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Let X be a reduced, but not necessarily irreducible closed subscheme of codimension
e in a projective space. One says that X satisfies property Ng, (d > 2) if the i-th
syzygies of the homogeneous coordinate ring are generated by elements of degree
< d+1ifor 0 < i< p (see [10] for details). Much attention has been paid to linear
syzygies of quadratic schemes (d = 2) and their geometric interpretations (cf. [1,9,
15-17]). However, not very much is actually known about algebraic sets satisfying
property Ng,, d > 3. Assuming property Ng., we give a sharp upper bound
deg(X) < (ejﬁzl). It is natural to ask whether deg(X) = (65111) implies that
X is arithmetically Cohen—Macaulay (ACM) with a d-linear resolution. In case of
d = 3, by using the elimination mapping cone sequence and the generic initial ideal
theory, we show that deg(X) = (3'52) if and only if X is ACM with a 3-linear
resolution. This is a generalization of the results of Eisenbud et al. (d = 2) [9,10].
We also give more general inequality concerning the length of the finite intersection
of X with a linear space of not necessary complementary dimension in terms of
graded Betti numbers. Concrete examples are given to explain our results.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we study geometric properties of projective algebraic sets (always reduced, but not neces-

sarily irreducible) that follow from certain vanishing assumptions on their syzygies.

Let R = k[zo, -, Tnte] denote the homogeneous coordinate ring of the projective space P"*¢ over an
algebraically closed field k of characteristic zero, and let Ix C R denote the homogeneous ideal of an

algebraic set X C P"*¢. The syzygy modules B, ; are defined by
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Bi)j = TOI"ZR(R/I)(, k)i-i—ja

and the dimension of these modules is the Betti number 3; ;(X) = dimg(B; ;). One says that X satisfies
property Ng, (p < oo) if

Bij(X)=0 fori<pandj>d.
So, property Ng o means that X is d-regular. One of the main results is as follows:

Theorem 1.1. Let X C P"T¢ be a non-degenerate algebraic set of dimension n. Suppose that X satisfies
Ng,c. Then we have

deg(X) < (“d‘f; 1).

There are many examples of algebraic sets satisfying the equality in the above theorem: take for instance
X to be the algebraic set defined by the ideal of maximal minors of a 1-generic d x (e + d — 1) matrix of
linear forms (for an even more concrete example, take X to be the (d— 1)-secant variety of a rational normal
curve of degree (e + 2d — 3); see [5, Chapter 6]).

All these examples have the property that the only non-zero Betti numbers are 8y o(X) and 5; ¢—1(X)
for i = 1,2,---,e: in this case one says that X is arithmetically Cohen—-Macaulay (ACM) with a d-linear
resolution. It is then natural to ask

Question 1. If X is as in Theorem 1.1 with deg(X) = (e'gizl), is X necessarily ACM with a d-linear

resolution?

When d = 3, we give an affirmative answer to this question in this paper. The extremal cases can be
characterized by the combinatorial property of the syzygies of generic initial ideals.

Theorem 1.2. Let X C P""¢ be a non-degenerate algebraic set of dimension n. Suppose that X satisfies
N3 .. Then deg(X) = (652) if and only if X is ACM with a 3-linear resolution.

In the case of d = 2, it is shown in [10, Corollary 1.8] that the condition Ny . implies that X is 2-regular,
and since X is non-degenerate, it must have a 2-linear resolution; combining this with [7, Corollary 1.11], it
follows that if in addition deg(X) = 1+ e, then X is ACM, so Question 1 has a positive answer when d = 2
as well. However, the question remains still open for d > 3.

In the case of d = 3, we prove a more general inequality than in Theorem 1.1, concerning the length of
the finite intersection of X with a linear space of not necessarily complementary dimension:

Theorem 1.3. Assume that X C P""¢ is a non-degenerate algebraic set of dimension n and satisfies N ),
for some p > 0. If a < e is such that X satisfies N3 o, and L™ C P""¢ is a linear space of dimension o
whose intersection with X is 0-dimensional, then

— 1
length(X N L) <1+ a+ min{ [ p‘(o‘;p i ),BQQ(X)}.
In the case @ < p, Bqa,2(X) = 0, the inequality in Theorem 1.3 becomes length(X N L*) < 1+ «, which
also follows from [10, Theorem 1.1].
To achieve the result, we use the elimination mapping cone construction for graded modules and apply
it to give a systematic approach to the relation between multisecants and graded Betti numbers. We also
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provide some illuminating examples of our main results via calculations done with Macaulay 2 [13]. For
instance, an example (suggested by F.-O. Schreyer) is given to show that condition Ny . does not imply
d-regularity in general (see Example 3.11).

2. Preliminaries

2.1. Notations and definitions

For precise statements, we begin with notations and definitions used in the subsequent sections:

o We work over an algebraically closed field k of characteristic zero.

o Unless otherwise stated, X is a non-degenerate reduced, but not necessarily irreducible closed subscheme
of dimension n and codimension e in P"*¢,

« For a finitely generated graded R = k[xo,x1, ..., Ty ye]-module M = &, -, M,, consider a minimal free
resolution of M: -

= @jR(—i _j)ﬁfj(M) N @jR<_j)ﬁ§,j(M) M =0

where ,BZRJ(M) := dimy, Tor[ (M, k) ;. We write ﬂg (M) as ij if it is obvious. We define the regularity
of M as follows:

regp (M) := max{j | Bg(M) = 0 for some i}

In particular, we define the regularity of X as regp(Ix).

o The regularity has an alternate description in terms of cohomology. A coherent sheaf F on P"T¢ is
said to be m-regular if H*(P""¢ F(m —i)) = 0 for all i > 0; the regularity regp(F) (in the sense of
Castelnuovo-Mumford) is the smallest such m.

In particular, if I is a saturated ideal, m-regularity of I as a homogeneous ideal is equivalent to the
geometric condition that the associated ideal sheaf Z on projective space P*t¢ satisfies the condition of
Castelnuovo-Mumford m-regularity, i.e. reg(I) = reg(Z).

o For an algebraic set X in P""¢, one says that X is m-normal if H*(P""¢ Zx(m — 1)) = 0.

o One says that M satisfies property N(I}:a if 85 (M) =0 for all j > dand 0 <i < « (see [16], [17]). We
can also think of M as a graded S; = k[xy, ..., Zpie]-module by an inclusion map S; < R. As a graded
Sy-module, we say that M satisfies property N3¢, if 874(M) := dimy Tor}" (M, k);1; = 0 for all j > d
and 0 <7< a.

2.2. Elimination mapping cone construction

For a graded R-module M, consider the natural multiplicative S; = k[x1, X2, ..., Zpte)-module map

@ : M(—1) =58 M such that p(m) = 20 - m and the induced map on the graded Koszul complex of M
over Si:

p:Fe=KJ (M(-1)) ™8 Ge = KJ'(M).
Then, we have the mapping cone (Co(%), 05) such that Co(p) = Go ®Fo[—1], and W = (1, 29,...,2p);

o Ci(®)irs = [Giliry ® [Ficilivy; = (AW @ M) & (NT'W @ Mj).
o The differential 05 : C;() — Ci—1(®) is given by
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o @
0z = ,
= 5%)
where 0 is the differential of Koszul complex K3 (M).
From the exact sequence of complexes

0— Ge — Co(p) — Fo[-1] — 0 (1)

and the natural isomorphism H;(Ce(®))i1; =~ Torl (M, k)1 (cf. Lemma 3.1 in [1]), we have the following
long exact sequence in homology.

Theorem 2.1 (Theorem 3.2 in [1]). For a graded R-module M, there is a long exact sequence:

— rI‘OI‘iS1 (]\4'7 k)i+j — ’I‘OI‘F(]\I7 k)i+]‘ — TOI‘;-SEI(M7 k)i—1+j —

5=
SEXI0 s Torfty (M k)icigje1 — Torf (M, k)i—14j01 — Torf (M, k)i—ayji
whose connecting homomorphism § is the multiplicative map Xxq.

Corollary 2.2. Let M be a finitely generated graded R-module and also finitely generated as an Si-module.
Then,

proj.dimg, (M) = proj.dimz (M) — 1.

Proof. Let ¢ = proj.dimp(M). Thus, Bﬁ-l,j (M) =0 for all j > 1 and the following map & = Xz is injective
for all j > 1:

0= TOI"Z_l(M, k)g+1+j — TOI‘?1 (M, k)g+j m} TOI‘?1 (M, k)g+j+1.

But, Torfl(M,k)gHH = 0 for j > 0 due to the finiteness of M (as an Sj-module). Therefore,
Tory* (M, k)ey; = 0 for all j > 1. On the other hand, 8, (M) # 0 for some j, > 0. So,

0 = Tors* (M, k)gyj, — Torf (M, k)eyj. — Tory (M, k) o1+,
is injective and Bf_lL ;. (M) # 0. Consequently, we get
proj.dimg, (M) = proj.dimz (M) — 1,
as we wished. O

Proposition 2.3. Let M be a finitely generated graded R-module satisfying property Ng’;a (a>1). If M is
also finitely generated as an Sy-module, then we have the following:

a satisfies property _1. In particular, reg =reg .
M satisfi N l s, (M r(M
(b) 55—11,(1—1(]\/[) < de—l(M) Jorl<i<a.

Proof. Suppose that M satisfies Ng;a (e>1)andlet 1 <i<wandj>d.
(a): Consider the exact sequence from Theorem 2.1
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o= Xxo

- — Torl (M, k)i j — Tors* | (M, k)14, —220
Tors™ | (M, k)i 1141 — TorF [ (M, k)i_14je1 — -
By the property N£ d.o» We see that Tor (M, k);y+; = 0. Hence we obtain an isomorphism
ord (M, k) (1) 15 ~—250 Tors™ | (M, k) j.
By the assumption that M is a finitely generated Sj-module, we conclude as in the proof of Corollary 2.2
that Tor?! | (M, E)i—1)4+; =0 for 1 <i <« and j > d. Hence M satisfies Nda 1-

If o = oo, we have that regg (M) < regr(M). Conversely, if m > regg (M) then it follows from the
following exact sequence

o X0 Tor® (M k)i — Torl (M, k)i — Tor (M, k)i—1mi1 =0

that regg, (M) > regr(M).
(b): Note that we have the following surjection map for 1 <1i < «

Tor (M, k)ita—1 — Tor (M k)ic14d—1 O=xzo Torf_ll(M,k)i_Hd =0,
which is obtained from Theorem 2.1. This implies that for 1 < < «
Bty g (M) < B4 (M)
as we wished. O
From Proposition 2.3(b), one obtains immediately the following result.
Corollary 2.4. Let M be a finitely generated graded R-module satisfying property Nfza for some a > 1. If

M is also ﬁm’tely generated as an Sy = kX4, Tiq1, ..., Tnte)-module for every 1 < t < « then M satisfies
property Nd - Moreover, in the strand of j = d — 1, we have the inequality

Sa Sa—1 S, R
50,d—1 < Bl,d— > < Bl -1,d-1 = Pa,d—1-
Let A be a linear subvariety in P"*¢ with homogeneous coordinates zg,...,z;—1 and let W =
(xg,...,x¢—1) be a vector space. Consider a projection of X from the center A

mh: X = PPt = P(W).

We say that w4 is an outer projection if X N A = (). The most interesting case for us is a projective
coordinate ring M = R/Ix of an algebraic set X. In this case, the elimination mapping cone theorem is
naturally associated to outer projections of X C P". Our starting point is to understand some algebraic
and geometric information on X via the relation between Tor’(R/Ix, k) and Tor? (R/Ix, k).

Let X be a non-degenerate algebraic set of dimension n in IE””“. Let A =P*~! be an (o — 1)-dimensional

linear subspace with homogeneous coordinates xg, ...,zn—1 (o < e) such that AN X is empty. Then each
point ¢; =[0:0:---:1:---:0] whose i-th coordinate is 1 is not contained in X for 0 < ¢ < a—1. Therefore,
there is a homogeneous polynomial f; € Ix of the form )" + g; where g; € R = k[zg,21,...,Znte] is a

homogeneous polynomial of degree m; with the power of x; less than m;. Therefore, R/Ix is a finitely
generated S, = k[Zq,Tat1s- - -, Tnte)-module with monomial generators
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{xé”x{l ...x{f_’f [0 <jr <mp,0<k<a-— 1}.
Note that the above generating set is not minimal. If X satisfies Nfza then X also satisfies Ng:;). This
implies that R/Ix is generated in degree < d as an S,-module and thus 56‘;,05 < (O‘_il‘”) for0<i<d-1.
To sum up, we have the following corollary.

Corollary 2.5. Let X be a non-degenerate algebraic set of dimension n in P"¢ and let A = P~ be an
(o — 1)-dimensional linear subspace with homogeneous coordinates xg,...,To—1 (a <€) such that ANX is
empty. Suppose X satisfies the property Nfza and consider the following minimal free resolution of R/Ix
as a graded Sy = klxq, ..., Typye]-module:

o>y Fy— R/Ix — 0.

(a) R/Ix satisfies the property NdS,"(“) as an Sq-module;

(b) The Betti numbers of Fy satisfy the follom'ng:
(i) ﬁg:?) =1, ﬁosj =, and ﬂgj < (a_il'H) for2<i<d-—1;
(ii) Furthermore, [35‘3_1 < ﬂls;'i:ll <. < ﬂfLLd_l <BLii

(¢) When o =e, R/Ix is a free S.-module if and only if X is arithmetically Cohen—Macaulay. In this case,
letting d = reg(X),

R/Ix =Se® Se(—1)°@® - @ Se(—d+ 1)
and T4, Ox = Opn O O[Pn(*l)e b---D O]pn(—d + 1)632—1 .

Proof. Note that (O‘_il‘”) is the dimension of the vector space of all homogeneous polynomials of degree
iin k[zg,...,7ra—1] defining A = P71, Since X is non-degenerate, {z; | 0 < i < a — 1} is contained in
the minimal generating set of R/Ix as an S,-module. So, B(i‘i = «. The remaining part of (b) is given by
Proposition 2.3 and the argument is given in Corollary 2.4 below.

For a proof of (c), first note that by Corollary 2.2 and Proposition 2.3,

proj.dimg_(R/Ix) = proj.dimg(R/Ix) —e
regs, (R/Ix) = regp(R/Ix).

Consequently, R/Ix is a free S.-module if and only if proj.dimz(R/Ix) = e, as we wished. O

Remark 2.6. If a reduced algebraic set X is arithmetically Cohen—Macaulay, then it is locally Cohen—
Macaulay, equidimensional and connected in codimension one. Furthermore, as shown in Corollary 2.5,

T4.O0x = Opn & Opn (1) @ -+ @ Opn (—d + 1)P0a-1,

However, in general, if X is locally Cohen—Macaulay and equidimensional, then 74, Ox is a vector bundle
of rank r = deg(X) because the map is flat (see [4, Exercise 18.17]). Furthermore, by the well-known splitting
criterion due to Horrocks or Evans and Griffith [8,14], 74,0Ox is a direct sum of line bundles if and only
if H'(P",74,0x(j)) = H(X,0x(j)) =0 forall 1 <i <n —1,Vj € Z. This condition is weaker than
arithmetically Cohen—Macaulayness.

Example 2.7 (Macaulay 2 [13]). For one’s familiarity with these topics, we show the simplest examples in
the following table: Let A = P*~! be a general linear subspace with coordinates xg,---,z;_1 and R/I is an
Si = k[x;, -+, nte]-module. Note that by Corollary 2.2 and Proposition 2.3,
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proj.dimg, (R/Ix) = proj.dimz(R/Ix) —i and regg (R/Ix)=regr(R/Ix).

R-modules S1-modules Sa-modules
0 1 2 3 0 1 2 0 1
A rational normal curve C C P* in 0 1 0 0 0 o0 | 1 0 0 o0 | 1 0
generic coordinates 1 0 6 8 3 1 1 5 3 1 2 3
o 1 2 0 1 0
0|1 o o o1 o o [ 1
A generic complete intersection 1 0 1 0 1 1 0 1 2
S C P* of quadric and cubic 20 1 0 2|0 1 2 | 2
3]0 0 1 3]0 1 3 1
10 1 2 10 1 10
The secant variety of a rational ° L ° 0 ° ! ° ° L
normal curve Sec(C) C P° in tjpo o0 o 12
. . 2 0 4 3 2 1 3 2 3
generic coordinates

In generic coordinates, the Betti table for R/I as an S;-module can be computed with Macaulay 2 [13]
as follows:

minresS = (I,i) -> (
R := ring I;
n := # gens R;
RtoR := map(R,R,random(R"{0}, R™{numgens R:-1}));

S := (coefficientRing R) [apply(n-i, j -> (gens R)#(j+i))];
F := map(R,S);
use R;

betti res pushForward(F, coker gens RtoR I)
)3

3. Syzygetic properties of algebraic sets satisfying property Ng .

For an algebraic set X of dimension n in P"*¢ satisfying property Ny p, it is proved by Eisenbud et al.
in [10] that if A is a linear space of dimension < p which intersects X in a finite scheme, then the length
of the intersection is at most dim(A) + 1. In addition, it is known that X satisfies property Ng . if and
only if X is an ACM scheme with 2-linear resolution. In this section, we generalize these results to the
case of Ny, (d > 3 and a < e). Theorem 1.1 gives us a sharp upper bound on the degree of X when
X satisfies property Ny .. One might ask whether the equality holds if and only if X is an arithmetically
Cohen—Macaulay scheme with d-linear resolution. In the case when d = 3, Theorem 1.2 gives an affirmative
answer to this question. Theorem 1.3 gives a more general inequality than in Theorem 1.1, concerning the
length of the finite intersection of X with a linear space of not necessarily complementary dimension.

8.1. The proof of Theorem 1.1

Let X be a non-degenerate algebraic set of dimension n in P"*¢. Let A = P®~! be an (o — 1)-dimensional

linear subspace with homogeneous coordinates zg,...,24—1 (@ < e) such that A N X is empty. Sup-
pose X satisfies the property N(?, - Consider the minimal free resolution of R/Ix as a graded S, =
E[Zay- ..y Tnye]-module

5 Sa B 8a(—1) B Su(—2)%3 @ - ® So(—d+1)%05-1 — R/Ix — 0. (2)

Sheafifying the sequence (2), we have the following surjective morphism
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Sa Sa oo
oo = Opnge—o ® Opnte—a(—1)* D Opnte—a(—2)%02 @ - @ Opnse—a(—d +1)P05-1 B 74, Ox -0

For any point g € m4(X), note that 1, Ox ® k(q) ~ H((A,q), Oy ,~1(4)). Thus, by tensoring Opn+e—a (d —
1) ® k(q) on both sides, we have the surjection on vector spaces:

S
BO,?‘i*l

[Opnte-a(d—1) @@ OIP‘"'H*Q(1)55’3’2 ® Opricla] @ k(q) = H°((A,4), Or,—1(g)(d = 1)) = 0
Sa
Where [OPVH»e—a (d — 1) D---D O[Pn#»efoc (1)ﬂ6§j72 D Oﬁgf;_la] X k'(q) C HO(<A, q>, O<A’q> (d — 1)) ThlS lmphes
that 7,'(q) = (4,¢) N X is d-regular. Moreover, since we have B(‘i‘; < (1) for 0 <i<d-1 from
Corollary 2.5(b), the length of any fiber of 7,4 satisfies the following inequality:

1 fa—1+i atd—1
length ({4, ¢) N X) < 1 03 < - = )
engt (< ’q>ﬁ )_ +Oé+;ﬁo,z —;( 7 ) ( d—1 ) (3)

Now we are ready to prove Theorem 1.1.

The proof of Theorem 1.1. Suppose that L* C P"*¢ is a linear space of dimension a (a < e) whose
intersection with X is zero-dimensional. Choose a linear subspace A C L® of dimension a — 1 such that
X N A = 0. Consider a projection m4 : X — m4(X) C P*""~% and regard LN X as a fiber of 7,4 at the
point w4 (LY \ A) € mo(X). Then it follows from (3) that
a+d-—1

length(X N LY) < .

engtn(x %) < (70

In particular, when « = e, if L€ is a general linear space then we have

a0y < (7171, (4

which completes the proof. O

The bound in (4) is sharp because if M is a 1-generic matrix of size d x t for ¢t > d then the determinantal
variety X defined by maximal minors of M achieves this degree bound. In this case, the minimal free
resolution of I'x is a d-linear resolution, which is given by Eagon—Northcott complex.

In fact, we have proved the following result in the proof of Theorem 1.1.

Corollary 3.1. Assume that X C P""¢ is a non-degenerate algebraic set of dimension n and satisfies Ny o
for some a < e. If L C P""® is a linear space of dimension o whose intersection with X is 0-dimensional,
then X N L% is d-reqular and

length(X ﬂLO‘) < <a—|—d— 1).

d—1

It was first proved by Eisenbud et al. [10, Theorem 1.1] that if X satisfies Ny, then every finite linear
section X N L® is d-regular.

Remark 3.2. In the proof of Theorem 1.1, if X C P"*¢ satisfies N3 . then we have the surjection on vector
spaces:

[O6n(2) @ Opn (1)° & 025 ® k(q) — HO((A, q), O p-1(p)(2)
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Se

where [Opn(2) @ Opn(1)¢ @ O§2’2] ® k(q) € H((A,q),0pa,9)(2)). Thus, 7" (q) = X N (A, ¢q) is 2-normal
and so 3-regular. Moreover, the length of any fiber of 7,4 is at most 1+ e + ﬁ(i 5. This will be used to prove
Theorems 1.2 and 1.3.

8.2. The proof of Theorem 1.2

Suppose that X satisfies property N3 .. Then we have the following inequality from Theorem 1.1;

deg(X) < (e ; 2). (5)

Note that if X is arithmetically Cohen—Macaulay and Ix has 3-linear resolution then the degree of X is
(652) (see [7, Corollary 1.1]). The converse is not true in general. For example, let Y be the secant variety
of a rational normal curve in P™ and let P be a general point in P™. Then the algebraic set X =Y U P has

e+2) e+2)

the geometric degree ( 5 ) but it does not satisfy N3 . because there exists a ( + 1 secant e plane to X.

This also implies that I'x does not have 3-linear resolution.
e+2)

It is natural to ask what makes the ideal Ix have 3-linear resolution under the condition deg(X) = (“}

Theorem 1.2 shows that property N3 . is sufficient for this.

Remark 3.3. Note that the condition N3, is essential and cannot be weakened. For example, let S be
a smooth complete intersection surface of type (2,3) in P*. Then the codimension e is two such that
deg(S) =6 = (6'2"2). However Ix does not have 3-linear resolution. Note that S satisfies N3 ._; but not
N .

For a proof of Theorem 1.2, we need the following lemma.

Lemma 3.4. Suppose that X satisfies property N3 . and deg(X) = (632). Then,

(a) Ix has no quadm'c generators. This implies that Ix is 3-linear up to e-th step.
(b) (“3h) < B, (R/Ix) foralll <a<e.

Proof. Suppose that deg(X) = (6'52) and there is a quadric hypersurface () containing X. For a general
linear space L€ of dimension e, let A C L€ be a linear space of dimension e — 1 disjoint from X with
homogeneous coordinates x, ..., Z._1. By the same argument given in the proof of Theorem 1.1, we can
regard L¢ N X as a fiber of a projection 74 : X — w4(X). Since L¢ is general, we may assume that the
point ¢ = (1,0,---,0) is not contained in @. Then we have a surjective morphism S; ® S1(—1) - R/Ix as
a graded S;-module (see the proof in [2, Theorem 4.2]). This implies that Tory* (R/Ix, k)2 = 0. Consider
the following exact sequences
XTe—1

TorSe(R/Ix, k)1 —2<=1s Torge (R/Ix, k)s — Torg* " (R/Ix,k)s — 0,

XTe—2

Tors " (R/Ix, k)1 ~2<=25 Torg* " (R/Ix, k)s — Tory>(R/Ix, k)s — 0,

Tory?(R/Ix, k)1 =2 Tors?(R/Ix, k)s — Tory* (R/Ix,k)s = 0. (6)

Since we see from (6) that ﬁo 5 < ﬂo |+ 60’2 ! for each 2 < ¢ <ee, it follows from Corollary 2.5(b) that

Se— e+1
Bos < Bos + 85+ + B33+ Bos =e (e—1)+~-~+2+0=< 5 )—1.
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By the same argument given in the proof of Theorem 1.1 and Remark 3.2 we have

P
deg(X) <1+ e+ 555 < <e; )-1,

which contradicts our assumption. So, there is no quadric vanishing on X and the minimal free resolution
of I'y is 3-linear up to e-th step. In addition, in the case of 3-linearity up to e-th step, there are no syzygies
in degree 2 and

e+ 1

Se—l
Boa =Bos + Boi '+ + Bo3 + Boh = ( ) ) < B (R/Ix),

as we wished. O

For a proof of Theorem 1.2, it suffices to show that deg(X) = (“5?) implies Ix has a 3-linear resolution
under the condition N3, [7, Corollary 1.11]. Our proof is divided into four steps.

The proof of Theorem 1.2. Step I. First we show that if H is a general linear space of dimension 7 where
e <14 < n, then I'xng g cannot have quadric generators.

For general linear space L of dimension e, we see from Remark 3.2 that Ixnr, 1 is 3-regular. Since X N L
is a zero dimensional scheme of

deg{X (11) = deg(20) = <e ; 2) _ <codim(X 2 L,L)+ 2)7

it follows from Lemma 3.4 that Ixnr,r, has a 3-linear resolution and hence there is no quadric generator in
the ideal Ixny,r. This implies that if H is a general linear space of dimension ¢ for some e < 7 < n, then
Ixnp,p cannot have quadric generators. In particular, if /' = P" then Ix does not have quadric generators

and hence
Bra(R/Ix)=0 forall k>0.
0o 1 e-1 e e+l  e¥2 ... o 1 e-1 e  etl e+2
ot o 0 0 o 0 ot o 0 0 o 0
1o * * *ox * = 1|0 o 0 0o o 0
2 0 * * * * * 2 0 * * * * *
3]0 o 0 o * * 3]0 o 0 0o * *
Step II. The goal in this step is to show that
Brs(Ix) = Brt12(R/Ix)=0 foralk >e.
0o 1 e-1 e  etl e¥2 ... o 1 e-1 e etl e+2
01 o 0 0 o 0 01 o 0 0 o 0
1o o 0 0o o 0 = 1|0 o 0 0o o 0
2 0 * * * * * 2 0 * * * 0 0
3]0 o 0 o * * 3]0 o 0 0o * *

To show this, we prove that if k > e then Sy 3(gin Ix) = 0, where gin(Ix) is a generic initial ideal of Ix with
respect to the reverse lexicographic monomial order. Note that 8y 3(gin(Ix)) = 0 implies that 8, 3(Ix) =0
[12, Corollary 1.21]. Let G(gin(Ix))q be the set of monomial generators of gin(Ix) in degree d. For each
monomial T in R = k[zo, ..., x,], we denote by m(T)
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max{i > 0 | a variable x; divides T'}.
Now suppose that
B3 (gin(IX)) #0 for some k > e, (7)

and let k be the largest integer satisfying the condition (7). By the result of Eliahou and Kervaire [11] we
see that

Bra(gin(Ix)) = [{ T € G(gin(Ix)), | m(T) = k}|.

Since Bk 3(gin(lx)) # 0, we can choose a monomial T € G(gin(Ix))s such that m(T) = k. This implies that
T is divisible by zj. If H is a general linear space of dimension k then it follows from [12, Theorem 2.30]
that the ideal

ein(Lxrm 1) = (gin(Ix), zk_H,:.C. .), zn)]sa _ {(gin([x), Thaly -y Tn) ()

(karlv"'? (karla"'axn) Trp—1

has to contain the quadratic monomial T'/xy. This means that X N H is cut out by a quadric hypersurface,
which contradicts the result in Step I. Hence we conclude that 8 3(Ix) =0 for all & > e.
Step I1I. We claim that

G(gin(Ix)), = gin(Ix)s = klzo, ..., Te1]3- (9)

By Lemma 3.4 and [12, Corollary 1.21], we see that

(e —; 1) < Be2(R/Ix) = Be—13(Ix) < Be-1,3(gin(Ix)). (10)

Since B 3(gin(Ix)) = 0 for each k > e, any monomial generator T € G(gin(Ix))s is not divisible by xj for
any k > e. Thanks to the result of Eliahou and Kervaire [11] again,

ﬂe_Lg(gin(Ix)) = |{T S g(gin(lx))3 | m(T) =e— 1}\

S dlmk (xe—l : k[fﬂo, s 7xe—1]2)
_(e+1
={ 5 )
By the dimension counting and Eq. (10), we have B._1 3(gin(Ix)) = (“5') and thus

{T € G(gin(Ix)), | m(T) = e—1} = me_y - k[xo, ..., Te_1]2,

which implies that #3_; € gin(Ix). Note that gin(/x) does not have any quadratic monomial. Hence we
conclude from Borel fixed property of gin(Ix) that

g(gln(IX))3 :gin(IX)3 = k[xo,...,me_ﬂg. (11)
Step IV. Finally, by the result in Step II, we only need to show that, for all £k > e and j > 3,

B (Ix)=0.
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o 1 e-1 e e+l e¥2 ... o 1 e-1 e etl e+2
o1 o 0 0 0 0 o1 o 0 0 0 0
1o o 0 0 0 0 1o o 0 0 0 0
2|0 * * * 0 0 = 2|0 * * * 0 0
310 o0 0 0o * * 310 o0 0 0 0 0
410 o 0 o * * 40 o 0 0 0 0

Since fi j(Ix) < Br;(gin(Ix)) (see [12, Proposition 2.11]), it is sufficient to prove that gin(/x) has no
generators in degree > 4. To prove this, suppose that there is a monomial generator T' € G(gin(Ix)); for
some j > 4. Then the monomial T can be written as a product of two monomials N; and N, such that

Ny € k[ze, ..., xy], Ny € klxg, ..., Te1]-

By the result in Step I7I, if the monomial Ny is divisible by some cubic monomial in k[z,...,z._1] then
T cannot be a monomial generator of gin(I/x). Hence we see deg(Nz) is at most 2. If L is a general linear
space of dimension e then it follows from the similar argument given in the proof of Step IIT with Eq. (8)
that No € gin(Ixnr,). Hence Ixnyr, has a hyperplane or a quadratic polynomial, which contradicts the
result proved in Step 1. O

Remark 3.5. The similar argument in the proof of Theorem 1.2 can also be applied to show that X satisfies
property N . if and only if X is an ACM scheme with 2-linear resolution.

Example 3.6. In [15], the authors have shown that if a non-degenerate reduced scheme X C P" satisfies N3,
for some p > 1 then the inner projection from any smooth point of X satisfies at least property No,_1.
So it is natural to ask whether the inner projection from any smooth point of X satisfies at least property
N3 ,—1 when X satisfies N3 ,, for some p > 1. Our result shows that this is not true in general. For example,
if we consider the secant variety X = Sec(C') of a rational normal curve C then the inner projection Y from
any smooth point of X has the degree

_(2+e _fe+1 e 2+ (e—1)
v = () = (5 0) - (5 77)
where e = codim(X) and e—1 = codim(Y). This implies that X satisfies N3 . but Y does not satisfy N3 ._1.

e+2
2

has 3-linear resolution. For example, let I = (z3, 2371, 702%, 23, 2372) be a monomial ideal of R =

Example 3.7. Remark that there exists an algebraic set X of degree < ( ) whose defining ideal Iy

k[xg,x1, 22, x3]. Note that the sufficiently generic distraction D, (I) of I is of the form
D(I) = (L1LaLs, L1LoLy, L1 LyLs, LaLsLe, L1 L2 L),
where L; is a generic linear form for each ¢ = 1,...,7 (see [3] for the definition of distraction). Then the

algebraic set X defined by the ideal D,(I) is a union of 5 lines and one point such that its minimal free
resolutions are given by

R-modules Si-modules Sa-modules
0 1 2 3 0 1 2 0 1

0 1 0 0 0 0 1 0 0 0 1 0

1 0 0 0 0 1 1 0 0 1 2 0

2 0 5 5 1 2 1 4 1 2 3 1

In this case, we see that e = 2, deg(X) = 5 < (*}?) = 6 and there is a 6-secant 2-plane to X. We see

that a general hyperplane section of X is contained in a quadric hypersurface from Bey12(R/Ix) # 0.
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3.3. The proof of Theorem 1.3

Let X C P"*¢ be a non-degenerate algebraic set of dimension n satisfying N, for some p > 0. If a« < e
is such that X satisfies N3 ,, and L* C P"*¢ is a linear space of dimension a whose intersection with X is
zero-dimensional then we have to show that

la—plla+p+1)
2

length(X N L*) < l—l—a—l—min{ ,ﬁOIZQ(R/IX)}. (12)
The proof of Theorem 1.3. Note that 6572 =0 if a < p. In this case, the inequality (12) follows from [10,
Theorem 1.1] directly. Now we assume « > p and ﬁf,z # 0. Suppose dim(X N L*) = 0 and choose a linear
subspace A C L% of dimension (« — 1) disjoint from X with homogeneous coordinates o, ..., Zq—1.

By the same argument given in the proof of Theorem 1.1 and Remark 3.2, we have the following surjective
morphism

coo = Opnte—a @ Opn+c—a(_1)a (&) Opn#»efa(_Q)/Bbg’% ﬁ A, Ox — 0.

For any point ¢ € 4 (X), note that 74, Ox ® k(q) ~ H°({A,q), O ). Thus, by tensoring Opn+e—a (2) ®

ma~(q)
k(q) on both sides, we have the surjection on vector spaces:
o g (P08
[O]P’"+e_a(2) S Oﬂ]’"+e_°‘ (1) 2] O]}Dgfe—a} & k(q) - H0(<Aa q>a OTrA_l(q)(Q))' (13)

Therefore, (A,¢) N X is 3-regular and the length of any fiber of 74 is at most 1 + « + 533. Hence it is
important to get an upper bound of ﬂg 3.

Claim. There are following inequalities on graded Betti numbers:

. Sa Sa_ S . .
() 50,2 51,2 << ﬁa1—1,2 < ﬁCIzQaa < e = codim(X);
i) g5 (a=p)(atp+l)

5 .

(i) Bos

)

IN N

Due to the claim, we have the following inequality:

la —plla+p+1)
2

BSs < min{ ,552(3/1)()}.
Therefore, the length of any fiber of ma : X — P"Te=% s at most

la —plla+p+1)
2

1+a+6§f§§1+a+min{ a552(R/IX)}~

Since XNL* can be regarded as a fiber of the map w4 : X — P~ this completes the proof of Theorem 1.5.

Now let us prove the Claim. Note that Claim (i) follows directly from Corollary 2.5(b) for d = 3. Hence we
only need to show Claim (ii). We consider the multiplicative maps appearing in the mapping cone sequence
as follows:

TorS* (R/Ix, k)1 —22=1s TorS* (R/Ix, k)s — Tors® " (R/Ix, k) — 0,
Tory* (R/Ix, k)1 =222 Tory*~*(R/Ix, k)2 — Torg**(R/Ix,k)s — 0,

Tors? ™ (R/Ix, k)1 —=2 Tory?™ (R/Ix, k)s — Tors® (R/Ix, k)y = 0. (14)
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. : S
Since R/Ix satisfies property N5Y as an Sp-module by Corollary 2.5(a), we get

Tors” (R/Ix, k) = 0.

From the above exact sequences, we have the following inequalities on the graded Betti numbers by dimension
counting:

Sa— o Sa— Sa— . Sa— S, S
ﬂg% Sﬂos,al Jr50,2 ! Sﬂos,l Jr60,1 ! Jr60,2 ’ S-S ﬁg,l JrBo,l ' +"'+ﬂoﬁ+1 Jfﬁo,g
(a—p)lat+p+1)

=a+(a—1)+---+(p+1) = 5 .

Thus, we obtain the desired inequality

53R /1x) < min{ E=PUEELED, 51 1) )

as we claimed. O

The following result shows that if X is a nondegenerate variety satisfying N3 . then there is some sort
of rigidity toward the beginning and the end of the resolution. This means the following Betti diagrams are

equivalent;
Property N3 . and 552 =0 X is 2-regular
o1 2 e-1 e etl e+2 o1 2 e-1 e etl e+2
01 o 0 0 o 0 01 o 0 0 o 0
2|0 * * o * * > 200 o 0 o o 0
3]0 o 0 o * * 3|0 o 0 0o o 0
4|0 o 0 o * * 4]0 o 0 o o 0

Corollary 3.8. Suppose X C P""¢ is a non-degenerate variety of dimension m and codimension e with
property N3 .. Then, 652 =0 if and only if X is 2-reqular.

Proof. Let L¢ be a linear space of dimension e and assume that X N L€ is finite. By Theorem 1.3, length(X N
L) <1+4+e+ 552. Therefore, ﬂfz = 0 implies length(X N L¢) < 1+ e. Since X is a nondegenerate variety
this implies that X is small (i.e. for every zero-dimensional intersection of X with a linear space L, the
length of X N L is at most 1+dim(L) (see [6, Definition 11])). Then it follows directly from [9, Theorem 0.4]
that X is 2-regular. O

Remark 3.9. What can we say about the case [3572 = 0 where o < e? In this case, we see that if AN X is
finite for a linear subspace A of dimension < « then length(AN X) < dim A+ 1. Note that this condition is
a necessary condition for property N . However, the converse is false in general, as for example in the case
of a double structure on a line in P? or the case of the plane with embedded point (see [10, Example 1.4]).
We do not know if there are other cases when X is a variety.

Example 3.10 (Macaulay 2 [13]). (a) The two skew lines X in P? satisfy deg(X) = 2 < 1+ e = 3. The Betti
table of R/Ix is given by
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|
0

-
o o r|lo
o D Ol
o B OfN
o = o|lw
o o ok

Note that X is 2-regular but not a CM.

(b) Let C be a rational normal curve in P4, which is 2-regular. If X = C'U P for a general point P € P*
then deg(X) = 1+ e = 4. However a general hyperplane L passing through P is 5-secant 3-plane such that
deg(L N X)=15>4 =1+ e. This implies that 3% (R/Ix) # 0. If P € Sec(C) then there is a 3-secant line
to X. Therefore 552 (R/Ix) # 0. For the two cases, the corresponding Betti tables for X are computed as
follows [13, Macaulay 2]:

[o 1 2 3 4 5 0 1 2 3 4 5
0o[1 0 0o o0 o0 o 01 0 0 0 0 o0
t|o 5 5 0 0 0 t|o 5 4 0 0 0
20 1 3 4 1 0 210 0 3 4 1 0
3|0 0o 0o o o0 o0 3]0 0 0o 0 0 0

Case 1: P € Sec(C) Case 2: P ¢ Sec(C)

Since a small algebraic set is 2-regular, if X satisfies property N3 . then X is 2-regular. One may ask
if property Ny . implies X is d-regular. The following example (suggested by F.-O. Schreyer) shows that
condition Ny . does not imply d-regularity in general.

Example 3.11 (F.-O. Schreyer). Let C be a rational normal curve and Z be a set of general 4 points in P3.

i1 : R=QQ[x_0..x_3];
C=minors(2,matrix{{x_0,x_1,x_2},{x_1,x_2,x_3}}); -- a rational normal curve
Z=minors(2,random(R"2,R"{4:-1})); -- general 4 points
X=intersect(C,Z);

Using Macaulay 2, we can compute the Betti table of X = C'U Z as follows:

i5 : betti res X

0123

o5 = total : 1661
0 : 1.

1

2 . 66 .

3 .1

Since the codimension e of X is two, X satisfies property N3 .. Note that X is not 3-regular. Unlike the
case of Ny, the condition N3 . does not imply 3-regularity.
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