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In this paper, we are interested in the generic initial ideals of sin-
gular projective curves with respect to the graded lexicographic
order. Let C be a singular irreducible projective curve of degree
d � 5 with the arithmetic genus ρa(C) in P

r where r � 3. If M(IC )

is the regularity of the lexicographic generic initial ideal of IC

in a polynomial ring k[x0, . . . , xr ] then we prove that M(IC ) is
1 + (d−1

2

) − ρa(C) which is obtained from the monomial

xr−3x
(d−1

2 )−ρa(C)

r−1 ,

provided that dim Tanp(C) = 2 for every singular point p ∈ C . This
number is equal to one plus the number of secant lines through
the center of general projection into P

2. Our result generalizes the
work of J. Ahn (2008) [1] for smooth projective curves and that of
A. Conca and J. Sidman (2005) [9] for smooth complete intersec-
tion curves in P

3. The case of singular curves was motivated by
A. Conca and J. Sidman (2005) [9, Example 4.3]. We also provide
some illuminating examples of our results via calculations done
with Macaulay 2 and Singular (Decker et al., 2011 [10], Grayson
and Stillman [16]).
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1. Introduction

Let R = k[x0, . . . , xr] be a polynomial ring over an algebraically closed field k of characteristic zero
and I be a homogeneous ideal of R . If X is a non-degenerate reduced closed subscheme in Pr we
write I X for the saturated defining ideal of X in the polynomial ring R .

Bayer and Mumford in [4] introduced the regularity of the initial ideal of I with respect to a term
order τ as a measure of the complexity of computing Gröbner bases. Even though this depends on
the choice of coordinates, it is constant in generic coordinates by the result of Galligo [13]. He has
proved that the initial ideals of I in generic coordinates are invariant, which is the so-called generic
initial ideal of I with respect to τ , denoted by Ginτ (I). In characteristic zero, it was shown in [6] that
the regularity of Ginτ (I) is exactly the maximum of the degrees of its minimal generators.

One of the important problems is to bound the regularity of the generic initial ideal of I for a
given term order τ on monomials. Many people have studied generic initial ideals with respect to
the reverse lexicographic term ordering, as these ideals have essentially best-case complexity due to a
result of Bayer and Stillman (for examples, [4,6–8,14,15,18–24]). However, much less is known about
the generic initial ideals with respect to the graded lexicographic term ordering. One expects them to
require many more generators than the reverse lexicographic initial ideals, but little is known about
their precise behavior [1,2,9].

In this paper, we continue the study of the lexicographical generic initial ideals of singular projec-
tive curves. Our main result gives a relationship between the complexity of algebraic computations
with the ideal of a singular curve and the geometry of its generic projection to the plane. More pre-
cisely, let C be a singular irreducible curve of degree d � 5 with arithmetic genus ρa(C) in Pr where
r � 3. If dim Tanp(C) = 2 for every singular point p ∈ C then the regularity of the lexicographic generic

initial ideal of C is exactly 1 + (d−1
2

) − ρa(C), which is one plus the number of secant lines through
the center of general projection into P2. Moreover it turns out that the regularity is obtained from

the monomial generator xr−3x
(d−1

2 )−ρa(C)

r−1 of Gin(IC ).
We use M. Green’s partial elimination ideals and careful work with their Hilbert functions to

achieve the result, which previously has been used in [1]. Main ideas employed in this paper are
to reduce the problem to the case of singular curves in P3 and to show that the first partial elimina-
tion ideal of IC ⊂ K [x0, x1, x2, x3] is a radical ideal in generic coordinates, under the assumption that
dim Tanp(C) = 2 for every singular point p ∈ C . In process of the proof, this ideal turns out to be the
defining ideal of the set of non-isomorphic points under a generic projection of C into P2.

Our result generalizes the works of J. Ahn [1] and A. Conca and J. Sidman [9] who proved the same
formula for the case of smooth projective curves and for smooth complete intersection curves in P3,
respectively.

Finally, we remark that our result is not true if dim Tanp(C) > 2. The example of A. Conca and
J. Sidman [9, Example 4.3] is a complete intersection curve C defined by x3 − yz2 and y3 − z2t
with one singular point p = [0,0,0,1]. One can compute dim Tanp(C) = 3 and δp = 10 with Singu-
lar [10]. In this case the regularity of the lexicographic generic initial ideal of IC is 16, which is not
1 + (9−1

2

) − ρa(C) = 19 (see Example 3.6 for the details).

2. Notations and known facts

(a) We work over an algebraically closed field k of characteristic zero.
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(b) For a homogeneous ideal I , the Hilbert function of R/I is defined by H(R/I,m) := dimk(R/I)m for
any non-negative integer m. We denote its corresponding Hilbert polynomial by P R/I (z) ∈Q[z]. If
I = I X then we simply write P X (z) instead of P R/I X (z).

(c) Given a homogeneous ideal I ⊂ R and a term order τ , there is a Zariski open subset U ⊂ GLr+1(k)

such that inτ (g(I)) for g ∈ U is constant. We will call inτ (g(I)) the generic initial ideal of I for
g ∈ U and denote it by Ginτ (I). One can say that I is in generic coordinates if inτ (I) = Ginτ (I).

(d) The generic initial ideal Ginτ (I) of I has Borel fixed property, which is a nice combinatorial
property. In characteristic 0, we say that a monomial ideal J has Borel fixed property if xim ∈ J
for a monomial m, then x jm ∈ J for all j � i.

(e) For a homogeneous ideal I ⊂ R , let M(I) denote the maximum of the degrees of minimal gener-
ators of GinGLex(I).

(f) For a homogeneous ideal I ⊂ R , consider a minimal free resolution

· · · →
⊕

j

R(−i − j)βi, j(I) → ·· · →
⊕

j

R(− j)β0, j(I) → I → 0

of I as a graded R-modules. We say that I is m-regular if βi, j(I) = 0 for all i � 0 and j > m. The
Castelnuovo–Mumford regularity of I is defined by

reg(I) := min{m | I is m-regular}.

(g) If I is a Borel fixed monomial ideal then reg(I) is exactly the maximal degree of minimal gener-
ators of I (see [6,12]). This implies that M(I) = reg(GinGLex(I)).

(h) Let C be an integral projective scheme of dimension 1 over k, and f : C̃ → C be its normalization.
We write δp for the length of ( f∗OC̃ )p/OC,p as an OC,p-module for each p ∈ C . Note that if a
singular point p is a node or an ordinary cusp then δp = 1 [17, Exercise IV 1.8(c)].

We recall some definitions and known facts which will be used throughout the remaining parts
of the paper. Unless otherwise stated, we always assume the graded lexicographic term ordering.
Furthermore, for an irreducible reduced closed subscheme X , we also assume that I X is in generic
coordinates such that in(I X ) = Gin(I X ).

Theorem 2.1. (See [1, Theorem 1.2].) Let X be an integral scheme in Pr and let π be a generic projection of X
to Pr−1 . Suppose that π is an isomorphism. Then M(I X ) = M(Iπ(X)).

Definition 2.2. (See [9,12].) Let I be a homogeneous ideal in R = k[x0, . . . , xr]. If f ∈ Id has leading
term in( f ) = xd0

0 · · · xdr
r , we will set d0( f ) = d0, the leading power of x0 in f . We let

K̃ i(I) =
⊕
d�0

{
f ∈ Id

∣∣ d0( f ) � i
}
.

If f ∈ K̃ i(I), we may write uniquely f = xi
0 f̄ + g , where d0(g) < i. Now we define Ki(I) as the image

of K̃ i(I) in R̄ = k[x1 . . . xr] under the map f → f̄ and we call Ki(I) the i-th partial elimination ideal
of I .

Remark 2.3. We have an inclusion of the partial elimination ideals of I:

I ∩ R̄ = K0(I) ⊂ K1(I) ⊂ · · · ⊂ Ki(I) ⊂ Ki+1(I) ⊂ · · · ⊂ R̄ = k[x1 . . . xr].

Note that if I is in generic coordinates and i0 = min{i | Ii �= 0} then Ki(I) = R̄ for all i � i0.
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The following result gives a useful relationship between partial elimination ideals and the geome-
try of the projection map from Pr to Pr−1. For a proof of this proposition, see [12, Proposition 6.2].

Proposition 2.4. Let X ⊂ Pr be a reduced closed subscheme and let I X be the defining ideal of X . Suppose
p = [1,0, . . . ,0] ∈ Pr \ X and that π : X → Pr−1 is the projection from the point p ∈ Pr to x0 = 0. In
generic coordinates, the radical ideal

√
Ki(I X ) defines the algebraic set {q ∈ π(X) | multq(π(X)) > i} set-

theoretically.

Thus, we can define the following two projective schemes associated with the partial elimination
ideals:

Yi(X) := Proj
(

R̄/
√

Ki(I X )
) ⊂ Zi(X) := Proj

(
R̄/Ki(I X )

)
.

It is clear that Zi(X)red = Yi(X) and if Ki(I X ) is radical, then Yi(X) = Zi(X).
It is natural to ask what is a Gröbner basis of Ki(I)? Recall that any non-zero polynomial f in R

can be uniquely written as f = xt f̄ + g where d0(g) < t . A. Conca and J. Sidman [9] proved that if G
is a Gröbner basis for an ideal I then the set

Gi = {
f̄

∣∣ f ∈ G with d0( f )� i
}

is a Gröbner basis for Ki(I). The following proposition shows that if I is in generic coordinates then
there is a more refined Gröbner basis for Ki(I), which plays an important role in this paper.

Proposition 2.5. (See [2, Proposition 3.4].) Let I be a homogeneous ideal in generic coordinates and G be a
Gröbner basis for I with respect to the graded lexicographic order. Then, for each i � 0,

(a) the i-th partial elimination ideal Ki(I) is in generic coordinates;
(b) Gi = { f̄ | f ∈ G with d0( f ) = i} is a Gröbner basis for Ki(I).

We have the following immediate corollary from Proposition 2.5.

Corollary 2.6. For a homogeneous ideal I ⊂ R = k[x0, . . . , xr] in generic coordinates, we have

M(I) = max
{

M
(

Ki(I)
) + i

∣∣ 0 � i � β
}
,

where β = min{ j | I j �= 0}.

3. Generic initial ideals of singular curves

As mentioned in the introduction, M(IC ) can be computed precisely in terms of degree and genus
of a smooth integral curve C in Pr , r � 3. In this section, we generalize the results for smooth curves
in [1] to non-degenerate singular curves in Pr , r � 3. We are motivated by [9, Example 4.3] due to
A. Conca and J. Sidman.

Remark 3.1. We will use the following well-known facts to prove our main results.

(a) (Trisecant Lemma) Let C be a reduced, irreducible curve in Pr where r � 3. The family of trisecant
lines to C has dimension at most 1. This is equivalent to the assertion that not every pair of points
of C lie on a trisecant line (see [3]).

(b) Let C be an integral curve in Pr , r � 3, and dim Tanp(C) = 2 for any p ∈ Sing(C). Then we can
choose a generic point q /∈ Tanp(C) such that πq : C → Pr−1 is an isomorphic projection. Further-
more, M(IC ) = M(Iπq(C)) (see [1, Theorem 1.2]).



588 J. Ahn et al. / Journal of Algebra 372 (2012) 584–594
From now on, we consider the Hilbert functions of two subschemes Yi(C) ⊂ Zi(C) ⊂ P2 associated
to the partial elimination ideals Ki(IC ), i = 0,1, for a singular projective curve C .

Lemma 3.2. Let IC ⊂ k[x0, . . . , x3] be the defining ideal of an integral, possibly singular, curve C in P3 . Then
deg(R̄/K1(IC )) = (d−1

2

) − ρa(C).

Proof. The Hilbert function of IC is decomposed by the partial elimination ideals Ki(IC ) as follows

H(R/IC ,m) =
∞∑

i=0

H
(

R̄/Ki(C),m − i
)
. (1)

This comes from the following combinatorial identity

(
m + d

d

)
=

m∑
i=0

(
m − i + d − 1

d − 1

)
.

By Remark 3.1(a), we know that there is no trisecant line to C passing through a general point of P3.
This means that the zero locus of Ki(IC ) is empty for i � 2 by Proposition 2.4. So, H(R̄/Ki(C),m) = 0
for m 
 0 and i � 2. Thus, the equality (1) can be reformulated by

P C (m) = Pπ(C)(m) + P Z1(C)(m − 1) for m 
 0. (2)

Since π(C) is a plane curve of degree d = deg(C) and arithmetic genus ρa(π(C)) = (d−1
2

)
, we know

that PC (m) = dm + 1 − ρa(C), and Pπ(C)(m) = dm + 1 − (d−1
2

)
. Consequently,

deg
(

R̄/K1(IC )
) = P C (m) − Pπ(C)(m) =

(
d − 1

2

)
− ρa(C). �

Theorem 3.3. Let C be a non-degenerate integral curve of degree d and arithmetic genus ρa(C) in P3 . Assume
that dim Tanp(C) = 2 for every singular point p ∈ C. Then K1(IC ) is a radical ideal defining a set of reduced

points Y1(C) of degree
(d−1

2

) − pa(C), which is the number of secant lines through the center of general pro-
jection into P2 .

Proof. Let ϕ : C̃ → C be the normalization of C . Then we have the following exact sequence

0 →OC → ϕ∗OC̃ →
∑
p∈C

(ϕ∗OC̃ )p/OC,p → 0

where (ϕ∗OC̃ )p is the integral closure of OC,p . Thus we have the equation

∑
p∈C

δp = χ(ϕ∗OC̃ ) − χ(OC )

= (
1 − ρa (̃C)

) − (
1 − ρa(C)

)
= ρa(C) − ρa (̃C) (3)

where δp = length((ϕ∗OC̃ )p/OC,p). Now consider the following commutative diagram:
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C̃
ϕ

π ′

C ⊂ P3

π

π(C) ⊂ P2

where π ′ = π ◦ ϕ : C̃ → P2. The assumption that dim Tanp(C) = 2 for every singular point p ∈ C
implies that the generic projection π : C → P2 gives a local isomorphism around every singular point
p ∈ C and thus we have

δp = length
(
(ϕ∗OC̃ )p/OC,p

)
= length

((
π ′∗OC̃

)
q/Oπ(C),q

) = δq

where q = π(p). By virtue of Remark 3.1, we see that the fiber of a generic projection of the curve C
contains at most a 2-points scheme and thus non-isomorphic points in π(C) under a generic projec-
tion of C into P2 are only nodes, whose set is defined by

√
K1(IC ). If q′ = π(p′) is such a node then

one knows δp′ = 0 and δq′ = 1 since p′ ∈ C is a smooth point and q′ ∈ π(C) is a nodal point. Hence
we have

deg
(

R̄/
√

K1(IC )
) =

∑
q∈π(C)

δq −
∑
p∈C

δp . (4)

On the other hand, consider the short exact sequence:

0 →Oπ(C) → π ′∗OC̃ →
∑

q∈π(C)

(
π ′∗OC̃

)
q/Oπ(C),q → 0.

Then we also obtain the following equation

χ(Oπ(C)) − χ
(
π ′∗(OC̃ )

) +
∑

q∈π(C)

δq = 0.

Since π(C) is a plane curve, it is clear that ρa(π(C)) = (d−1
2

)
. Hence,∑

q∈π(C)

δq = χ
(
π ′∗(OC̃ )

) − χ(Oπ(C))

= (
1 − ρa (̃C)

) − (
1 − ρa

(
π(C)

))
=

(
d − 1

2

)
− ρa (̃C). (5)

So, we have

deg
(

R̄/
√

K1(IC )
) =

∑
q∈π(C)

δq −
∑
p∈C

δp
(
by Eq. (4)

)
=

(
d − 1

2

)
− ρa (̃C) − (

ρa(C) − ρa (̃C)
) (

by Eqs. (3) and (5)
)

=
(

d − 1

2

)
− ρa(C).
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We know that deg(R̄/K1(IC )) = (d−1
2

) − ρa(C) by Lemma 3.2. Thus we have

deg
(

R̄/
√

K1(IC )
) = deg

(
R̄/K1(IC )

)
.

Since K1(IC ) defines a zero-dimensional scheme, we have
√

K1(IC ) = K1(IC )sat. Then we conclude
that K1(IC ) is a radical ideal defining a set of points with degree

(d−1
2

)−ρa(C) since K1(IC ) is already
saturated (see [1, Theorem 4.1]). �
Corollary 3.4. Let C be a non-degenerate integral curve of degree d and arithmetic genus ρa(C) in P3 . Assume
that δp = 1 for every singular point p ∈ C. Then K1(IC ) is a radical ideal defining a set Y1(C) which consists

of distinct
(d−1

2

) − pa(C) points.

Proof. Note that it suffices to show that the condition δp = 1 implies dim Tanp(C) = 2. Let
ϕ : C̃ → C be the normalization of C . If p ∈ C is a singular point then the assumption that
δp = length(ϕ∗OC̃ )p/OC,p = 1 implies that:

(a) ϕ−1(p) consists of smooth two points of C̃ .
(b) (ϕ∗OC̃ )p/OC,p is a simple OC,p-module.

Then it follows from [5, Lemma 3.2 (b)] that dim Tanp(C) = 2, as we wished. �
Theorem 3.5. Let IC be the defining ideal of an integral curve C of degree d in P3 , with dim Tanp(C) = 2 for
every singular point p ∈ C, then:

(a) M(IC ) = max{d,1 + (d−1
2

) − ρa(C)}.
(b) M(IC ) can be obtained from one of the following two monomial generators

xd
1, x0x

(d−1
2 )−ρa(C)

2 .

Proof. Note that by Theorem 3.5 in [1],

M(IC ) = max
k�0

{
reg

(
Gin

(
Kk(IC )

)) + k
}
.

Let s = max{d,1 + (d−1
2

) − ρa(C)}. Since K0(IC ) defines a plane curve π(C) of degree d and K1(IC )

defines a set of points of degree
(d−1

2

) − ρa(C),

reg
(
Gin

(
K0(IC )

)) = d

and

reg
(
Gin

(
K1(IC )

)) =
(

d − 1

2

)
− ρa(C) (Theorem 3.3).

This means that M(IC ) � s.
Conversely, to prove that M(IC ) � s it suffices to show that

reg
(
Gin

(
Kt(IC )

))
� s − t for all t � 2.
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Let R̄t = R̄/Kt(IC ) for each t � 0. We know that R̄t is an Artinian ring for t � 2 and from the definition
of regularity using local cohomology, that reg(Kt(IC )) = min{m | H(R̄t ,m) = 0}. Now, we will prove
that if m � s then H(R̄t ,m − t) = 0, for all t � 2. It is enough to show that for all m � s

H(R/I,m) = H(R̄0,m) + H(R̄1,m − 1).

By the regularity bound,

H(R/I,m) = P C (m) if m � s � d. (6)

Note that Y0(C) is a plane curve of degree d in P2 and Y1(C) is a reduced set of points of degree(d−1
2

) − ρa(C).
Thus if m � s then m � reg Yi(C), i = 0,1, and thus,

H(R̄0,m) = P Y0(C)(m),

H(R̄1,m − 1) = P Y1(C)(m − 1) =
(

d − 1

2

)
− ρa(C).

Consequently, we have that if m � s then

H(R/I,m) = P S(m) = P Y0(C)(m) + P Y1(C)(m − 1)

= H(R̄0,m) + H(R̄1,m − 1).

We now prove part (b). Since a generic projection of C is a hypersurface of degree d in P2, we
have that Gin(K0(IC )) = (xd

1) by the Borel fixed property. Furthermore we can consider all mono-
mial generators of the form x0 · h j(x1, x2, x3) in Gin(IC ). Then, {h j(x1, x2, x3)} is a minimal generating

set of Gin(K1(IC )) by Proposition 2.5. Recall that K1(IC ) defines
(d−1

2

) − ρa(C) distinct nodes in P2.

Thus Gin(K1(IC )) should contain the monomial x
(d−1

2 )−ρa(C)

2 . Therefore, Gin(IC ) contains monomials

xd
1, x0x

(d−1
2 )−ρa(C)

2 . �
Remark 3.6. Let C ⊂ Pr , r � 4 with dim Tanp(C) = 2 for every singular point p ∈ C . Consider
the generic projection πΛ from a generic (r − 4)-dimensional linear subvariety Λ ⊂ Pr . Since
dim Tanp(C) = 2 for every singular point p ∈ C we know that a generic projection πΛ : C → P3

is an isomorphism and M(IC ) = M(IπΛ(C)) by Remark 3.1(b). Thus we may assume that IπΛ(C) ⊂
k[xr−3, . . . , xr] and M(IC ) can be obtained from one of the following two monomial generators

xd
r−2, xr−3x

(d−1
2 )−ρa(C)

r−1 .

Therefore we get the following Corollary 3.7.

Corollary 3.7. Let IC be the defining ideal of an integral curve C of degree d in Pr , r � 4 with dim Tanp(C) = 2
for every singular point p ∈ C, then:

(a) M(IC ) = max{d,1 + (d−1
2

) − ρa(C)}.
(b) M(IC ) can be obtained from one of the following two monomial generators

xd
r−2, xr−3x

(d−1
2 )−ρa(C)

r−1 .
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Proposition 3.8. Let C be a non-degenerate integral curve of degree d and arithmetic genus pa(C) in Pr , r � 3,
with dim Tanp(C) = 2 for every singular point p ∈ C. Then

M(IC ) =
⎧⎨⎩

3 if d = 3, i.e. C is a rational curve of minimal degree;
4 if d = 4, i.e. C is of next to minimal degree;
1 + (d−1

2

) − ρa(C) for d � 5.

Proof. From Remark 3.6, we can reduce the case of an integral curve C in P3. By Theorem 3.5,

M(IC ) = reg
(
GinGLex(IC )

) = max

{
d,1 +

(
d − 1

2

)
− ρa(C)

}
.

Applying the genus bound in the Montreal lecture note of Eisenbud and Harris (1982) [11] to a
non-degenerate integral curve C ⊂ P3, we get

ρa(C) � π(d,3) =
{

( d
2 − 1)2 if d is even;

(d−1
2 )(d−3

2 ) if d is odd

and for all d � 5, we have the following inequality:

ρa(C) � π(d,3) � 1 +
(

d − 1

2

)
− d. (7)

Thus,

d � 1 +
(

d − 1

2

)
− ρa(C)

and by Theorem 3.5, for d � 5,

M(IC ) = 1 +
(

d − 1

2

)
− ρa(C).

For special two cases of d = 3 and d = 4, it is very easy to compute M(IC ).
If d = 3 then C is a rational normal curve and 1 + (d−1

2

) − ρa(C) = 2 < 3 = deg(C). Therefore,
M(IC ) = 3. On the other hand, when d = 4, we get the inequality ρa(C) � π(4,3) = 1. Since 1 +(d−1

2

) − ρa(C) = 3 or 4, we have M(IC ) = 4. �
Finally, we provide some illuminating examples of our results. These are based on computations in

Macaulay 2 and Singular [10,16]. Note that several generic initial ideals computed in the following
examples are very likely the real Gin.

Example 3.9. (Singular [10], Macaulay 2 [16].) We revisit the example [9, Example 4.3] introduced
by A. Conca and J. Sidman. IC = (x3 − yz2, y3 − z2t) defines an irreducible complete intersection
curve C of the arithmetic genus ρa(C) = 10 in P3 with only one singular point q = [0,0,0,1]. Note
that this singular point is neither node nor ordinary cusp and δq = 10. We can compute the defining
ideal of the normalization of a curve C and delta invariant δq using Singular. Furthermore, since
dim Tanq(C) = 3, π(q) is contained in the zero locus of K1(IC ). Thus we cannot apply our results. In
fact, Gin(K1(IC )) is
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(
y4, y3z2, y2z5, yz8, z15, y2z4t, y3zt2, y2z3t2, yz7t2,

y3t3, y2z2t4, yz6t4, y2zt5, yz5t6, y2t7, yz4t8, yz3t10).
Therefore, M(IC ) = 1 + M(K1(IC )) = 16 which is not equal to 1 + (9−1

2

) − ρa(C) = 1 + 28 − 10 = 19.

Example 3.10. (Singular [10], Macaulay 2 [16].) Consider the ideal IC = (x4 − yz3, y2 − zt) ⊂
k[x, y, z, t]. This defines an irreducible complete intersection curve C of ρa(C) = 10 in P3 with one
singular point q = [0,0,0,1]. The delta invariant δq is 9 by Singular. Since dim Tanq(C) = 2, we can
compute by our formula, M(IC ) = 1 + (8−1

2

) − 9 = 13. In fact, Gin(I) is(
x2, xy3, y8, xy2z2, xyz5,xz12, xy2zt2, xyz4t2, xy2t4, xyz3t4, xyz2t6, xyzt8, xyt10).

Example 3.11. (Macaulay 2 [16].) Let C be a rational normal curve in P5 and C1 be a projection curve
in P4 with center q ∈ Sec(C) \ C . Then C1 has one singular point as a node. Consider a singular
curve C2 in P3 which is a generic isomorphic projection of C1. In fact, C2 is a singular curve of
degree 5 and the arithmetic genus ρa(C2) = 1. Thus,

M(IC1) = M(IC2) = 1 +
(

d − 1

2

)
− ρa(C2) = 6.

On the other hand, we can compute Gin(IC2 ) using Macaulay 2.

Gin(IC2) = (
x3

2, x2
2x3, x2x3

3, x5
3, x2

2x4, x2x3x2
4,x2x5

4, x2x3x4x5, x2x3x2
5

)
.

Remark 3.12. Let X be an irreducible reduced projective variety of dimension n and codimension
two. It is still open to compute or estimate M(I X ) for dim(X) � 2 (cf. [2]). However, if X is smooth or
has mild singularities, then it is expected that M(I X ) is determined by the degree complexity of the
double point locus under a generic projection. Thus, by the induction on the dimension of the double
point locus, we expect asymptotically that

M(I X )∼ 2(d/2)2n
.
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