial elimination ideal theory for
inner projection which are crucial to understand the syzygy structures of infinitely
generated graded modules. This partial elimination ideal theory gives us local in-
formation on X near the center of projection q ∈ X which turns out to govern
syzygies and other properties of the inner projection Xq from the (global) homoge-
neous equations.

In Section 3, we obtain some results on syzygy structures and geometric prop-
erties of inner projections, i.e. embedded linear syzygies, the number of quadratic
equations, and their corollaries. In particular, we can show that for any projective
reduced scheme X satisfying property N2,p the inner projection from any smooth
point satisfies at least property N2,p−1 and XΛ satisfies at least N2,p−t−1 for a
general t-dimensional linear subspace Λ with dimX ∩Λ = 0 (see Corollary 3.4 and

Remark 3.5). We also give the neccessary lower bound (codimX) · p − p(p−1)
2 on

the number of quadrics vanishing on X in order to satisfy property N2,p, which is
sharp.

In Section 4, we prove that the arithmetic depths of inner projections are equal
to those of the given quadratic scheme. Combined with results in the previous
section, this depth theorem leads us to a very interesting ‘syzygetic’ rigidity theorem
on property N2,p in the category of varieties; namely, for the extremal (i.e. p =
codimX) and next-to-extremal (i.e. p = codimX−1) cases those varieties should be
arithmetically Cohen-Macaulay (abbr. ACM) and we can give the classfications of
the two cases. We also extend this result to a more general category (See Corollary
4.5 and Question 5.6). Finally, in Section 5, we see some examples and open
questions stimulating further work.

1. Definitions and preliminaries

We work over an algebraically closed field k of characteristic zero. Let X be a
nondegenerate reduced closed subscheme in a projective space PN .

Definition 1.1. Let X be as above.

(a) X is said to be a quadratic scheme if there is a homogeneous ideal I gen-
erated by equations of degree 2 which defines X scheme-theoretically (i.e.

its sheafification Ĩ is equal to the ideal sheaf IX of X).
(b) X is said to satisfy property N2,p scheme-theoretically if it is quadratic and

the quadratic ideal I has only linear syzygies at least up to the first p-th
steps.

(c) X is said to be m-regular if Hi(IX(m − i)) = 0 for all i ≥ 1. We call
reg(X) := min{m |Hi(IX(m− i)) = 0 for all i ≥ 1} Castelnuovo-Mumford
regularity of X.

Note that Definition 1.1 (b) is a generalization of known notions. It is the same
as property Np defined by Green-Lazarsfeld if X is projectively normal and I is
saturated (see [GL88]).
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4 K. HAN AND S. KWAK

Let πΛ : X ⊂ PN ��� PN−t−1 denote the projection of X from a linear space
Λ = Pt. We call it either an outer projection if X ∩ Λ = ∅ or an inner projection
in case Λ ⊂ X. Every projection πΛ can be regarded as succesive compositions
of suitable outer and inner projections from points. These projections as well as
blowups have been very useful projective techniques in algebraic geometry. We
briefly review the preliminaries about an inner projection from a point q ∈ X.

Let σ : X̃ → X be a blowing up of X at a smooth point q ∈ X. One has the

regular morphism π′ : X̃ � Xq := πq(X \ {q}) ⊂ PN−1 with the following diagram:

PN × PN−1 ⊃ X̃

π′

��
��

��
��

��
��

σ

����
��
��
��
��

PN ⊃ X πq

��������� Xq = πq(X \ q) ⊂ PN−1

Classically, one says that a smooth variety X admits an inner projection if π′

is an embedding for some point q ∈ X. This is equivalent to q ∈ X \ Trisec(X)
where Trisec(X) is the union of all lines � with the condition that � ⊂ X or X ∩ �
is a subscheme of length at least 3. We also know that the exceptional divisor E is
linearly embedded via π′ in PN−1 (i.e. π′(E) = Pr−1 ⊂ PN−1, r = dimX) for any
subvariety X if the center q is smooth (see [Bau95, FCV99]).

Let R = k[x0, . . . , xN ] and S = k[x1, x2, . . . , xN ] be the homogeneous coordinate
rings of PN and PN−1. Assume q = (1 : 0 : . . . : 0) ∈ X (by suitable coordinate
change). Let I be an ideal of R defining a reduced scheme X scheme-theoretically.
Naturally we can give a scheme structure on the image Xq by the ideal J := I ∩S.
Note that the ideal J is reduced if I is reduced.

In the case of inner projection we note that R/I is not a finitely generated
S-module because q ∈ X and there is no polynomial of the form f = x0

n +
( other terms ) for some n ∈ N in the ideal I, even though R/I is finitely generated
as an R-module. I is also an infinitely generated graded S-module with the following
resolution:

· · · →
⊕∞

j=2 S(−i− j)βi,j → · · · →
⊕∞

j=2 S(−j)β0,j → I → 0 .

In Section 2, we show that they have interesting syzygy structures as S-modules
(see Proposition 2.5 and Remark 2.6).

On the other hand, if X is quadratic, then we can write the quadratic ideal I as

(1.1) I = (x0�1 −Q0,1, . . . , x0�t −Q0,t, Q1, . . . , Qs), q = (1, 0, . . . , 0) ∈ X,

where �i is a linear form, Q0,i, Qj are quadratic forms in S = k[x1, . . . , xN ] and
they are minimal generators. We can also assume that all {�i} are linearly inde-
pendent, and all {Q0,i} are distinct. Clearly, {�i} generate (TqX)∗. Note that
t = codim(X) = N − dimX if q is a smooth point. In general, t is equal to
N − dimTqX.

Convention. We are working on the following convention:

• Let X ⊂ PN and q ∈ X be as above and I be a homogeneous defining ideal
of X. We denote the S-ideal I ∩ S by J which gives the natural induced
scheme structure on the projection image Xq ⊂ PN−1 and call J the x0-
elimination ideal of I. In addition, we write the saturated ideal defining X
(resp. Xq) as IX (resp. IXq

).
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SOME INFINITE MODULES, INNER PROJECTION, AND APPLICATIONS 5

• (Betti numbers) For a graded R-module M , we define graded Betti numbers

βR
i,j(M) of M by dimk Tor

R
i (M,k)i+j . We consider βS

i,j(N) for any graded

S-module N in the same manner. We remind readers that TorRi (R/I, k)i+j

= TorRi−1(I, k)i−1+j+1. So βR
i,j(R/I) = βR

i−1,j+1(I). We write βR
i,j(M) as

βi,j(M) or βi,j if it is obvious.

• We often abbreviate TorRi (M,k)i+j as TorRi (M)i+j (same for S-module
Tor).

• (Arithmetic depth) When we refer to the depth of X, denoted by depthR(X),
we mean the arithmetic depth of X, i.e. depthR(R/IX).

2. Elimination mapping cone construction and

partial elimination ideals

In general the mapping cone of the chain map between two complexes is a kind of
natural extension of complexes induced by the given chain map. Now we construct
some graded mapping cone which we call the ‘elimination mapping cone’. This
is naturally related to projections and very useful to understand the syzygies of
projections. Another ingredient is the partial elimination ideal theory. Let us
construct the graded mapping cone theorem and consider the partial elimination
ideal theory from the viewpoint of inner projections.

Elimination mapping cone construction. Let W = k〈x1, . . . , xN 〉 ⊂ V =
k〈x0, . . . , xN 〉 be vector spaces over k and S = Sym(W ) = k[x1, . . . , xN ] ⊂ R =
Sym(V ) = k[x0, . . . , xN ] be polynomial rings.

• M : a graded R-module given a degree 1 shifting map by μ
(i.e. μ : Mi → Mi+1)

• G∗(resp. F∗) : the graded Koszul complex of M , KS
∗ (M)

(resp. M [−1], KS
∗ (M [−1])) as follows:

0 → ∧NW ⊗M → · · · → ∧2W ⊗M → W ⊗M → M → 0

whose graded components (Gi)i+j are KS
i (M)i+j = ∧iW ⊗Mj

(resp. (Fi)i+j = ∧iW ⊗Mj−1).
• Then μ : Mi → Mi+1 induces the chain map
μ̄ : F∗ = KS

∗ (M [−1]) −→ G∗ = KS
∗ (M) of degree 0.

Now we construct the mapping cone (Cμ̄, dμ̄) such that

(2.1) 0 −→ G∗ −→ (Cμ̄)∗ −→ F∗[−1] −→ 0 ,

where Cμ̄ is a direct sum G∗ ⊕ F∗[−1] and the differential dμ̄ is given by

(dμ̄)∗ =

(
∂G (−1)∗+1μ̄
0 ∂F

)
,

where ∂ is the differential of the Koszul complex. From the construction, it can be
checked that we have the isomorphism (see [AK11]):

TorRi (M)i+j � Hi((Cμ̄)∗)i+j .

Suppose M is a graded R-module which is also a graded S-module. Consider
a multiplication map μ = ×x0 as a naturally given degree 1 shifting map on M .
In this case, the long exact sequence on homology groups induced from (2.1) is
important and very useful to study the syzygies of projections. Note that in general
we can define property Nd,p similarly (i.e. βR

i,j(R/I) = 0 for any 0 ≤ i ≤ p, j ≥ d).
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6 K. HAN AND S. KWAK

Theorem 2.1 (Elimination mapping cone sequence). Let S = k[x1, . . . , xN ] ⊂ R =
k[x0, x1, . . . , xN ] be two polynomial rings.

(a) Let M be a graded R-module which is not necessarily finitely generated.
Then, we have a natural long exact sequence:

· · ·TorRi (M)i+j → TorSi−1(M)i−1+j
μ̄→ TorSi−1(M)i−1+j+1 → TorRi−1(M)i−1+j+1 · · ·

whose connecting homomorphism μ̄ is induced by the multiplicative map
×x0.

(b) Assume that R/I satisfies property Nd,p for some d ≥ 2, p ≥ 1. Then a

multiplication by x0 induces a sequence of isomorphisms on TorSi (I)i+j for
0 ≤ i ≤ p− 2, j ≥ d+ 1 and a surjection for j = d:

· · · ×x0→ TorSi (I)i+d

×x0� TorSi (I)i+d+1

×x0∼→ TorSi (I)i+d+2

×x0∼→ · · · .
For i = p− 1, we have a sequence of surjections from j = d:

· · · ×x0→ TorSp−1(I)p−1+d

×x0� TorSp−1(I)p−1+d+1

×x0� TorSp−1(I)p−1+d+2

×x0� · · · .

Remark 2.2. J. Ahn and the second author pointed out that this graded mapping
cone construction is closely related to outer projections (see [AK11]). We remark
here that this theorem is also true for an infinitely generated S-module M and
relates the torsion module TorR(M) to the torsion module of M as an S-module.
Therefore this gives us useful information about syzygies of inner projections.

Proof. (a) follows from theorem 2.2 in [AK11]. For a proof of (b), consider the
mapping cone sequence of Theorem 2.1 for M = I:

TorRi+1(I)i+1+j → TorSi (I)i+j
×x0−→ TorSi (I)i+j+1 → TorRi (I)i+j+1.

Note that TorRi (I, k)i+j = 0 for 0 ≤ i ≤ p−1 and j ≥ d+1 by the assumption that
I has the Nd,p property as an R-module. So, we have an isomorphism

TorSi (I, k)i+j

×x0∼→ TorSi (I, k)i+j+1

for 0 ≤ i ≤ p− 2, ∀j ≥ d+ 1 and a surjection for j = d.
In the case i = p − 1, we know that TorRp−1(I)p−1+j = 0 for j ≥ d + 1 in the

mapping cone sequence

TorRp (I)p+j → TorSp−1(I)p−1+j
×x0−→ TorSp−1(I)p−1+j+1 → TorRp−1(I)p−1+j+1.

Therefore we get the desired surjections for the i = p− 1 case. �

Partial elimination ideals under a projection. Mark Green introduced partial
elimination ideals in his lecture note [Gre98]. For the degree lexicographic order, if

f ∈ Im has leading term in(f) = xd0
0 · · ·xdn

n , we set d0(f) = d0, the leading power
of x0 in f . Then we can give the definition of partial elimination ideals as in the
following.

Definition 2.3. Let I ⊂ R be a homogeneous ideal and let

K̃i(I) =
⊕
m≥0

{
f ∈ Im | d0(f) ≤ i

}
.
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SOME INFINITE MODULES, INNER PROJECTION, AND APPLICATIONS 7

If f ∈ K̃i(I), we may write uniquely f = xi
0f̄ + g, where d0(g) < i. Now we define

the ideal Ki(I) in S generated by the image of K̃i(I) under the map f �→ f̄ and we
call Ki(I) the i-th partial elimination ideal of I.

Observation 2.4. We can observe some properties of these ideals in the projection
case.

(a) The 0–th partial elimination ideal K0(I) of I is

J := I ∩ S =
⊕
m≥0

{
f ∈ Im | d0(f) = 0

}
.

Note that the ideal J gives a scheme structure on the image Xq naturally.

(b) K̃i(I) is a natural filtration of I with respect to x0, which also induces a
filtraton on Ki(I)’s :

J = K̃0(I) ⊂ K̃1(I) ⊂ · · · ⊂ K̃i(I) ⊂ · · · ⊂ K̃∞(I) = I,

J = K0(I) ⊂ K1(I) ⊂ · · · ⊂ Ki(I) ⊂ · · · ⊂ S.

(c) K̃i(I) is a finitely generated graded S-module and there is a short exact
sequence as graded S-modules:

(2.2) 0 → K̃i−1(I)

K̃0(I)
→ K̃i(I)

K̃0(I)
→ Ki(I)(−i) → 0.

In general we can at least see when the Ki(I)’s stabilize and what they look
like for inner projections. The following proposition is the anwser. It also tells us
a minimal free resoultion for some infinitely generated graded S-module which is
very useful to understand the defining equations and syzygies of inner projections.

Proposition 2.5. Let X ⊂ PN be a reduced projective scheme with a homogeneous
defining ideal I. Let q = (1, 0, . . . , 0) ∈ X.

(a) If I satisfies property Nd,1, Ki(I) stabilizes at least at i = d− 1 to an ideal
defining TCqX, the tangent cone of X at q. So if q is smooth, Kd−1(I)
consists of linear forms which define TqX.

(b) In particular, if I is generated by quadrics and q is smooth, then Ki(I)
stabilizes at the i = 1 step to an ideal IL = (l1, . . . , le), e = codim(X,PN )
which defines the tangent space TqX, i.e. J = K0(I) ⊂ IL = K1(I) =
· · · = Ki(I) = · · · ⊂ S and I/J has obvious syzygies as an infinitely gener-
ated S-module such that:

S(−e− 1)be S(−3)b2 S(−2)b1

0 → ⊕S(−e− 2)be → · · · → ⊕S(−4)b2 → ⊕S(−3)b1 → I/J → 0 ,
⊕S(−e− 3)be ⊕S(−5)b2 ⊕S(−4)b1

· · · · · · · · ·
where bi =

(
e
i

)
.

Proof. (a) Since I is generated in deg ≤ d and q = (1, 0, . . . , 0) ∈ X, we have
generators {Fi} of I with d0(Fi) ≤ d− 1 because there is no generator of the form
x0

d+ other lower terms in x0. From this, every leading term f of a homogeneous
polynomial F in I of deg k (k ≥ d) is written as x�

0 · f̄ , where f̄ ∈ Kc(I) for some
c ≤ d− 1. So Ki(I) stabilizes at least at i = d− 1. Note that all f̄ ∈ Ki(I) (i ≥ 0)
are also regarded as the defining equations of the tangent cone TCqX of X at q
because they come from f = xi

0f̄ + g ∈ I, d0(g) < i. Therefore, Ki(I) stabilizes to
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8 K. HAN AND S. KWAK

the ideal defining TCqX. In the case of a smooth point q ∈ X, TqX = TCqX and
Kd−1(I) = (�1, . . . , �e), e = codim(X,PN ).

(b) Since d = 2 and q is a smooth point, Ki(I) becomes IL = (�1, . . . , �e) for

each i ≥ 1. For the sake of the S-module syzygy of I/J , first note that I = K̃∞(I).

From the exact sequence (2.2), we get K̃1(I)/J � K1(I)(−1) with the following
linear Koszul resolution: letting bi =

(
e
i

)
,

0 → S(−e− 1)be → · · · → S(−3)b2 → S(−2)b1 → K̃1(I)/J → 0.

Next, K2(I)(−2) = K1(I)(−2) also has linear syzygies:

0 → S(−e− 2)be → · · · → S(−4)b2 → S(−3)b1 → K2(I)(−2) → 0,

and we have the following exact sequence from (2.2) again:

0 → K̃1(I)

J
→ K̃2(I)

J
→ K2(I)(−2) → 0.

By the long exact sequence of Tor, we know that

S(−e− 1)be S(−3)b2 S(−2)b1

0 → ⊕S(−e− 2)be → · · · → ⊕S(−4)b2 → ⊕S(−3)b1 → K̃2(I)/J → 0.

Similarly, we can compute the syzygy of K̃i(I)/J for any i, and we get the desired

resolution of I/J = K̃∞(I)/J as an S-module in the end. �
Remark 2.6. For the next section, we point out some useful facts as follows:

(a) (Reduction of syzygies) From the sequence (2.2), we have an isomorphism

(2.3) TorSi (I/J)i+j � TorSi (K̃d(I)/J)i+j for any d ≥ j − 1.

In other words, the syzygies of an infinitely generated S-module I/J can

be computed from the syzygies of a finitely generated S-module K̃i(I). Fur-

ther, if all Ki(I)’s allow only linear syzygies at each step (i.e. TorSa (Ki(I))a+b

= 0 ∀a and ∀b �= i+ 1), then

TorSi (I/J)i+j � TorSi (Kj−1(I)(−j + 1))i+j for any i, j

as Proposition 2.5 (b) shows us that the syzygies of I/J essentially come
just from the Koszul syzygies of {x0

α�1, . . . , x0
α�e} of Kα(I).

(b) (Commutativity of x0-multiplication) Consider the S-module homomor-
phism φ : I → I/J , the natural quotient map, and also consider multiplica-
tion maps in both I and I/J . This multiplication ×x0 is not well-defined
in I/J , while it is a well-defined S-module homomorphism in I. But if X
is quadratic and q is a smooth point, then, by Proposition 2.5 (b) and (a)
above, we have a commuting diagram at the Tor-level:

TorSi (I)i+j+1
φ

�� TorSi (I/J)i+j+1
ψ

isom.
�� TorSi (Lj−1(I))i+j+1

TorSi (I)i+j
φ

��

×x0

��

TorSi (I/J)i+j

∃ ×x0

���
�
�

ψ

isom.
�� TorSi (Lj−1(I))i+j ,

×x0

��

where Lj−1(I) := Kj−1(I)(−j+1) and each row ψ◦φ is induced from the S-

homomorphism I → Lj−1(I) given by f = xj−1
0 f̄j−1+xj−2

0 f̄j−2+· · ·+f̄0 �→
xj−1
0 f̄j−1 which naturally commutes with the x0-multiplication.
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SOME INFINITE MODULES, INNER PROJECTION, AND APPLICATIONS 9

Remark 2.7. (a) (Outer projection case) We can also consider the outer pro-
jection by a similar method. In this case Ki(I) always stabilizes at least
at the d−th step to (1) = S if I satisfies Nd,1. A more interesting fact is
that Kd−1(I) consists of linear forms with the Nd,2-condition. Especially,
suppose that X satisfies property N2,2 and q = (1, 0, . . . , 0) /∈ X. Then
K1(I) is an ideal of linear forms IΣ defining the singular locus Σ of πq in
Xq ⊂ PN−1 (see [AK11] for details). By a similar method as in the inner
projection, we see that I/J has simple S-module syzygies such that:

0 → S(−t− 1)bt → · · · → S(−3)b2 → S(−2)b1+1 → I/J → 0 ,
⊕S(−3)
⊕S(−4)
· · ·

where bi =
(
t
i

)
, t = codim(Σ,PN−1). So, this resolution can be used to

study the outer projection case.
(b) The stabilized ideal gives important information for projections. In the

outer case of N2,p (p ≥ 2), it is shown in [AK11, Park08] that the dimension
of Σ determines the number of quadric equations and the arithmetic depth
of projected varieties according to moving the center of projection. In our
inner projection, K1(I) also shows us the tangential behavior of X at q and
TCqX plays an important role in our problem.

Now there arise some basic and natural questions. How are the syzygies of J
related to the S-module syzygies of I and to the R-module syzygies of I? With
the assumption for property N2,p, we may ask the following question specifically:
Is J generated only by quadrics if I is? There might be cubic generators such as
�iQ0,j − �jQ0,i (= �j · [ x0�i−Q0,i] − �i · [ x0�j −Q0,j ]) in J (see (1.1) in Section 1).
If not, how about the case of N2,2? What can we say about higher linear syzygies
of Xq? We will answer these kinds of syzygy and elimination problems and derive
stronger results by using the elimination mapping cone sequence and the partial
elimination ideal theory in the next section.

3. Embedded linear syzygies and applications

Recently, D. Eisenbud et al. showed that with the assumption for some property
N2,p, the syzygies of X restrict surjectively to the syzygies of linear sections in
their paper ‘Restricting linear syzygies’, [EGHP05]. We consider in this section the
behavior of the syzygies under inner projections and we present one of our main
theorems on ‘embedded linear syzygies’ which is the natural projection-analogue of
the linear section case.

Theorem 3.1. Let X ⊂ PN be a nondegenerate reduced quadratic scheme whose
saturated ideal IX satisfies property N2,p for some p ≥ 1 and let q ∈ X be a
smooth point. Consider the inner projection πq : X ��� Xq ⊂ PN−1. Then there
is an injection between the minimal free resolutions of IXq

and IX up to the first
(p− 1)-th step, i.e.

∃ f : TorSi (IXq
, k)i+j ↪→ TorRi (IX , k)i+j for 0 ≤ i ≤ p− 2, ∀j ∈ Z

which is induced by the natural inclusion IXq
↪→ IX and the elimination mapping

cone sequence (see Theorem 2.1 (a)).
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10 K. HAN AND S. KWAK

Remark 3.2. The method used to prove Theorem 3.1 is, in fact, available for any
ideal I defining X and J = I ∩ S defining Xq scheme-theoretically.

Proof. We have a basic short exact sequence of S-modules,

(3.1) 0 −→ IXq
−→ IX −→ IX/IXq

−→ 0.

From the long exact sequence of (3.1) and the mapping cone sequence of IX
in (2.1), we have a diagram

0

��

0

��

TorSi (IXq
, k)i+j−1

��

TorSi (IXq
, k)i+j

g

��

f :=h◦g

����
���

���
���

���
��

TorSi (IX , k)i+j−1

��

×x0 �� TorSi (IX , k)i+j

��

h �� TorRi (IX , k)i+j

TorSi (IX/IXq
, k)i+j−1

×x0 �� TorSi (IX/IXq
, k)i+j .

For any 0 ≤ i ≤ p− 2, we proceed with j case by case.

Case 1. j ≤ 1: Since TorSi (IXq
, k)i+j = 0, it is obviously injected to TorRi (IX , k)i+j

by f .

Case 2. j = 2 (i.e. linear syzygy cases for each i): From (3.1), we have

TorSi+1(IX/IXq
, k)i+2 −→ TorSi (IXq

, k)i+2
g−→ TorSi (IX , k)i+2.

Since q is a smooth point, with the N2,1 condition we know the syzygy structures
of IX/IXq

as an S-module by Proposition 2.5 (b). This shows that

TorSi+1(IX/IXq
, k)i+2 = 0,

implying that g is injective. Since X is nondegenerate, TorSi (IX , k)i+1 = 0 and
h is also injective at the horizontal mapping cone sequence of the above diagram.
Hence f is injective in this case, too.

Case 3. j ≥ 3: First note that TorRi (IX , k)i+j = 0 for 0 ≤ i ≤ p− 1, j ≥ 3 by the

assumption of property N2,p. We will show that g is injective and TorSi (IX , k)i+j

is isomorphic to TorSi (IX/IXq
, k)i+j for 0 ≤ i ≤ p− 2. Then we can conclude that

TorSi (IXq
, k)i+j = 0, so f is injective for 0 ≤ i ≤ p− 2.

Consider the commutative diagram (by Remark 2.6) in the third quadrant part
of the above diagram. Repeating this diagram by multiplying x0 sufficiently, we
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SOME INFINITE MODULES, INNER PROJECTION, AND APPLICATIONS 11

have the following diagram:

TorSi+1(IX , k)i+1+j−1
∴

surj.
�� ��

surj.

����

TorSi+1(IX/IXq
, k)i+1+j−1

��

isom.

��

TorSi (IXq
, k)i+j

g
��

TorSi+1(IX , k)i+1+N
isom. �� TorSi+1(IX/IXq

, k)i+1+N .

The left vertical map is surjective from Theorem 2.1 (b), and the right one is an
isomorphism by the syzygy structures of IX/IXq

in Proposition 2.5 (b). Since IXq

is a finite S-module, TorSi (IXq
, k)i+N = 0 for sufficiently large N , so we get the

below (second row) isomorphism. Therefore the map

TorSi+1(IX , k)i+1+j−1 → TorSi+1(IX/IXq
, k)i+1+j−1

is surjective, and g is injective.
Similarly, we can have the desired isomorphism between TorSi (IX , k)i+j and

TorSi (IX/IXq
, k)i+j as follows:

TorSi (IXq
, k)i+j

g
�� TorSi (IX , k)i+j

α

isom.
��

isom.

��

TorSi (IX/IXq
, k)i+j

isom.

��

TorSi (IX , k)i+N
isom. �� TorSi (IX/IXq

, k)i+N .

In this case, the mapping cone construction gives the left vertical isomorphism
by Theorem 2.1 (b). So the above map α is an isomorphism as we wish, and

TorSi (IXq
, k)i+j = 0 for 0 ≤ i ≤ p− 2, j ≥ 3. �

This main Theorem 3.1 tells us that all the S-module syzygies of Xq are exactly
the very ones which are already embedded in the linear syzygies of X as an R-
module. This doesn’t hold for outer projection and inner projection of varieties
with Nd,p (d ≥ 3).

Example 3.3. Let C be a rational normal curve in P3 and IC be the homogeneous
ideal (x0x2 − x2

1, x0x1 − x1x3 − x2
2, x

2
0 − x0x3 − x1x2) under suitable coordinate

change. We know that C is 2-regular and consider an outer projection of C from
q = (1, 0, 0, 0). Then ICq

= (x3
1 − x1x2x3 − x3

2) has a cubic generator (i.e. N3,1).

Since x3
1 − x1x2x3 − x3

2 = (−x1) · [ x0x2 − x2
1] + x2 · [ x0x1 − x1x3 − x2

2] , this is

zero in TorR0 (IC)3 and TorS0 (ICq
)3 → TorR0 (IC)3 is not injective. In general, if we

take the center q ∈ L � P2 which is a multisecant (e.g. at least a 4-secant) 2-plane,
then for outer and inner projection cases there is a multisecant line to Xq. So, the
defining equations of Xq may have larger degrees.

As an immediate consequence, we have the following corollary.

Corollary 3.4 (Property N2,p−1 of inner projections). Let X ⊂ PN be a non-
degenerate reduced quadratic scheme satisfying property N2,p for some p ≥ 2 and
let q ∈ X be a smooth point. Then, the inner projection Xq is also quadratic and
satisfies property N2,p−1.

Proof. Case 3, j ≥ 3 in the proof of Theorem 3.1 is a proof of this corollary. �
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12 K. HAN AND S. KWAK

Remark 3.5. Here are some remarks on Corollary 3.4.

(a) This corollary can be easily extended to the case of a general linear subspace
Λ � Pt such that dimX ∩Λ is zero. Precisely, if Λ does not meet Sing(X)
and 〈Λ ∩ X〉 = Λ, then the t + 1 points of Λ ∩ X are in linearly general
position so that XΛ satisfies N2,p−t−1 by successive inner projections. To
complete this question in Problem (a) for any linear subspace Λ, it remains
to consider how the projections from a singular center or a linear subvariety
contained in X behave (see Questions 5.3, 5.5).

(b) For a smooth irreducible variety X ⊂ P(H0(L)) with the condition Np

(p ≥ 1) embedded by the complete linear system of a very ample line bun-
dle L on X, Y. Choi, P. Kang and S. Kwak showed that the inner projec-
tion Xq is smooth and satisfies property Np−1 for any q ∈ X \ Trisec(X);
i.e. property Np−1 holds for (Blq(X), σ∗L − E) by using vector bundle
techniques and Koszul cohomology methods due to Green-Lazarsfeld (see
[CKK06]). Our Corollary 3.4 extends this result to the category of reduced
projective schemes satisfying property N2,p with any smooth point q ∈ X.
Note that this uniform behavior looks unusual in the sense that linear syzy-
gies of outer projections heavily depend on moving the center of projection
in an ambient space PN (see [CKP08, KP05, Park08]).

In order to understand the Betti table of inner projections, we need to con-
sider defining equations of inner projections, depth, and the Castelnuovo-Mumford
regularity.

Proposition 3.6 (Quadratic equations of inner projections). Let X ⊂ PN be a
nondegenerate reduced scheme with a defining ideal I and any (possibly singular)
point q ∈ X. For the inner projection Xq ⊂ PN−1, we have

(a) β0,2(J) = β0,2(I)− β0,1(K1(I)), where J is the x0-elimination ideal of I as
usual.

(b) Furthermore, if I is quadratic (so X is quadratic), then we have β0,2(J) =
β0,2(I) − N + dimTqX. In particular, in the case of I = IX it coincides
with

h0(PN−1, IXq
(2)) = h0(PN , IX(2))−N + dim TqX .

Proof. As in the proof of Theorem 3.1, there is a long exact sequence such that

→ TorS1 (I/J, k)2 → TorS0 (J, k)2 → TorS0 (I, k)2 → TorS0 (I/J, k)2 → 0 .

From the reduction of syzygies (2.3) in Remark 2.6, we have{
TorS1 (I/J, k)2 � TorS1 (K1(I)(−1), k)2 = TorS1 (K1(I), k)1 = 0,

TorS0 (I/J, k)2 � TorS0 (K1(I)(−1), k)2 = TorS0 (K1(I), k)1 ,

which implies the desired formula in (a) directly.
If I is a quadratic ideal, then by Proposition 2.5, the Ki(I) stabilizes at i = 1

and K1(I) defines the tangent cone TCqX. We may write

K1(I) = (�1, . . . , �t, higher degree polynomials ),

where I = (x0�1−Q0,1, . . . , x0�t−Q0,t, Q1, . . . , Qs) just as our convention. Among
the elements ofK1(I) the generators ofK1(I)1, {�1, . . . , �t} define the tangent space
TqX so that we have β0,1(K1(I)) = codim(TqX,PN ). �
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SOME INFINITE MODULES, INNER PROJECTION, AND APPLICATIONS 13

Remark 3.7. In the outer projection case, there is a formula h0(IXq
(2)) = h0(IX(2))

−(N − dimΣq(X)) if X satisfies property N2,2 (see proposition 4.11 in [AK11],
theorem 3.3 in [Park08]). This also shows that there is a tendency of having more
quadrics for projected varieties as q is getting closer to X. Note that the negative
value of h0(IXq

(2)) implies that there is no quadric vanishing on Xq. By this fact,
we can expect that the inner projection case has more linear syzygies as Corollary
3.4 shows.

The next question is how many quadrics defining X are required to satisfy prop-
erty N2,p, and we give the sharp lower bound in the following.

Corollary 3.8 (Neccesary lower bound for property N2,p). Let X be a nondegen-
erate reduced quadratic scheme in Pr+e of codimension e and I be the quadratic
ideal of X. Suppose that I satisfies property N2,p and β0,2(I) is the number of
generators of I. Then β0,2(I) is not less than LBp as follows:

LBp = e · p− p(p− 1)

2
≤ β0,2(I) ≤ β0,2(IX) (= h0(IX(2)) ).

Proof. Let’s take a smooth point q0 in X and project X from q0. Let X(1) be
the image (the Zariski closure) and I(1) be the elimination ideal of I. Then, from
Proposition 3.6 we get

β0,2(I
(1)) = β0,2(I)− (r + e) + r.

We also know that I(1) defines X(1) scheme-theoretically and satisfies property
N2,p−1. Take another smooth point q1 in X(1) and project it from q1. Then, with
the same notation, we have

β0,2(I
(2)) = β0,2(I

(1))− (r + e− 1) + r.

Taking successive inner projections, we get

β0,2(I
(p−1)) = β0,2(I

(p−2))− (r + e− p+ 2) + r.

Summing up both sides of the above equations, this gives

(∗) β0,2(I
(p−1)) = β0,2(I)−

(p− 1)(2r + 2e− p+ 2)

2
+ r(p− 1),

and we know that X(p−1) is still cut by quadrics (i.e. N2,1). So β0,2(I
(p−1)) is not

less than codimX(p−1) = (r+e)−p+1−r = e−p+1. If we plug in this inequality
to (∗), we get the desired bound LBp. �
Remark 3.9. This bound is sharp for p = 1 by complete intersections, p = e− 1 by
del Pezzo varieties (see Theorem 4.3 (b)), and p = e by minimal degree varieties.
Note also that the upper bound for β0,2(IX) for a nondegenerate integral subscheme

X ⊂ Pr+e of codimension e is e(e+1)
2 and this maximum number can be attained if

and only if the variety X is of minimal degree from Corollaries 5.4, 5.8 in [Zak99].

Remark 3.10 (Degree bound by property N2,p). Recently, A. Alzati and J.C. Sierra
obtained a bound of quadrics for N2,2 by paying attention to the structures of the
rational map associated to the linear system of quadrics defining X, which coincides
with our bound LB2 (see [AS10]). They also derive a degree bound in terms of

codimension e,
(
d
2

)
≤

(
2e−1
e−1

)
whose asymptotic behavior is 2e/ 4

√
πe and describe

the equality condition: this holds if and only if the equality of LB2 holds. From
this theorem, in the case of p = 2 we also have a rigid condition on the degree of
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14 K. HAN AND S. KWAK

the boundary X as if we get some rigidity when p = 1, e − 1, and e (see Remark
3.9 and Theorem 4.3). Using our inner projection method (e.g. Corollary 3.8), we
could improve this degree bound a little as follows:(
d+ 2− p

2

)
≤

(
2e+ 3− 2p

e+ 1− p

)
, d ∼ 2e+2−p/ 4

√
πe (as e becomes sufficiently large)

under the assumption of property N2,p (p ≥ 2) of X.

Example 3.11. It would be interesting to know that if e ≤ β0,2(IX) < 2e−1, then
X has always at least a syzygy of defining equations which is not linear because
property N2,2 does not hold for X. For example, let C be the general embedding
of degree 19 in P7 of genus 12. Then C is a smooth arithmetically Cohen-Macaulay
curve which is cut out scheme-theoretically by 9 quadrics, but the homogeneous
ideal IC is generated by 9 quadrics and 2 cubics (see [Katz93] for details). These
quadratic generators should have at least a syzygy of higher degree as well as linear
syzygies.

Example 3.12 (Veronese embedding vd(P
n)). It is shown that vd(P

n) fails property
N2,3d−2 for n ≥ 2, d ≥ 3 and conjectured that vd(P

n) satisfies property N2,3d−3

for n ≥ 2, d ≥ 3 (see [OP01, EGHP05]). We can also verify the failure of property
N2,p of the Veronese embedding X = vd(P

n) for some cases by using this low bound
LBp. For example, when n = 2, d = 3, p = 3d − 2 = 7, we get β0,2(IX) = 27 and

LB7 = 7 ·7−
(
7
2

)
= 28. Therefore, v3(P

2) fails to satisfy N2,7. Similarly, v2(P
3) fails

property N2,6. However, it does not give the reason why v3(P
3) does fail to be N2,7

for the case n = d = 3, p = 3d− 2 = 7, e = 16, because β0,2(IX) = 126 > 91 = LB7.
For such a p in the middle area of 1 ≤ p ≤ e, LBp seems not to give quite sufficient
information for property N2,p, while it may be more effective to decide N2,p of a
given variety for rather large p among 1 ≤ p ≤ e.

4. Arithmetic depth and syzygetic rigidity

Now, we proceed to investigate the depth of inner projections to understand
the shape of the Betti table and Castelnuovo-Mumford regularity. In this sec-
tion we always consider the saturated ideal IX among ideals defining X because
depthR(R/I) = 0 for any defining ideal I which is not saturated. The following
result looks very surprising when we compare this with the outer projection case
(see Remark 4.2).

Theorem 4.1 (The depth of inner projections). Let X ⊂ PN be a nondegenerate
reduced subscheme and IX be generated by quadrics. Consider the inner projection
πq : X ��� Xq ⊂ PN−1 from a smooth point q ∈ X. Then,

(a) (the projective dimension of S/IXq
) pdS(S/IXq

) = pdR(R/IX)− 1;
(b) (the arithmetic depth of Xq) depthR(X) = depthS(Xq). In particular, X

is arithmetically Cohen-Macaulay if and only if Xq is also.

Proof. (a) We know pdR(R/IX) ≥ e = codimX. Let l be pdR(R/IX) (so, l ≥ e),

and j0 =max{j|TorRl (R/IX)l+j �= 0}.
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SOME INFINITE MODULES, INNER PROJECTION, AND APPLICATIONS 15

Case 1) Non-Cohen-Macaulay case (i.e. l = e + α, α ≥ 1). First of all, we have
the following diagram from the exact sequence (3.1):

i of TorSi (S/IXq
) 0 → IXq

→ IX → IX/IXq
→ 0

↑ ↑ ↑
1 � � S(−2)e ⊕ S(−3)e ⊕ · · ·

2
...

...
...

↑ ↑ ↑
e � � S(−e− 1)⊕ S(−e− 2)⊕ · · ·

↑ ↑ ↑
e+ 1 � ∼= � 0
...

...
...

...
...

l = e+ α � ∼= � 0
� : vanished

From this diagram, we get TorSl (R/IX) ∼= TorSl (S/IXq
) as finite k-vector spaces.

Since TorRl+1(R/IX)l+1+j = 0 for all j (∵ pdR(R/IX) = l) and TorRl (R/IX)l+j = 0
for j > j0, we can observe using the mapping cone sequence (2.1) that

· · · ×x0
↪→ TorSl (R/IX)l+j

×x0
↪→ · · · ×x0

↪→ TorSl (R/IX)l+j0

×x0∼→ · · · .
So we have TorSl (R/IX) = 0, because it is finite dimensional. This means that

TorSl (S/IXq
) ∼= TorSl (R/IX) = 0.

Next, we claim that TorSl−1(S/IXq
) �= 0, which implies that pdS(S/IXq

) = l− 1.

If α ≥ 2, then we have TorSl−1(S/IXq
) � TorSl−1(R/IX). Since TorSl (R/IX) = 0,

we have a nontrivial kernel of the ×x0 map in IX from the mapping cone sequence
(2.1)

(∗) 0 → TorRl (R/IX)l+j0 ↪→ TorSl−1(R/IX)l−1+j0
×x0→ TorSl−1(R/IX)l−1+j0+1 · · ·

∦ ‖ � ‖ �
0 TorSl−2(IX)l−1+j0 TorSl−2(IX)l−1+j0+1.

This implies that TorSl−1(R/IX) � TorSl−1(S/IXq
) �= 0 as wished. So, let us

focus on the case α = 1 and so, l = e + 1. Consider the following sequence and
commutative diagram:

TorSl−1(IX/IXq
) = 0 → TorSl−2(IXq

) → TorSl−2(IX) → TorSl−2(IX/IXq
) → · · ·

TorSl−2(IX)e+j0 � S(−e− j0)
� ⊗ k

fe+j0→ S(−e− j0)⊗ k � TorSl−2(IX/IXq
)e+j0

h
⏐⏐
not injective g

⏐⏐
�
S(−c)⊗ k

∼→ S(−c)⊗ k

where h, g are induced by the multiplication of xn
0 and g is an isomorphism. To check

that TorSl−1(S/IXq
) ∼= TorSl−2(IXq

) �= 0, it is enough to show that f : TorSl−2(IX) →
TorSl−2(IX/IXq

) is not injective because TorSl−1(IX/IXq
) = 0. Now let me explain

why f is not injective. We get the isomorphism map below for c � 0 because
TorSi (IXq

) are finite-dimensional graded vector spaces and also h is not injective by
(∗). From Remark (2.6), this diagram commutes and fe+j0 has a nontrivial kernel.

Hence f : TorSl−2(IX) → TorSl−2(IX/IXq
) is not injective and TorSl−1(S/IXq

)e+j0 =

TorSl−2(IXq
)e+j0 �= 0.
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16 K. HAN AND S. KWAK

Case 2) Cohen-Macaulay case (i.e. l = e, α = 0). In this case, we have the long
exact sequence on Tor as follows:

S(−e− 1)⊕
0 = TorSe (IX/IXq

) → TorSe−1(IXq
) → TorSe−1(IX)

f−→ S(−e− 2)⊕
· · ·

Since pdR(R/IX) = e, TorRe+1(R/IX) = 0 and we have an injection

TorSe−1(IX)e+j = TorSe (R/IX)e+j
×xn

0−→ TorSe (R/IX)e+j+n = TorSe−1(IX)e+j+n

for any j, n from the mapping cone sequence (2.1). By almost the same argument
using the commuting diagram as in Case 1), α = 1, we can conclude that f :
TorSe−1(IX) → TorSe−1(IX/IXq

) is injective and TorSe (S/IXq
) = 0. So, this means

that pdS(S/IXq
) ≤ e − 1. But we know that pdS(S/IXq

) ≥ codim(Xq) = e − 1;
therefore pdS(S/IXq

) = e − 1. On the other hand, (a) implies that depthR(X) =
depthS(Xq) by the Auslander-Buchsbaum formula. �
Remark 4.2. Let X ⊂ Pn be a reduced scheme satisfying property N2,p (p ≥ 2).
Let Σq(X) = {x ∈ X |πq

−1(πq(x)) has length ≥ 2} be the secant locus of the outer
projection. We would like to remark that depth(Xq) = min{depth(X), dimΣq(X)+
2} for a smooth scheme X (see [AK11, Park08]). On the other hand, it would be
interesting to ask the following question: Is there an example such that depth(Xq) �=
depth(X) for inner projections?

As an interesting application of the above results, we can also prove the following
rigidity theorem for the extremal (i.e. p = e) and next-to-extremal (i.e. p = e − 1)
cases of property N2,p of the varieties by using Corollary 3.4, Proposition 3.6 and
Theorem 4.1.

Theorem 4.3 (Syzygetic rigidity on property N2,p). Let X be a nondegenerate
r-dimensional variety (i.e. irreducible, reduced) in Pr+e, e = codim(X,Pr+e).

(a) (extremal case) X satisfies property N2,e if and only if X is a minimal
degree variety, i.e. a whole linear space Pr+e, a quadric hypersurface, a
cone of the Veronese surface in P5, or rational normal scrolls;

(b) (next-to-extremal case) X fails property N2,e but satisfies N2,e−1 if and
only if X is a del Pezzo variety, i.e. X is arithmetically Cohen-Macaulay
(abbr. ACM) and is of next-to-minimal degree.

Proof. Let δ(X) := deg(X) − codim(X) for any subvariety X ⊂ Pr+e. Note that
δ(Xq) = δ(X) under an inner projection from a smooth point q ∈ X. Take suc-
cessive inner projections from smooth points. Call the images (Zariski closure)
X = X(0), X(1), . . . , X(e−2) and I(i) for the elimination ideal of I(i−1) cutting out
X(i) scheme-theoretically. By Corollary 3.4 we know that this X(e−2) has codim 2
and has property N2,2 for (a) (and N2,1 for (b), respectively). Because X(e−1) is a

hypersurface, by Proposition 3.6 the possible β0,2(I
(e−2)) = 2 or 3. For the case (a),

take an inner projection once more and then X(e−1) still satisfies property N2,1,
i.e., an (irreducible) quadric hypersurface. So,

β0,2(I
(e−1)) = 1, β0,2(I

(e−2)) = 1 + 2 = 3 and δ(X) = δ(X(e−1)) = 1.

That is, X is of minimal degree. In the case of (b), X(e−2) is a complete intersection
of two quadrics in Pr+2 and X(e−1) should be a cubic hypersurface.
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In particular, the projective dimension of X(e−2) is equal to 2 = pdR(R/IX) −
(e− 2) by Theorem 4.1. Therefore,

β0,2(I
(e−1)) = 0, β0,2(I

(e−2)) = 2, δ(X) = δ(X(e−1)) = 2 and pdR(R/IX) = e,

which means that X is arithmetically Cohen-Macaulay and of next-to-minimal

degree with H0(IX(2)) = (e+2)(e−1)
2 . By the well-known classification of varieties

of next-to-minimal degree, X is a del Pezzo variety. On the other hand, the curve
section C of a del Pezzo variety X is either an elliptic normal curve or a projection
of a rational normal curve from a point in Sec(C) \ C. Since X and C have the
same Betti table, X satisfies property N2,e−1 but fails property N2,e. �

Remark 4.4. Here are some remarks on Theorem 4.3.

(a) For the smooth projectively normal variety X, M. Green’s Kp,1-theorem in
[Gre84] gives a necessary condition on Theorem 4.3 (b) (i.e. X is either a
variety of next-to-minimal degree or a divisor of a minimal degree variety).
Using our Corollary 3.4 and Depth Theorem 4.1, we could obtain the results
on both deg(X) = codimX+2 and the ACM property and show the rigidity
on the next-to-extremal case for any (not necessarily projectively normal)
variety X.

(b) Classically, normal del Pezzo varieties were classified by T. Fujita in [Fuj90],
and every nonnormal del Pezzo variety X (see [BS07, Fuj90]) comes from

outer projection of a minimal degree variety X̃ from a point q in Sec(X̃) \
X̃ satisfying dimΣq(X̃) = dim X̃ − 1 (see Remark 4.2). Note that the

dimension of the secant locus Σq(X̃) varies as q moves in Sec(X̃)\ X̃. Thus
one can try to classify the nonnormal del Pezzo varieties by the type of

the secant loci Σq(X̃). This is recently classified in [BP10] such that there
are only 8 types of nonnormal del Pezzo varieties which are not cones. For
example, we find projections of a smooth cubic surface scroll S(1, 2) in P4

from any q ∈ P4 \ S(1, 2) or projections of a smooth 3-fold scroll S(1, 1, c)
in Pc+4 with c > 1 from any q ∈ 〈S(1, 1)〉 \ S(1, 1, c), etc.

Furthermore, let’s consider the following category (we say that an algebraic set
X =

⋃
Xi is connected in codimesion 1 if all the component Xi’s can be arranged

in such a way that every Xi ∩Xi+1 is of codimension 1 in X):

(∗) {equidimensional, connected in codimension 1, reduced subschemes in Pr+e}.
In the category (∗), we have natural notions of dimX and deg(X), which is the

sum of degrees of Xi’s. As in the category of varieties, we also have the ‘basic’
inequality of degree, i.e. deg(X) ≥ codimX + 1, so it is worthwhile to think of
‘minimal degree’ or ‘next-to-minimal degree’ in this category.

Using the same methods, Theorem 4.3 can be easily extended for this category.
We call X (or the sequence) linearly joined whenever all the components can be
ordered X1, X2, . . . , Xk so that for each i, (X1 ∪ · · · ∪Xi)∩Xi+1 = span(X1 ∪ · · · ∪
Xi) ∩ span(Xi+1). Then, we have a corollary as follows:

Corollary 4.5. Let X be a nondegenerate subscheme in the category (∗) with e =
codim(X,Pr+e).

(a) (extremal case) X satisfies property N2,e if and only if X is 2-regular, i.e.
the linearly joined sequences of r-dimensional minimal degree varieties;
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18 K. HAN AND S. KWAK

(b) (next-to-extremal case) If X fails property N2,e but satisfies N2,e−1, then
X is arithmetically Cohen-Macaulay and is of next-to-minimal degree.

Proof. For (a) we can also project X to a hyperquadric X(e−1) similarly. (In this
case X(e−1) might be reducible, i.e. a union of two r-linear planes.) So X(e−1) is
ACM, and from our Depth Theorem 4.1, X is also ACM, eventually 2-regular. We
also have a similar result for the case of (b) by the same arguments; X becomes

ACM and of next-to-minimal degree subscheme with h0(IX(2)) = (e+2)(e−1)
2 in this

category. �

Remark 4.6. For the ‘rigidity’ of property N2,p for p = e, D. Eisenbud et al. proved
the same theorem for the category of algebraic sets more generally in [EGHP05].
The (geometric) classification of 2-regularity is well known for varieties, and for
general algebraic sets it is given in [EGHP06]. We reprove this rigidity (case (a))
using our inner projection method and for the next-to-extremal case (b) we also get
a similar classification for the subschemes in the category (∗) (see Question 5.6).

5. Examples and open questions

It seems to be quite natural to find a good inner projection as we move the point
q ∈ X in many aspects. What happens to inner projections from singular points?
During the discussions with P. Schenzel, we have the following example.

Example 5.1 (Projection from a singular point, discussion with P. Schenzel). Let
us consider a singular surface X in P14 by Segre embedding of a quadric in P2 and a
singular quintic rational curve in P4 (note that ‘-’ means “zero” in the Betti table,
Table 5.1).

Table 5.1. A singular surface X in P14 (computed by Singular)

0 1 2 3 4 5 · · · i · · ·
0 1 − − − − − · · · − · · ·
1 − 70 475 1605 3333 4500 · · · βi,1 · · ·
2 − − − 11 100 405 · · · βi,2 · · ·

3 − − − − − − . . . βi,3
. . .

(5.1)

We see that X satisfies property N2,2. Now consider inner projections of X from
(a) a smooth point and (b) any singular point of X (we can’t distinguish the
singularities). See Table 5.2. While Xq property N2,1 holds in case (a) as our
Corollary 3.4 says, in case (b) we still have property N2,2 for Xq!

Example 5.2. LetX be the Grassmannian G(2, 4) in P9, a 6-dimensional del Pezzo
variety of degree 5 whose Betti table is shown in Table 5.3 and property N2,2

is satisfied. Since it is homogeneous and covered by lines, we can choose any
(smooth) point q in X and a line � through q in X. Then the projection Xq is a
complete intersection of two quadrics in P8 (property N2,1) and q′ = πq(�) becomes
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Table 5.2. (a) from smooth point, (b) from any singular point

(a)

0 1 2 3 4

0 1 − − − −
1 − 58 351 1035 · · ·
2 − − 1 19 · · ·

3 − − − − . . .

(b)

0 1 2 3 4

0 1 − − − −
1 − 59 362 1089 · · ·
2 − − − 10 · · ·

3 − − − − . . .

(5.2)

Table 5.3. The Grassmannian G(2, 4) in P9

0 1 2 3

0 1 − − −
1 − 5 5 −
2 − − − 1

(5.3)

a singularity of multiplicity 2 in Xq. If we project this once more from q′, then
the projected image becomes a quadric hypersurface in P7 still satisfying property
N2,1.

Question 5.3 (Inner projection from a singular point). Assume that X is a non-
degenerate projective scheme with N2,p. If q ∈ X is singular, we could expect
that the inner projection from q has more complicated aspects, but shows better
behavior still satisfying N2,p in many experimental data. What can happen to the
projection from a singular locus in general?

Next, we consider Problem (a) of the introduction in general. Let X be a non-
degenerate subscheme with property N2,p. If � meets X but is not contained in X,
then we can regard the projection π� as the composition of two simple projections
from points q1, q2. Furthermore, if such an � meets X at two smooth points, then
X� = π�(X \ �) satisfies property N2,p−2 by our main theorem.

But the case of � ⊂ X cannot be treated simply, because q2 = πq1(�) might be a
singular point even if π� = πq2 ◦ πq1 . In this case, we give an interesting example

showing that the Betti numbers of X� = π�(X \ �) are related to the geometry of
the line in X.

Example 5.4 (Projection from a line inside the variety). Consider the Segre em-
bedding X = σ(P2 × P4), 6-fold of degree 15 in P14, having property N2,3 whose
Betti table is shown in Table 5.4. In X there are two type of contained lines, so-
called �1 and �2. If we take �1 as the line σ({pt} × �) in X, then the image X�1 is
the intersection of two cones 〈σ(P1 × P4),P2〉 and 〈P3, σ(P2 × P2)〉, which is 6-fold
of degree 12 in P12 satisfying property N2,2 with the Betti table as in Table 5.5 (a).
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20 K. HAN AND S. KWAK

Table 5.4. Segre embedding X = σ(P2 × P4), 6-fold of degree 15 in P14

0 1 2 3 4 5 6 7 8

0 1 − − − − − − − −
1 − 30 120 210 168 50 − − −
2 − − − − 50 120 105 40 6

.(5.4)

On the other hand, in the case of the line �2 = σ(�×{pt}), X�2 is a 6-dimensional
cone 〈{pt}, σ(P2 × P3)〉 of degree 10 in P12 and has its own Betti table as in Table
5.5 (b) with property N2,3. Note that the dimension of the span 〈

⋃
q∈�1

TqX〉 of

tangent spaces along �1 is 8, but dim〈
⋃

q∈�2
TqX〉 = 10 (i.e. the tangent spaces

change more variously along �2 than �1). So, it is expected that �2 is geometrically
less movable than �1 inside X and that X�2 has more linear syzygies.

Table 5.5. (a) from a line �1 of type 1, (b) from a line �2 of type 2

(a)

0 1 2 3 4 5 6

0 1 - - - - - -

1 - 16 40 30 4 - -

2 - - - 20 40 24 5

(b)

0 1 2 3 4 5 6

0 1 - - - - - -

1 - 18 52 60 24 - -

2 - - - - 10 12 3

(5.5)

Question 5.5 (Inner projection from a subvariety). Let X be a nondegenerate
reduced scheme in PN satisfying property N2,p (p > 1) which is not necessarily
linearly normal. Consider the inner projection from a line � ⊂ X. Is it true that
π�(X \ �) satisfies at least N2,p−2? How does the infinitesimal geometry of � in X

affect the syzygies of π�(X \ �)? More generally, how about the projection from
a subvariety Y of X? The projection from Y is defined by the projection from
Λ := 〈Y 〉, the linear span of Y (see [BHSS00]). Say dimΛ = t < p. Does XΛ in
PN−t−1 satisfy property N2,p−t−1 in general as raised in the problem list (a) in the
introduction?

For the sake of Question 5.5, we expect to need to develop the elimination map-
ping cone theorem and partial elimination module theory for the multivariate case
and to calculate the syzygies of those partial elimination modules by Gröbner basis
theory for graded modules. See [HK10] for basic settings and some partial results
for the bivariate case.

Finally, we have the following question as raised in Remark 4.6.

Question 5.6 (Geometric characterization of some 3-regular ACM schemes). We
showed in Section 4 that if an r-equidimensional, reduced and connected in codi-
mension 1 subscheme X in Pr+e fails property N2,e but satisfies N2,e−1, then it is
an ACM, 3-regular scheme of next-to-minimal degree (i.e. deg(X) = codimX + 2)
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with h0(IX(2)) = (e+2)(e−1)
2 . Further, a theorem of L.T. Hoa in [Hoa93] gives the

complete graded Betti numbers of these schemes as follows:

(∗∗) 0 → R(−e−2) → Rβe−2,2(−e) → Rβe−3,2(−e+1) →· · ·→ Rβ0,2(−2) → IX → 0

where βi,2 = (i + 1)
(
e+1
i+2

)
−

(
e
i

)
for 0 ≤ i ≤ e − 2. Thus, just as the charac-

terization of reduced 2-regular projective schemes (see [EGHP06]), among all the
equidimensional reduced and connected in codimension 1 subschemes, it would be
very interesting to classify or give geometric descriptions for all 3-regular, ACM,
and next-to-minimal degree projective schemes whose Betti table is given by (∗∗).
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