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Abstract In the present paper, we consider upper bounds of higher linear syzygies
i.e. graded Betti numbers in the first linear strand of the minimal free resolutions of
projective varieties in arbitrary characteristic. For this purpose, we first remind ‘Partial
Elimination Ideals (PEIs)’ theory and introduce a new framework in which one can
study the syzygies of embedded projective varieties well using PEIs theory and the
reduction method via inner projections. Next we establish fundamental inequalities
which govern the relations between the graded Betti numbers in the first linear strand
of an algebraic set X and those of its inner projection X,. Using these results, we
obtain some natural sharp upper bounds for higher linear syzygies of any nondegener-
ate projective variety in terms of the codimension with respect to its own embedding
and classify what the extremal case and the next-to-extremal case are. This is a gen-
eralization of Castelnuovo and Fano’s results on the number of quadrics containing a
given variety and another characterization of varieties of minimal degree and del Pezzo
varieties from the viewpoint of ‘syzygies’. Note that our method could also be applied
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to get similar results for more general categories (e.g. connected in codimension one
algebraic sets).
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1 Introduction

Let X C PV be any nondegenerate variety (i.e. irreducible and reduced closed sub-
scheme) of dimension 7 and of codim (X, PV) = e over an algebraically closed field
k of arbitrary characteristic. Let R := k[xo, ..., xn] be the coordinate ring of PN Iy
be the (saturated) defining ideal of X, and Ry := R/Ix also be the coordinate ring of
X. The graded Betti numbers of X is defined by

Bp.q (X) 1= dimg TorR (R, k) pq (1.1)

and the Betti table of X, B(X) consists of these graded Betti numbers of X. This table
is usually considered to represent the type of the minimal free resolution of Ry. For
instance, (1,1 corresponds to the number of (independent) quadrics containing X and
sodoes f2,1 to the linear syzygies on them. We may present B(X) typically as follows

(Fig. 1):

Ol 1 [ JaX)| a1 |- b=1[bX)|-| p

o1l — [ = S — — T =

1) =1 Bua| | Bap | Baxra || Bo—ra| — |-+ | —
B(X) 2| = — || = | Bagr2]| | Bo—12] Bo2 |- | Bp2
9| — | — | - Batig | | Bo-14| Bog | | Bog

Fig. 1 Betti table of a nondegenerate variety X in PV. We denote zero by —. By two pivotal places,
determined by a = a(X), b = b(X) > 0, we could characterize the first linear strand of this resolution
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Sharp bounds for higher linear syzygies 537

Since Green [11] showed through his foundational paper several results which
imply some of strong connections between geometry of projective varieties and their
syzygies, there have been many problems and conjectures concerning shapes of B(X)
and structures on some or all of {8, ;’s}. In this paper we will consider some interesting
problems based on the first linear strand of Betti tables of projective varieties (or
schemes) particularly.

By convention, we call the subcomplex (or the corresponding part of the table)
represented by Betti numbers B 1, ..., Bp—1.1 in the second row of B(X) the (first)
linear strand of B(X). Following the notations in [8], we also denote the (homological)
index to which the resolution admits only linear syzygies by a(X) and the first index
from which there exists no more linear syzygy by b(X). Then, the linear strand of
the minimal free resolution of Ry can be characterized by these invariants a(X) and
b(X).

Classically, there have been well-known results on the number of quadratic equa-
tions containing X, i.e. B1,1(X) (see [3,9] and also [15,17,22] for modern references).
Before stating them, let us make our terminology clear. Say d = deg(X), degree of
X. One can say that X is a variety of minimal degree (abbr. VMD) if d = e + 1. Here
we call X of next-to-minimal degree when d = e 4 2. Furthermore, throughout this
paper, we call X a del Pezzo variety if X is arithmetically Cohen—Macaulay (abbr.
ACM) and of next-to-minimal degree. Then, the theorems say

(@) [3] Let X" C P"*¢ be a nondegenerate variety of codimension e,

1
Bri(X) < (e; )

and the “=" holds if and only if X is a variety of minimal degree.
(b) [9] Unless X is a variety of minimal degree,

Bri(X) < (";1) 1

and the “=" holds if and only if X is a del Pezzo variety.

But when we move on higher p’s, it is not so feasible to handle higher linear
syzygies (i.e. B 1(X)’s) directly as to manipulate them in case of p being very low
(e.g. considering generators, their relations, and so on). In this paper we introduce a
useful way to treat higher linear syzygies in a quite effective manner, that is

Projecting higher linear syzygies of X to those of its projected image X.

Especially, we will focus on inner projection process (i.e. a projection taking its
center from inside of X) here (see Remark 2.12 for details). We denote the Zariski
closure of the image of g : X\{q} — PV by X4. Note that this inner projection
process often transplants much of favorable structures on syzygies and Betti table into
its projected image, in contrast with outer projection (e.g. see [15]).

Main results Now we present our main results. First, we are giving a very useful
inequality through which we can explain the relations between the Betti numbers in
the first linear strand of X and X essentially.
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Theorem 1.1 (Fundamental Inequality in the 1st linear strand) Let X" C P"*¢ be a
nondegenerate variety of codimention e, @ € X be any closed point of X. For any
p > 1, the following holds

B (X) < Bpi(Xq) + Bpo11(Xg) + (;) (12)

and equality holds if 1 < p < a(X) and q is a smooth point of X.

Here the fundamental inequality (1.2) is stated in a simplified form. We will present
and prove a more strengthened version of Theorem 1.1 in Sect. 3 (see Theorem 3.1)
for the sake of future use.

As a direct consequence of Theorem 1.1, we can obtain optimal upper bounds on
Bp.1 of every variety for more higher p in the linear strand (note that Castelnuovo’s
bound could be easily recovered by the inequality of p = 1).

Theorem 1.2 Let X" C P"*¢ be any nondegenerate variety of codim e > 1. Then,

o) < p(°TY) foranp=o0 (13)
P, — p+1 = .

Note that p(;ill) is the p-th Betti number of varieties of minimal degree (VMD)

of codimension e. We also remark that it could be possible to have 8, 1’s larger than
these numbers in case of more general algebraic set (see Example 5.4).
We can also add new characterizations to classical ones of VMD’s as follows:

Theorem 1.3 Let X* C P"*¢ be a nondegenerate variety with e > 1. Then, the
following are all equivalent:

(a) X" is a variety of minimal degree in P"¢;

(b) Ix is 2-regular;

(©) a(X) =e;

(d) RO, Iy (2)) = (3);

(e) one of Bp,1(X)’s achieves the maximum for some 1 < p < e;
(f) all the By 1(X)’s achieve the maxima.

And we continue to give the next-to-extremal bounds on B, 1’s as below:

Theorem 1.4 Let X" C P"*¢ be any nondegenerate variety of codim e > 1. Unless
X is a variety of minimal degree, then we have

+1
ﬁp,l(X)Sp(;H)—(pil) (l<p<eo. (14)

Note that those equalities hold if and only if X is del Pezzo and this fact newly

characterizes del Pezzo varieties in the viewpoint of higher linear syzygies (see The-
orems 4.1 and 4.3) generalizing Fano’s classical result. In larger categories, there
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are some cases which have their Betti numbers between these extremal and next-to-
extremal bounds (see Example 5.5 and Question 5.6).

Organization of the paper For this purpose, we remind partial elimination ideals
(PEIs) theory, give account for its relevance to the theory of projections of projective
schemes briefly, and introduce a new framework in which one can study syzygies of
embedded projective subschemes using PEIs theory and reduction method via inner
projections in Sect. 2. In Sect. 3 we give proofs of our main results and add a remark
which give some inspiration on how to carry out the computations of Betti numbers of
projective varieties using projections. In Sect. 4 we treat next-to-extremal case which
is a natural generalization of Fano’s classical theorem as our previous theorems did
for Castelnuovo’s. Finally, we give examples and questions to improve our results into
more general categories and more refined bounds in Sect. 5.

Notations and conventions We are working on the following conventions:

e (Betti numbers) For any commutative ring A and a graded A-module M, we
also define graded Betti numbers of M, ,B;f" ¢(M) by dimy Tor?(M k) pyq. Fora
polynomial ring R and its homogeneous ideal I, we remind an easy fact

Torf (R/1.k)pyg =Tork |(I.k)p_11¢11 forany p>1, 4 >0

so that ﬂ},{q(R/I) = ﬂff_quﬂ (I). We’ll write B, 4 (M) or B, , instead of,s},{q(M)
where it leads no confusion and denote 8, 4(Rx) simply by 8, ,(X).

o (Property Ny, ,) For a homogeneous ideal I C R, we say that I satisfies property
Ny, if every B; j(I) = Oforany 0 < i < p and any j > d (see also [5,
15]). When d = 2 and I = Iy, the saturated defining ideal of a projectively
normal embedding X C P, this property N, p coincides with Green—Lazarsfeld’s
property N .

e (Tor modules) From now on, we often abbreviate Tor;} (M, k)piq as TQ, ¢ (M) for
any commutative ring A and a graded A-module M.

e (Arithmetic depth) When we refer the depth of X, denoted by depthp(X), we
mean the arithmetic depth of X, i.e. depthp(Rx).

e (Nondegeneracy) Throughout the paper, the nondegenerate condition on a scheme
X defined by / just means that [ has no linear forms.

2 Partial elimination ideals and its application

Green [12] introduced the notion of PEIs in his lecture note to study lexicographic
generic initial ideals (gins) and subsequent works concerning lex-gins have been done
by some authors (e.g. see [1,2,4]). In this section we will briefly review PEIs theory,
develop further and try to investigate another application of it. We will also recall
some basic facts which are essential for the remaining part of the paper throughout
this section.
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2.1 A brief review of partial elimination ideals

Let § = k[x1,...,xn] C R = k[xp, x1 ..., xn] be two polynomial rings and / be a
homogeneous ideal of R. For the degree lexicographic order, if f € I, has leading
term in(f) = xgo .. .xff,N , we set do(f) = dp, the leading power of x¢ in f. Then we

can give the definition of PEIs of I as follows:

Definition 2.1 Let / C R be a homogeneous ideal and let us define

Ki(I) :=(@S-x3)m=@{felm | do(f) < i}

a=0 m=>0

Iffe I'(vi(l), we may write uniquely f = x6f+(~g where dy(g) < i. Now we consider
the ideal K;(I) in S generated by the image of K; (/) under the map f + f and we
call K;(I) the i-th PEI of I with respect to xo. We define E,-(I) (so, also K;(I)) as
zero for any i < 0 by convention.

Observation 2.2 We could observe some properties of these ideals.

(a) (Finiteness) Ei (1) is always a finitely generated graded S-module (even though
I and R/I might not be) and K; () is a homogeneous ideal of S. We also define
I?OO(I ) := I as S-module and I?,-(I ) could be regarded as a finite S-module
approximation of /.

(b) 0-th PEI Ko (1) of I is equal to

Kot =Sn1=@D{f €lLnldo(f) =0},

m>0

the complete elimination ideal of I with respect to xo.
(c) (Stabilization) Since K; (/)’s form a natural filtration of / with respect to xg, they
induce an ascending chain of K;(/)’s such as:

0)=K_1(I) C Ko(I) C K1(I) C --- C Ky(I) € Ks41(I) C --- C R

©0) = K_1(I) € Ko() S Ki() S C Ko(I) = Kyuy (1) = -+~ C S,

where the ascending chain of K;(/)’s is always stabilized in finite steps. Let’s
define the stabilization number s(I), and the stabilized PEI K (I) as below:

s(I) :=min{i € N| Ki(I) = Kip1(I) =---}, Koo(I) := Ky(I).

(d) (Exact sequences) For any i € Z, there are two short exact sequences of graded
S-modules such as

L K@i, KD 1 e nyiy 0 @D
Ky () Kn(I)
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forevery h <i — 1 and

Ki—1(I) o Ki(h) ¢ Ki(I)
(- = LN

—_ — —1 0. 2.2
Kia(D) g0 Ko DT @2

_ For convenience, we can similarly define a finitely generated graded S-module
Q;(I) and Q;(I) as follows:

0i(l) = (@ S xg)/l%}(l) and Q;(I) := S/K;(I). 2.3)

a=0

Note that Q (I) can be considered as a sort of finite approximation for Qoo (I):=R/I
as S-module as K (I) does for I and QO(I) = Qo(I) defines the image scheme by
the elimination. We introduce a diagram in which all these notions fit into well.

Using the syzygies of Ki(I) (resp. of Qi (I)), wecan approximate S-module syzygy
structures of I or, more generally, I/ K (I) (resp. of R/I).

Proposition 2.3 (Approximation of syzygies) Let I C R be any homogeneous ideal.
For given any p,q > 0 and h € 7Z, we have

(a) Foranyd > q, Torf,(R/I, k) piq = Torfi(éd(l), k) ptq-
(b) Foranyd > gq, TorIS) U, k) prg = Tor]SJ(Kd(I), k) p1q- In general, for any d > ¢
and d > h it holds that

Tor (1/Kn (1), k) pvq == Tors (Kg(1)/Kn(1). k) p1q.

Moreover, if Koo (I) # (1), these are also true for any d > q — 1.

Proof We coulcl prove (a) and (b) by almost same arguments. Let’s try to prove (b).
Note that / = K (/) as S-module. So, it is enough to show that for any d € Z such
thatd > g — 1,

Tor (Kg (1), k) pyg = Tors (Kg(1). k) pyq forany d' >d (x).

But, this directly comes from the iterated use of exact sequence (2.1), the first row in
Fig. 2. Because, from the induced long exact sequence of (2.1) we have

TS 1 goa2(Kas1(D) — TS (Ka(D) = T3 (Kay1 (1) — T 4 (Kay1 (D),

where the first and fourth terms vanish for any d > ¢ and furthermore foranyd > g —1
in case of Ky4+1(1) C Koo (1) # (1) so that we obtain the middle isomorphism (recall
our notation for Torg (M, k) p+q as T?ﬁ ¢ (M) for any commutative ring A and a graded
A-module M). Repeating this, we can prove (). For (a), we could prove in a similar
way (use the third row exact sequence in Fig. 2). O

As a consequence, we get a simple, but frequently used lemma.
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0 0 0

! ! \

0—— Ki(I)/Kp(I) ——— K1 (I)/Kp(I) — Kipa(I) (=i = 1) — 0

! !

1+1
(@s x0> JKp(I) — (@s x0> JKp(I) — S(—i—1) —— 0

a=0 a=0
| R \
0 Qi(I) Qi1(I) ——— Qita(I)(=i—1)—0
| |
0 0 0

Fig. 2 PEls diagram. Here i > 0, i are integers and i > h. The K; (I)’s (resp. their quotient Q; (I)’s)
measures the growth of K (I) (resp. of Ql (1)) as i getting large

Lemma 2.4 Let I C R be any homogeneous ideal such that K~ (1) # (1).
Tori(]/[?h(l),k)pﬂ =0 forevery p>0andany g <h+ 1.

Proof 1t is straightforward from Proposition 2.3 (b). O

2.2 Applications to projection mappings

Geometrically, PEIs are closely related to projection mappings of schemes by nature.
Consider our scheme X C PV = Proj(R) defined by a homogeneous ideal I C R,
take a closed point g of PV as centre of our projection. Let X be its image of the
projection map 7 : X\{q} — PN=1 = Proj(S) if g ¢ X and be the Zariski closure
of the image if g € X.

We define the PEIs of I with respect to g (denoted by K;(q, 1)) by the PEI K;(1)’s
of I with respect to xg assuming g = (1 : 0 : --- : 0) by a suitable linear change
of coordinates. This definition makes sense, because we may define coordinate-free
version of PEIs with no much difficulty (e.g. [16]) and could show that taking these
PEIs commutes with coordinate transformations. We often denote K; (/) and s(q) (or
just s) simply instead of K;(q, I) and s(q, I) where no confusion occurs.

Now, let’s regard the PEIs of 1 with respect to g. First of all, the O-th PEI Ko (1) =
I N S gives a natural scheme structure on Xq itself. Further, from higher partial
elimination ideals we could extract more information on the given projection mq. For
outer projection case (i.e. g ¢ X), they turned out to be related multiple loci of 7y
(see [4,12,13]). Here, we introduce an extended version including inner projection
case also (see [14]).
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Sharp bounds for higher linear syzygies 543

Proposition 2.5 Let I be a homogeneous ideal of R defining X C PN as a scheme,
a € PV be any closed point and let 4 (tq) be the multiple loci in PN=1 where
each fiber of 7 is a finite scheme of length at least i + 1. Set-theoretically, we have

Z(Koo(I) U Mig1(mq) = Z(Ki(I)).

Thus it is important to see when the K;(I)’s are stabilized (i.e. the stabilization
number s(q)) and what they do look like (i.e. the stabilized ideal K (1)) for studying
of projections. In general, we can give bounds for s (q) in terms of degrees of generators
and the K, (/) matches an interesting geometric notion in inner projection case as the
following proposition says.

Proposition 2.6 Let X C PN be a projective subscheme with a defining ideal I and

a=(1,0,...,0) € PN. Suppose that I is generated by homogeneous polynomials of

degree at most d.

(a) Outer case (i.e.q ¢ X): s =s(q) <dand Koo (I) = (1).

(b) Innercase (ie.qe X):s =s(q) <d—1and Koo(I) = Irc,x, where It X is
the ideal of projective tangent cone of X at Q. In particular, if g is smooth, K41 (1)
consists of linear forms which defines the projective tangent space, T4 X.

Proof (a) Comes from a fact, i.e. there always exists a homogeneous f € I with its
leading term in(f) = x;; and v < d. For (b), see proposition 2.5 in [15]. O

Remark 2.7 (Computations of Betti numbers using PEIs) Using Proposition 2.6, we
could compute some pieces of syzygies of an infinitely generated S-module / (or more
generally, of 1/ K, (I)).Letg € X = V(1) be any smooth point and consider the PEIs
of I with respect to g. For any p > 0, ﬁg’q(I/Kh(I)) is zero for every g < h + 1
(Lemma 2.4). When ¢ = h + 2, by Proposition 2.3 (b) and a short exact sequence
(2.1) this is equal to

By o (Kni1(D/Kn(D) = B3 ,(Kni1(I)(=h = 1) = By (K1 (1)) (2.4)

and it can be computed by the Koszul resolution of the (independent) linear forms in
K1 (D).
In particular, when / is generated in degree d, h = d — 2, by Proposition 2.6,

Ki(l)=({1,...,8,) =1, foreveryi >d —1, 2.5)
where ¢ = N — dimg 75X and [, defines the projective tangent space Tg4X.

Hence, an infinitely generated S-module / /fd,z(l ) has a rather simple minimal free
S-resolution such as:

o0 o0
0> PS-d—et+1-g)"' - . > PS(-d—1-g)"
q=0 q=0

- P S(—d - — 1/Ka2(D),
q=0
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where ﬂ[‘f’q(l/lﬁ(vd—za)) =bp = (pj_ 1)'

2.3 Syzygies of inner projections

In this subsection, we explain how we can compare the graded Betti numbers of X
with those of X4 and give some general rules for behaviors of Betti tables under inner
projections. First, we recall a mapping cone construction as follows (see e.g. [15]):

Proposition 2.8 (Elimination mapping cone sequence) Let S = k[x1,...,xn], R =

klxo, x1 ..., xn] be two polynomial rings. Let M be any graded R-module which is
not necessarily finitely generated. Then, we have a natural long exact sequence:

D

L&’ TorS_y (M, k)p—14qi1— Torfy (M, k)p14q1— Tory_o(M, k)p-giqi1 L+

sl Tory (M, k) pig Tory (M, k)piq Tory_y (M, k)p-1+

whose connecting homomorphism [u is induced by an S-module homomorphism

M(—1) XN M, the multiplicative map.

Using the elimination mapping cone sequence (EMCS) and Betti number calcula-
tions of PEIs, we could put Betti numbers of X and those of X together and relate
them each other.

0 0 0

| } /

0 — Ko(Ix) — K,(Ix) — K,(Ix)/Ko(Ix) — 0
l q q
0—>S—>(@S~x8)—>(@$-x6‘)—>o
a=1

l a=0 =
0— Qo(lx) ——= Qg (Ix) ——— coker f; ——= 0

| } i

0 0 0 ’

Here we are able to obtain the Tor-modules TorIS,(R Xq» k) p+q and Torf, (Rx, k) p+q
from Torf, ( éo(IX), k) p4+4 and Torf, ( éq (Ix), k) p+4 by the approximation of syzygies
(Proposition 2.3). Additionally, syzygy structures of K;(/x)’s give essential informa-
tion on syzygies of K,(Ix)/Ko(Ix) (eventually, on those of a S-module coker f,,).
Combined with EMCS which connects between S-module and R-module syzygies of
Ry, we could draw the principle on which this study stands as below (see Fig. 3).
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fq

Tor, (Xq)p+q . —%  Tory(X)prq — Tor) (cokerfy, k)piq
S~ . J/EMCS S
Tor?(X)pﬂ [from Betti #’s Bis’j(PEls)}
- - J/EMCS \3,

f
T0r§_1(Xq)p71+q = Torg—l(X)prq — Torf;(cokerfq, k)p—1+q

Fig. 3 How to connect :5111?,(1 (X) with ,Bls,,q(Xq)'.’ Here TorL:'(V),, means Tor*D(RV, k) where Ry is the
coordinate ring of V

Now, we state some general theorems for syzygies of inner projections, which are
a generalization of main results in [15]. This will be used for the proof of Theorem 1.3
in Sect. 3.

Theorem 2.9 Let X C PV be a nondegenerate subscheme defined by an ideal I,
q € X be any smooth point. Set J = Ko(I), the elimination ideal defining the image
scheme X . Suppose that the stabilization number s = s(q, I) = 1.

(a) Suppose that I satisfies property Ny, p, as R-module for some d > 1 and py > 1.
Then, J satisfies at least property Ny, p,—1 as S-module.

(b) Suppose that for some d > 2 and py > 1, J satisfies property Ny p, as S-module.
Then, I satisfies at least property Ny ,, as R-module.

(c) regp(l) = max{regg(J), 2}.

Proof (a)isanatural generalization of corollary 3.4in [15] and (b) can be also obtained
by similar arguments. For (c), let M be the max{reg¢(J), 2}. First, we see that 2 <
reg (1) by Proposition 2.6 (b). Since I satisfies Nyeg, (1),00, We also see thatregg(J) <
regp (1) by (a). Thus, M < regy (7). Conversely, the fact that ﬂg’q(l) = 0 for any
p > 0and g > M implies that [ satisfies Ny oo by (b) so that M > regp (I). O

Theorem 2.10 (Depth of inner projection) Let X C PN be a nondegenerate equidi-
mensional subscheme defined by the saturated ideal Iy and g be any smooth point of
X. Suppose that the stabilization number s(q, Ix) = 1. Then,

depth (X) = depthg(Xo). (2.6)

Proof Almost same as the proof of theorem 4.1 in [15]. O

Remark 2.11 (A condition for s(q) = 1) As we have seen in Theorems 2.9 and 2.10,
one of the most favorable cases is s(q) = 1 (in this case, K s—1(I) coincides with a
defining ideal of the image scheme Xg). First of all, s(a) = 1 if I is quadratic by
Proposition 2.6 (b).

Let us consider a little more refined condition. Then, we know in general

t :=dimi[K1(I)1] < codimg(X, PV) =: ¢, 2.7)
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‘ Inner projection reduction ‘ Hyperplane section reduction ‘
For a general closed point q € X, | For a general hyperplane H C PV,
Xcpy XcpN
‘ !

- i

Xq:=m(X \ {q}) c PN ! Xp:=XNHCPV!
codim(Xy) = codim(X) — 1 codim(Xpg) = codim(X)
deg(Xq) = deg(X) —1 deg(Xp) = deg(X)
qu = AX AXH = AX

Fig.4 Two different reduction methods in projective algebraic geometry. Inner projection reduction versus
Hyperplane section reduction. Here, A(X) := deg(X) — codim(X) — 1 for an embedded variety X C PN
(originally, due to Fujita for a polarized pair (X, £))

where X = V(1) is a subscheme of PV and codimg(X, PV denotes the codimension
of the component containing g in PV . If we assume the case of taking q as a general
(so, smooth) point of X, then

the condition ¢ = e is equivalent to s(q) = 1,

because K1(I) = It x = Itcyx in both assumptions, so it is by Proposition 2.6 (b).

Remark 2.12 (Reduction via inner projections) In general, this inner projection
method sometimes gives us a useful way to reduce many given problems into the
situation of some small invariants (such as degree, codimension, etc.) in which one
might often solve them with the help of many nice properties of small world in the same
way as hyperplane section method did in classical algebraic geometry (see Fig. 4). In
case of taking a general hyperplane section of a variety X C PV the geometry goes
into a relatively easier/well-known situation, while the complexity of defining equa-
tions/syzygies is almost the same. But, in case of taking a general inner projection, the
syzygies seem to go into a much simpler stage as compensating for a big payment of
the complexity of the geometry. Furthermore, in contrast with outer projection, note
that the reduction via inner projection also preserves A-genus in the sense of Fujita
(see e.g. [10]) as same as the hyperplane reduction does. See also [21] for a typical
example using both hyperplane section and inner projection reductions in a clever
way.

3 Proofs of main results

3.1 Proof of fundamental inequality (1.2)

In this subsection, we prove the fundamental inequality (1.2) in Theorem 1.1. In fact,
we give a proof of the more strengthened form of the theorem as follows:

Theorem 3.1 (In the first linear strand) Let X C PV be a nondegenerate subscheme,
Ix be the defining ideal of X, q € X be a closed point and K;(Ix)’s be the PEIs of Ix
with respect to q. Set t = dimy (K (Ix))1 and e = codimg(X, PN) the codimension
of the component containing q in PN. Then,
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(a) Forany p > 1, the following holds

t

.Bp,l(X) =< ﬂp,l(Xq) + ,Bp—l,l(Xq) + ( ) < ,Bp,l(Xq) + ,Bp—l,l(Xq) + (;)

p
3.1
Bp1(X) = Bp1(Xq) + Bp-1,1(Xq) + (;) — Bp-1.2(Xq) — By 5 2(Ki(D).
3.2)
When p = 1, in particular, we have
Br1(X) = Br1(Xg) + (i) < Bri(Xa) + (i) (3.3)

(b) Furthermore, if a = a(X) > 1, then for any smooth point of g € X

Bp1(X) = Bp1(X + Bp-1,1(Xg) + (;) forany p <a 3.4

holds and for the case of p = a + 1 it holds that
e
Ba+1,1(X) = Ba+1,1(Xq) + Ba,1(Xq) — fa2(Xq) + (a N 1)' (3.5)

Proof We prove the theorem by treating ,35 q(I x) instead of ,35 q (Rx) (also for
By q(Sx,)). Because By (Rx) = BN | . (Ix) forall p > 0 and any g € Z, keep
in mind that from now on,

every p in the proof is by one less than the p in the statement.

For simplicity, let I be the defining ideal Ix and J be the ideal Ko(Ix) = EO(I X)
defining X4 scheme-theoretically. Being a nondegenerate subscheme, / has no linear
forms. Consider the commutative diagram such as:

0—J(-1)—I(-1)—1/J(-1)—0

I | 56

0—=K\(I) ——1—>1/K;(I)—=0,

where the vertical maps are induced by xo-multiplications.
Then, from the above diagram and EMCS (Proposition 2.8), we have an induced
commutative diagram as follows:
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: TS ) (gz(l) (_2))
s (1)
T,If,z(l) p 1

0—> T[SH,Z(J) s Tifl,z(l) AN Ti_lvz(I/J) = s Ti_m(l?l(l)/J)

xxg | K i/rb ¢

0—=T5 | (Ki(D) —=T5 | 5(1) —>T5_, 5 (I/I?Im) —T5_, (Ezu)/il (1>)

R S K> (D)
Tp,1,3(1) T[,,l’:;(ﬁ(_z)),

where the vertical sequence in the rightmost comes from the short exact sequence (2.2),
Tg’l (1/J) = 0 (since I has no linear forms) and Tf}l(I/K‘ (1)) = 0by Lemma 2.4.
We could also identify ¢ with $ in above diagram via the isomorphisms given by the
approximation of syzygies (Proposition 2.3 (b)). Furthermore, since g € X so that
K;(I) contains no units, we have Til ( Ilggg (—2)) = 0 so that ¢~5 (therefore ¢ also) is
a monomorphism. This implies that ker ¢ o v = ker v.

For (a), let us compare dimensions of kernels of morphisms in the commuting

diagram above. For ker 1 is a subspace of ker v o i = ker ¢ o v, we have

BRA(I) — B3 2 (K1(1)) = dimker 11 < dimker ¢ ov =dimker v = B5_, ,(J)
so that

BRL(I) < By_1 2(J) + B5 (K1)
< By 12 + By o (D) + By (K1 (D) (—1),

because of a short exact sequence from (2.1)
0— J— Ki(I) > Ki{(I)(=1) = 0. (3.7)

Further, since the k-vector space Ki(/); consists of ¢ independent linear forms, we
can compute via a linear Koszul resolution

BS L (Ki(I)(—1) = B3 (Kl(I))z( ! )<( e )
= P p+1) ~\p+1

(note that always t < e; see Remark 2.11) and obtain the inequality (3.1).
The inequality (3.2) comes from the following:

dimker v = dimker v o u = dimker pu + dim(im u Nker v)
< dimker u 4 dimker v (3.8)
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so that _ _
By—12() < Bra(D) = By o (Ki(D) + By 3(Ki(D))
or
By _12(1) + By 2 (Ki(D) — B5_, 5(Ki(1) < BR,H(D).

Once again, using the induced long exact sequence from (3.7), we also have the desired
inequality

Boa(D)+Bo_12()) = By 3(J) + (p i 1) — B5_12(K1(D) < BH(D).

When p = 0, both inequalities (3.1) and (3.2) coincide and lead to the formula
(3.3).

For (b), above all, note that @ = a(X) > 1 means [ is quadratic and has property
N3 4. To prove the first part (3.4), it is enough to show that 1 = e, ﬁg_l,z(Kl (1)) =0,
and /3571’3(J) = 0 for any p < a — 1. Now that [ is quadratic, s(q) = 1. Thus,
t = e (see Remark 2.11) so that ﬁs_l »(K1(I)) = 0. Moreover, by Fact 5.10 we
know that X has at least property N» ;1 i.e. ,B _13(J) =0forany p <a— 1
So, the equahty (3.4) is immediate from both (3 1) and (3.2). Furthermore, since

a71‘3(1) a,z(RX) = 0 by property N2 4, 1t becomes surjective in case of p = a
and in this case the inequality of (3.8) becomes equal so that this gives the equality
(3.5). O

Remark 3.2 (Case of non-saturated ideals) Note that Theorem 3.1 can be easily gen-
eralized for any scheme-theoretic defining ideal (not necessarily saturated) I of X.
Besides this theorem, most of results in this paper could drop the saturatedness.

As a test case, we could give a following corollary using Theorem 3.1 (this was
introduced as a part of so-called K, 1-theorem by Green for complex projective man-
ifolds in [11] and also by [20] for a bit more general case).

Corollary 3.3 (Generalized K, |-theorem (a)) Let X" C P"+¢ be any nondegenerate
(possibly singular) variety of codim e. Then, we have

Bp1(X) =0 forany p>e. 3.9
Proof Use induction on e. When e = 1 (i.e. hypersurface), it is obvious. Suppose that
(3.9) holds if e < m for some m > 1. If codim(X, P"*¢) = m + 1, then take an inner

projection of X from any general point g of X. By Theorem 3.1 (a), forany p > m+1
we have

m+ 1
IBp,l(X) =< ,Bpfl(Xq) + ,Bp,l(Xq) + ( » )
=0 (. p—1>codim(Xq, P"T¢71))

so that B, 1(X) = 0 and the proof is done. O
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3.2 Proofs of Theorems 1.2 and 1.3

Now, we are ready to prove Theorem 1.2 and other results.

Proof of Theorem 1.2 We use induction on the homological index p. Set X := X to
respect its own codimension and consider iterated inner projections from a general (so,
non-singular) point and denote the Zariski closure of the image of i-th inner projection
7; by X~ Then, we have a chain of (birational) maps {73} from X to some lower
codimensional variety (for example, a hypersurface X 1)) and the associated sequence
of varieties {X(©, X~ . x@ xMy}guch as

TTe—2

X =x© T, xe-b 2, T ylemn T TRy T x (M (3.10)

p = 1 case: Here, we reprove the classical result (known by Castelnuovo and
independently by Zak) using our own reduction method via inner projections. We
start by recalling some binomial identity, a variant of Vandermonde identity, which
will be used frequently in the remaining part of our paper:

S-S0 e

i=0 i=0

By the inequality (3.3) of Theorem 3.1 (a), for any e > 1 we know

1

s (7))
ot () (7))
= PL 1 1 1

1
< (e;r ) by binomial identity (3.11), (.12)

Bra(X@y < (x4 (e)

because X! is a hypersurface so that 81 1 (X)) < 1.

Now, for some m > 1 suppose the induction hypothesis as follows:

“our desired upper bound (1.3) holds for every nondegenerate variety

of all p < m and of any codimension e > 1. (3.13)
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p = m + 1 case: Using the inequality (3.1), we have
— _ e
B 1,1 (X @) < B 1 (XTD) 4 B (X 1>)+( )
m+1

—1
< Bt 1 (X)) 4 B 1 (X)) 4 B (XYY 4 (e )

m+1
n e
m—+1
e

' e—1 ;
< Bt 1 X) + D (XY + S (m + 1)

i=m i=m+1
< B (X)) + m(;:;) n (:1112)
by hypothesis (3.13) and (3.11)
< (m+1)(:1112), (3.14)
because B+1,1(X (m)y < 0 by Corollary 3.3. This completes our proof. O

Remark 3.4 Here the irreducibility assumption on X is necessary for the upper bound
(1.3)in Theorem 1.2. Otherwise, we need some condition on the connectedness among
components to pursue the same upper bound as (1.3) (see Example 5.4 for details).

As one of by-products of Theorem 1.2, we have the following new characterizations
of varieties of minimal degree which generalize Castelnuovo’s bound on quadrics to
higher linear syzygy level.

Theorem 3.5 (Theorem 1.3) Let X C P"*¢ be a nondegenerate variety with e > 1.
Then, the following are all equivalent:

(a) X" is a variety of minimal degree (abbr. VMD) in P"*¢;

(b) Iy is 2-regular;

© a(X) = ¢

(d) KO, Ty (2)) = (3');

(e) one of Bp,1(X)’s achieves the maximal upper bound (1.3) for some 1 < p < e;
(f) all the By 1(X)’s achieve the maximal upper bound (1.3).

Proof of Theorem 1.3 First, note that (a) < (b) < (¢). (a) < (b) is well-known
fact (e.g. see [7]) and (b) & (c) also comes from so-called rigidity of property No ,
(see [5,15]). For the remaining part, we take an order such as (f) = (e¢) = (d) =
) = ().

(f) = (e) is trivial. To see (¢) = (d), use induction on p. For p = 1, this
implication is tautological. Assume that this is true for when p < m for some m > 1.
If Bp,1(X) meets its own maximum at p = m + 1, then for any sequence of iterated
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general inner projections {X = x@ x=b X(m)} as (3.10) it means that all
the inequalities in (3.14) should be equalities and S, 1 (X ™) = m(ﬁi}) = m. This

shows that we have the stabilization number s = 1 at every reduction step from X to
X because foralli > m + 1, the inequality in (3.1)

m+1
codim (X))
m+1

~ ~ ; imy [ K (1©
Brrs 1.1 (XD) < Brsr 1 (XED) 4 B (X0 1 (dlmk[ 1 )‘])

< Bt 1 (XYY £ B, 1 (XD 4 (

goes to be equal and in particular
dimg[K (1)1 = codim(XD)for every m + 1 < i < e,

which implies s = 1 (see Remark 2.11). Here I(®) := Iy and the elimination ideal of
10+ is 1@ which defines X @) scheme-theoretically.
Then, similarly as in (3.12), using the formula (3.3) we obtain

BrLi(X) = B (X V) 4+ (f)

_ (e—2) e—1 e
= B11(X )+( 1 )~I—(1)
i .(m) m+ 1 e—l) (e)_(e-l-l)
= pfr1(X )+( | )+ +( | + J=0 5 )

(3.15)

1
because B, 1(X My =m implies 81,1 (X (’”)) = (m ;_ ) by induction hypothesis.

To get (d) = (b), take any sequence of iterated general inner projections from X to
a hypersurface XM, {X = x@ xe=b X(l)}. By the same argument we did for
(e) = (d), every reduction step from X to a hypersurface X! has the stabilization
number s = 1 and 8,1 (X)) = 1 which means X1 is a hyperquadric (in particular
2-regular). Now we can lift the regularity of X1 up to the regularity of X through
Theorem 2.9 (c). Hence, our X is 2-regular.

Finally, the part (b) = (f) isalso afairly known fact (e.g. [7, 19]) and this completes
the proof. O

Remark 3.6 (Geometric description of VM Ds) Classically, the geometric classification
of VMD has been known as del Pezzo-Bertini classification. It says that every VMD
which is not a linear space is either a hyperquadric, a rational normal scroll, or a cone
over the Veronese surface in P2, For a modern treatment, see [7].
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3.3 Remarks for the proofs

It seems to be worthwhile to write down the calculations in the proof of Theorem 1.2
rather than to do it over through proof-by-induction. It makes one to see how one
could obtain such an upper bound (1.3) more clearly and gives some inspiration for
the next-to-extremal case.

Let us begin by meditating the formula (3.1) a bit more. For any associated sequence
of iterated general inner projections {X = X o)  xO© . X (1)}, this formula
(3.1) tells us that

B (X9 < B 1 (X)) + B, (XD + (;) (3.16)

for every pair (e, p). Figuratively speaking, one father (i.e. 8, 1(X ©))) has two sons
(i.e. Bp—11(X® D) and B, 1 (X©D)) and leaves an inheritance (i.e. (;)) to them.

For instance, if we keep on doing this from the forefather B, 1(X (€0)) (for sim-

plicity, denote it by :3,(;)0)1) to fourth generation, they become such a family and have
the inheritance as appeared in Fig. 5. Here, the forefather’s worth (i.e. the value of
Betti number) can be counted as the worth of all his descendants in last (so, fourth)
generation and all the inheritances they left up to that time.

Since ﬁ(e) 0 for any pair (e, p) such that p < 0 or p > e (see Corol-
lary 3.3), let us continue this Birth-Inheritance Game (see Fig. 6 in page 18) till
all the ﬂ(p()) ,B(po b /3(1) on the diagonal appear. Then, we can bound ﬁ1(70 | as

po,1° Fpo—1,1°
follows:

@ po—1 eo—po—1+i ( ) po—1 | eo—po—1 P\ feo—i—j
e po—i
ﬂpool—Z( i ) poollJrz z ( i )( j ) ’

i—0 i=0 po—t

(A) (B)

where (A) corresponds to the sum of diagonal Betti numbers in Fig. 6 and (B) corre-
sponds to the lower parallelogram of all the inheritance there (i.e. the sum of bold-faced

By
gl B! (&)
Balad 2l B (o) ()
Bl e e AT () 2 ()

Fig. 5 Four generations of Betti numbers (on the left side) and their inheritances (on the right side). Note
that both of them form Pascal’s triangle
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e (codimension)
(e0)

=p+171line .~ P
e -

€o! ﬁpm ‘a -
1 L fe= line
! 1) 1 - - eo
eoi— 1 ﬂz()io 11 :(ziol : e : g (Po)
| P - e -
U (e0—2) (e0—2) pleo—2) 7 I eo—1 ep—1
€oy— 2 Bpo-2,1 2Bp, 1,1 Bpo,1 T 7 (poq) ( Po )
p
| p
4 e
L (e0=3) g a(e0=3) g a(co=3) gleo—3) 7 <7 (2072) 2(%072) (e0—2
€0, 3 ﬁpuo 3,1 351700 2,1 351700—1 1 ﬁpo, L7 d (PU*Z) (p"*l) ( Po )
“ y P
. 7 (eo—3 eo—3 e0—3) [eo—3
; T e s 3D (Y
| .7 d
! (ﬁ0+1 s ’
| ﬁpg l P
|
| G
: 015(}’ )1 1 B(p“) : : : : P oco(PotY)
: : : : : po
|
'1) (po— 1)
(I PN it 5 b
| R L ci(,Py)
|
(po> ?) (po— 2)
| c3 31 c po—1
| po—3,1 2/170 2,1 Co (pﬂfz)
.
|
. (po~3) . . . _
I 53590 i1 : : : Poca(®ed)
|-
cATT o7 p_() 3 -2"po—T " py T ° ;3 ~ 7 7 7 p (homologicalindex) ~
N : : : : ca(Po})
v

Fig. 6 Birth-Inheritance Game People (i.e. Betti number ﬁl(f,)l ’s) are located, according to the pair (e, p),
in the upper triangular area and all their inheritance (i.e. bold-faced binomial numbers) are stacked up in
the lower triangular area. Each person gives birth to two sons and leaves the inheritance until one reaches
the diagonal (i.e. e = p line). Note that all the inheritances form a parallelogram during this game and the
coefficient ¢; = (e()—p(;—l+i)

binomial numbers in Fig. 6). Direct summand in (B) is the (j + 1)-th binomial number

from the top in the (i + 1)-th column from the right of the parallelogram.

Sayc¢; = (eo_p(l?_l"’i) . Now, if we do this game once more from coﬁ;ﬁ?f to Cpy— 1ﬂ(1)

(i.e. on all the Betti numbers on (A)), then it follows that

po—1 po—1 i .
_ (Po po—1! .. (po—i=D)_
A= > epll) < z > ¢ (po_i) (-l g Pvanish)
i=0 i =0

(3.17)

po—1 . .
B ) ()
= i po—i eg—po+1

by the binomial identities (3.11) and that

) po—1 | eo—po i\ feo—i—j
B < (A)+(B) < (A +(B) = > Z( l. )( o —i )
i=0 | j=0
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po—1
eo+ 1 eo+ 1
= = 3.18
z (po + 1) pO(Po + 1) G19)

i=0

by another variant of Vandermonde identity

S (r+i\[(s—i r+s+1
Z( )( ) = ( ' ) for integers s >t > 0, (3.19)
= r t r+t+1

and the binomial identities (3.11). Hence, we obtain the desired upper bounds, which
represent the Betti numbers of VMD.

4 Next-to-extremal case

Theorem 4.1 (Theorem 1.4) Let X" C P"*¢ be any nondegenerate variety of codim
e > 1. Unless X is a variety of minimal degree, then we have

(X) < (E+1) ( ¢ ) lH1<p< 4.1
Bp1(X) <p 1) Lo forall1<p<e. .

e+1

Note that p( 41
P
eties of codimension e (e.g. [19]). Before proving Theorem 4.1, we introduce another

relevant lemma as a direct consequence of theorem 3.5 in [20].

) — ( ¢ 1) is also the p-th Betti number of del Pezzo vari-
p—

Lemma 4.2 (Generalized K, i-theorem (b)) Let X" C P"+¢ be any nondegenerate
variety of codim e. Unless X is a variety of minimal degree, then we have

Be1(X) = 0.

Now, let’s prove next-to-extremal upper bounds on 8 1’s.

Proof of Theorem 4.1 First, we note that a general inner projection X is not of min-
imal degree, unless X is of minimal degree (due to so-called Trisecant lemma). Sim-
ilarly as in the proof of extremal bounds, take a sequence of iterated general inner

projections {X = X©, x(=D XM} Asdiscussed in Sect. 3.3, we could bound

i fe—p—1+i R N B
,31?‘,1(X)§Z( pi )'ﬁ/)i,l(x(pl))-l-Z' Z ( i])( ])]
i=0

iz | j=o p—i
(A) (B)
=(B) = p(e * 1) —(A) = p(e + ]) — (e - ]) (see (3.17) and (3.18)),
p p p
because ﬂp_,;l(X(”_")) =0 forevery 0 <i < p — 1 by Lemma 4.2. O
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As an application, we can also add new characterizations of del Pezzo varieties
which generalize Fano’s classical bound on quadrics to higher linear syzygy level.

Theorem 4.3 Let X" C P"" be a nondegenerate variety with e > 2. Then, the
following are all equivalent:

(a) X is a del Pezzo variety;

b) a(X)=e—1;

() W@, Ix(2) = (“})) - I;

(d) one of Bp,1(X)’s achieves the upper bound (4.1) for some 1 < p <e —1;
(e) all the B, 1(X)’s achieve the upper bound (4.1).

Proof (a) < (b) is known by theorem 4.3 (b) in [15] and we prove by taking an order
such as () = (e) = (d) = (¢) = (a).

(b) = (e) comes from the known Betti numbers of del Pezzo varieties (e.g. [19])
and (e) = (d) istrivial. Now letus see (d) = (c). As seen in the proof of Theorems 1.3
and 4.1, the equality of next-to-extremal bound on some f, 1(X) means that every
reduction step from X = X to X for any sequence of iterated general inner
projections {X = X (@ x=b — x (1)} should have the stabilization s = 1 and
Bi.1 (XM) = 0. Thus, using the formula (3.3) repeatedly, we obtain B11(X) = (642'1) —
1. Finally, to show (¢) = (a) note that the delta genus is preserved (see Fig. 4) under
each reduction (i.e. A(XETD) = A(X®) forevery i > 1) and that X is a complete
intersection of two quadrics. Since X is a variety of next-to-minimal degree (i.e.
A = 1) and ACM, we conclude that our original X is also of next-to-minimal degree
and ACM (depth can be lifted by Theorem 2.10 whenever s = 1), in other words a
del Pezzo variety. O

Remark 4.4 (Geometric characterization of del Pezzo varieties) Some works on the
geometric characterization/classification of del Pezzo varieties have been done by
Fujita for mainly normal singularities and recently by Brodmann and Park for non-
normal cases (see Remark 4.4 (b) in [15] for references).

5 Examples and questions

More general categories As we explored through Theorems 1.2 and 1.3, in the cat-
egory of k-varieties Var(k) all the notions minimal degree, 2-regularity, and maximal
Betti numbers are equivalent. How about more general categories?

In [6] they appointed “2-regularity’ as a generalization of the notion of ‘minimal
degree’, clarified its geometric meaning (so-called smallness), and classified them
completely in the category of algebraic sets AlgSet (k). We could also attempt to extend
the notion of ‘maximal Betti numbers’ and to generalize similar characterizations on
them into more general categories (even though not into the whole AlgSet(k)).

For instance, let us consider the following category. One says that any algebraic set
X = UX; is connected in codimension I if X is equidimensional and all the irreducible
component X;’s can be ordered in such a way that every X; N X, is of codimension
1 in X. Denote the category of connected in codimension 1 algebraic sets by CC; (k).
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Fig. 7 How to reduce components following (i) and (ii) in CCj (k). The dashed arrows represent inner
projections 7;’s from qg, q;, and p; respectively. Note that every reduction step diminishes codimension
exactly by one

Note that a key ingredient for proofs of most of results in this paper is the reduction
method via inner projections where the notion of codimension has an important role.
CCj (k) is the very case in which codimension is well-defined (degree is given by
the sum of degrees of all the components. It is always at least codimension + 1.) and
reduction process are well-behaved as following steps (see also Fig. 7):

(i) choose one component and take iterated general inner projections within the com-
ponent until the component disappear (into the intersection with other compo-
nents);

(i1) do these reductions component by component.

Therefore, our extremal bounds and characterizations for the maximal Betti num-
bers in Var(k) can be naturally generalized to this category CCj (k).

Theorem 5.1 Let X" C P**° be any nondegenerate algebraic set of codim e > 1 in
CC (k). Then,

e+1
Bp1(X) < p(p+ 1) forall p>0. 5.1

Further, the following are all equivalent:

(a) X is of minimal degree in P"T¢.

(b) Ix is 2-regular.

(©) a(X) = e.

(d) ROPte, Ty(2)) = (‘3)).

(e) one of Bp,1(X)’s achieves the maximum for some 1 < p < e.
(f) all the By 1(X)’s achieve the maxima.

Remark 5.2 In CCj(k), we can also see which algebraic set does attain the maximal
Betti numbers geometrically. First, we recall that a sequence {X1, X2, ..., X,} of the
components of an algebraic set X = UX; is linearly joined if we have

X1U---UX)NXip = (X1 U---UX;) N (Xip1)
foreveryi =1, 2,...,n—1, where (X;) means its span (so this definition may depend
on the ordering). Being of minimal degree, we could easily obtain that they are just

all the linearly joined union of VMDs. This also coincides with the classification of
[6], because of 2-regularity.
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Now, we look some interesting examples up. Since the theory is closely related to
the geometry of codimension, the examples have been chosen among the curve cases.

Example 5.3 (Reducible linearly joined unions of VMDs) Let X1 C P* be a union of
a line £ and a twisted cubic C such that £ N C = (€) N (C) = one point. Let X5 be a
union of two plane conics Q1, Q2 meeting at one point (their spans also) in P*. Both
X1 and X3 in CCy (k) are linearly joined unions of VMDs and codim e¢ = 3. Using
Macaulay 2 (see [18]), we can verify that they give the same Betti table having
maximal Betti numbers as expected in Theorem 5.1.

0(112]3
B(X)) =B(X3) O0|1|—|—|—
1|—|6(8]|3

But, we can not drop the condition ‘connected in codimension 1’ in Theorem 5.1
even though ‘linearly joined’ condition holds as the following example says.

Example 5.4 (Two unions of lines: three lines in P? and skew lines in P3) Let
Ix, = (xox3, x1x2, x2x3) and Ix, = (xox2, X0X3, X1Xx2, X1Xx3) be two saturated ideals
ink[xg, x1, X2, x3]. Ix, defines a union of three lines X| = £1 U, U{3 such that £; and
£, meet at one point and so do £, and £3. Iy, defines X, = £1 U, be skew lines in P3.
Both of X;’s are nondegenerate, linearly joined set of codim e = 2. But the skew lines
X5 is not connected in codimension 1 (by convention, consider dim # = —1), while
X satisfies to be connected in codimension 1. By Macaulay 2, we present the Betti
table of X as below. Note that all B, 1(X2)’s exceed the maximal Betti numbers in
(5.1) of codimension 2, in contrast with B(X1) achieving the bound.

0123 0|11]2]3
B(Xy) O[1|—|—|—| B(X2) O|1|—|—|—
1[—[3|2]|— 1{—[4]4|1

We also have examples which show that the bounds (4.1) may not serve as next-
to-extremal bounds in CC; (k). In other words, from the consideration of next-to-
extremal case it might be possible to occur many interesting Betti tables according
to the configurations of unions of small degree varieties even though in the category

CCi (k).

Example 5.5 (On next-to-extremal bound) Let X1 C P* be a union of a plane conic
Q and a twisted cubic C meeting at one double point with (Q) N (C) = P! (e = 3).
This is nondegenerate, connected in codimension 1, but not linearly joined. X is also
of next-to-minimal degree and has the same Betti table as a del Pezzo variety does in
Var(k) (see Fig. 8). On the other hand, if X» is a nondegenerate union of a plane nodal
cubic C and a smooth conic Q in P* (e = 3), then X> has a different Betti table with
the one of X1, although X is of next-to-minimal degree, connected in codimension 1,
and even linearly joined (see also Fig. 8). We see that 52 1(X2) and B3 1(X2) exceed
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11213 0l1]2]3

1= —1— 01— —1-

BX)) 41151512 B(X2) 9115162
2 - —[=11 2 —[1 21

Fig.8 Two Betti tables of X | and X, algebraic sets of next-to-minimal degree in CC| (k) (by Macaulay
2). Note that two tables be the same after a diagonal cancellation

next-to-extremal bounds (4.1) though B1,1(X2) achieves the maximum of (4.1). Note
that two Betti tables get the same after taking a diagonal cancellation.

Question 5.6 Here are our questions.

(a) Is it possible to generalize upper bounds (5.1) and (4.1) into more general cate-
gories such as AlgSet(k) (possibly in terms of codimensions of components and
other invariants, if needed)?

(b) Can we explain the reason of the difference of two Betti tables in Fig. 8 geometri-
cally?Is it possible to heal the next-to-extremal case in CC| (k) (see Example 5.5)
by figuring out this diagonal cancellation phenomena?

(c) Classity or characterize those who have next-fo-simple Betti tables (the simplest
are the tables of 2-regular schemes) geometrically in CCj (k) or more general
categories (see also question 5.6 in [15]).

More improved bounds Concerning on linear syzygies of X at least, one could say
in general

More quadrics X has, Nicer syzygies X has.

Here, what ‘niceness’ does mean could be spoken in many different ways, but in view
of Theorems 1.3 and 4.3 we can say it means getting closer to maximal Betti numbers
in the linear strand and higher a(X) (or (X)) our X has.

On this point there is an interesting fact such as (coming directly from corollary
3.8 in [15]):

Fact 5.7 Let X" C P"*¢ be a nondegenerate subscheme in Var(k) (or CCy(k)) of
codim e. Then, we have

1 1—a(X
(e; )—(e+ 2“( )) < B (X). (5.2)

In other words, it means that a (X') has some necessary conditions on 1 1. Therefore,
we suspect that the following question might be true:

Is it possible to give an upper bound on S1,1(X) in terms of b(X)?, (5.3)
which is the question about whether ;1,1 does impose some sufficient condition for

b(X) or not. For a large b(X) (to be precise, for b(X) > e in Var(k)), (5.3) is true. It
is also considered as a kind of converse of the idea, say
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High b(X) guarantees many quadrics on X so that X can inherits interesting
geometric structures from the embedding quadrics,

on which many problems (e.g. Green’s conjectures on algebraic curves in [11]) are
essentially based. As one of the ways to answer the question (5.3), we raise the fol-
lowing question:

Question 5.8 Let X" C P"*¢ be a nondegenerate reduced subscheme of codim e and
X4 be its inner projected image.

Does it hold that b(X4) < b(X) — 1 for a general point g € X?

Remark 5.9 We complete this section by making some relevant remarks.

(a) For a(X), we have an interesting result from corollary 3.4 in [15]:

Fact 5.10. Let X" C P"*¢ be a nondegenerate reduced subscheme of codim e
and X4 be its inner projected image. Then, we have

a(Xq) > a(X) — 1 for a general (in fact, any smooth) point g € X.

(b) We know that b(Xy) < b(X) for a general g € X always holds. To the best of
author’s knowledge, there hasn’t been a counterexample for Question 5.8 except
the case of g being singular. If Question 5.8 is true, then through similar arguments
in Sect. 3.3, we can answer the question (5.3) as follows:

e+1 e+1 b e+1
ﬁ"’l(X)Sp(erl)Jr{(p+1)_(p+1)]_(e_bH)( P ) ’

5.4

which are more improved upper bounds in terms of e, p, b := b(X) generalizing
the bounds (1.3) and (1.4). [To be precise, it is enough to run Birth-Inheritance
game till our Betti numbers arrive at the line “e = p+(e(X)—b(X)+1)” inFig. 6
as though they did at the line “e = p” in the extremal bound (i.e. b(X) = e(X)+1)
and at the line “e = p + 1” in the next-to-extremal case (i.e. b(X) = e(X) ).]
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