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Let X be a reduced, but not necessarily irreducible closed subscheme of codimension 
e in a projective space. One says that X satisfies property Nd,p (d ≥ 2) if the i-th 
syzygies of the homogeneous coordinate ring are generated by elements of degree 
< d + i for 0 ≤ i ≤ p (see [10] for details). Much attention has been paid to linear 
syzygies of quadratic schemes (d = 2) and their geometric interpretations (cf. [1,9,
15–17]). However, not very much is actually known about algebraic sets satisfying 
property Nd,p, d ≥ 3. Assuming property Nd,e, we give a sharp upper bound 
deg(X) ≤

(
e+d−1
d−1

)
. It is natural to ask whether deg(X) =

(
e+d−1
d−1

)
implies that 

X is arithmetically Cohen–Macaulay (ACM) with a d-linear resolution. In case of 
d = 3, by using the elimination mapping cone sequence and the generic initial ideal 
theory, we show that deg(X) =

(
e+2
2

)
if and only if X is ACM with a 3-linear 

resolution. This is a generalization of the results of Eisenbud et al. (d = 2) [9,10].
We also give more general inequality concerning the length of the finite intersection 
of X with a linear space of not necessary complementary dimension in terms of 
graded Betti numbers. Concrete examples are given to explain our results.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we study geometric properties of projective algebraic sets (always reduced, but not neces-
sarily irreducible) that follow from certain vanishing assumptions on their syzygies.

Let R = k[x0, · · · , xn+e] denote the homogeneous coordinate ring of the projective space Pn+e over an 
algebraically closed field k of characteristic zero, and let IX ⊂ R denote the homogeneous ideal of an 
algebraic set X ⊂ P

n+e. The syzygy modules Bi,j are defined by
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Bi,j = TorRi (R/IX , k)i+j ,

and the dimension of these modules is the Betti number βi,j(X) = dimk(Bi,j). One says that X satisfies 
property Nd,p (p ≤ ∞) if

βi,j(X) = 0 for i ≤ p and j ≥ d.

So, property Nd,∞ means that X is d-regular. One of the main results is as follows:

Theorem 1.1. Let X ⊂ P
n+e be a non-degenerate algebraic set of dimension n. Suppose that X satisfies 

Nd,e. Then we have

deg(X) ≤
(
e + d− 1
d− 1

)
.

There are many examples of algebraic sets satisfying the equality in the above theorem: take for instance 
X to be the algebraic set defined by the ideal of maximal minors of a 1-generic d × (e + d − 1) matrix of 
linear forms (for an even more concrete example, take X to be the (d −1)-secant variety of a rational normal 
curve of degree (e + 2d − 3); see [5, Chapter 6]).

All these examples have the property that the only non-zero Betti numbers are β0,0(X) and βi,d−1(X)
for i = 1, 2, · · · , e: in this case one says that X is arithmetically Cohen–Macaulay (ACM) with a d-linear 
resolution. It is then natural to ask

Question 1. If X is as in Theorem 1.1 with deg(X) =
(
e+d−1
d−1

)
, is X necessarily ACM with a d-linear 

resolution?

When d = 3, we give an affirmative answer to this question in this paper. The extremal cases can be 
characterized by the combinatorial property of the syzygies of generic initial ideals.

Theorem 1.2. Let X ⊂ P
n+e be a non-degenerate algebraic set of dimension n. Suppose that X satisfies 

N3,e. Then deg(X) =
(
e+2
2
)

if and only if X is ACM with a 3-linear resolution.

In the case of d = 2, it is shown in [10, Corollary 1.8] that the condition N2,e implies that X is 2-regular, 
and since X is non-degenerate, it must have a 2-linear resolution; combining this with [7, Corollary 1.11], it 
follows that if in addition deg(X) = 1 + e, then X is ACM, so Question 1 has a positive answer when d = 2
as well. However, the question remains still open for d > 3.

In the case of d = 3, we prove a more general inequality than in Theorem 1.1, concerning the length of 
the finite intersection of X with a linear space of not necessarily complementary dimension:

Theorem 1.3. Assume that X ⊂ P
n+e is a non-degenerate algebraic set of dimension n and satisfies N2,p

for some p ≥ 0. If α ≤ e is such that X satisfies N3,α, and Lα ⊂ P
n+e is a linear space of dimension α

whose intersection with X is 0-dimensional, then

length
(
X ∩ Lα

)
≤ 1 + α + min

{
|α− p|(α + p + 1)

2 , βR
α,2(X)

}
.

In the case α ≤ p, βα,2(X) = 0, the inequality in Theorem 1.3 becomes length(X ∩ Lα) ≤ 1 + α, which 
also follows from [10, Theorem 1.1].

To achieve the result, we use the elimination mapping cone construction for graded modules and apply 
it to give a systematic approach to the relation between multisecants and graded Betti numbers. We also 
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provide some illuminating examples of our main results via calculations done with Macaulay 2 [13]. For 
instance, an example (suggested by F.-O. Schreyer) is given to show that condition Nd,e does not imply 
d-regularity in general (see Example 3.11).

2. Preliminaries

2.1. Notations and definitions

For precise statements, we begin with notations and definitions used in the subsequent sections:

• We work over an algebraically closed field k of characteristic zero.
• Unless otherwise stated, X is a non-degenerate reduced, but not necessarily irreducible closed subscheme 

of dimension n and codimension e in Pn+e.
• For a finitely generated graded R = k[x0, x1, . . . , xn+e]-module M =

⊕
ν≥0 Mν , consider a minimal free 

resolution of M :

· · · → ⊕jR(−i− j)β
R
i,j(M) → · · · → ⊕jR(−j)β

R
0,j(M) → M → 0

where βR
i,j(M) := dimk TorRi (M, k)i+j . We write βR

i,j(M) as βR
i,j if it is obvious. We define the regularity 

of M as follows:

regR(M) := max
{
j | βR

i,j(M) 	= 0 for some i
}

In particular, we define the regularity of X as regR(IX).
• The regularity has an alternate description in terms of cohomology. A coherent sheaf F on Pn+e is 

said to be m-regular if Hi(Pn+e, F(m − i)) = 0 for all i > 0; the regularity regR(F) (in the sense of 
Castelnuovo–Mumford) is the smallest such m.
In particular, if I is a saturated ideal, m-regularity of I as a homogeneous ideal is equivalent to the 
geometric condition that the associated ideal sheaf I on projective space Pn+e satisfies the condition of 
Castelnuovo–Mumford m-regularity, i.e. reg(I) = reg(I).

• For an algebraic set X in Pn+e, one says that X is m-normal if H1(Pn+e, IX(m − 1)) = 0.
• One says that M satisfies property NR

d,α if βR
i,j(M) = 0 for all j ≥ d and 0 ≤ i ≤ α (see [16], [17]). We 

can also think of M as a graded St = k[xt, . . . , xn+e]-module by an inclusion map St ↪→ R. As a graded 
St-module, we say that M satisfies property NSt

d,α if βSt
i,j(M) := dimk TorSt

i (M, k)i+j = 0 for all j ≥ d

and 0 ≤ i ≤ α.

2.2. Elimination mapping cone construction

For a graded R-module M , consider the natural multiplicative S1 = k[x1, x2, . . . , xn+e]-module map 

ϕ : M(−1) ×x0−→ M such that ϕ(m) = x0 · m and the induced map on the graded Koszul complex of M
over S1:

ϕ : F• = KS1
•

(
M(−1)

) ×x0−→ G• = KS1
• (M).

Then, we have the mapping cone (C•(ϕ), ∂ϕ) such that C•(ϕ) = G• ⊕ F•[−1], and W = 〈x1, x2, . . . , xn〉;

• Ci(ϕ)i+j = [Gi]i+j ⊕ [Fi−1]i+j = (∧iW ⊗Mj) ⊕ (∧i−1W ⊗Mj).
• The differential ∂ϕ : Ci(ϕ) → Ci−1(ϕ) is given by
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∂ϕ =
(
∂ ϕ

0 −∂

)
,

where ∂ is the differential of Koszul complex KS1• (M).

From the exact sequence of complexes

0 −→ G• −→ C•(ϕ) −→ F•[−1] −→ 0 (1)

and the natural isomorphism Hi(C•(ϕ))i+j � TorRi (M, k)i+j (cf. Lemma 3.1 in [1]), we have the following 
long exact sequence in homology.

Theorem 2.1 (Theorem 3.2 in [1]). For a graded R-module M , there is a long exact sequence:

−→ TorS1
i (M,k)i+j −→ TorRi (M,k)i+j −→ TorS1

i−1(M,k)i−1+j −→
δ=×x0−−−−−→ TorS1

i−1(M,k)i−1+j+1 −→ TorRi−1(M,k)i−1+j+1 −→ TorS1
i−2(M,k)i−2+j+1

whose connecting homomorphism δ is the multiplicative map ×x0.

Corollary 2.2. Let M be a finitely generated graded R-module and also finitely generated as an S1-module. 
Then,

proj.dimS1
(M) = proj.dimR(M) − 1.

Proof. Let � = proj.dimR(M). Thus, βR
�+1,j(M) = 0 for all j ≥ 1 and the following map δ = ×x0 is injective 

for all j ≥ 1:

0 = TorR�+1(M,k)�+1+j → TorS1
� (M,k)�+j

δ=×x0−−−−−→ TorS1
� (M,k)�+j+1.

But, TorS1
� (M, k)�+j+1 = 0 for j � 0 due to the finiteness of M (as an S1-module). Therefore, 

TorS1
� (M, k)�+j = 0 for all j ≥ 1. On the other hand, βR

�,j∗
(M) 	= 0 for some j∗ > 0. So,

0 = TorS1
� (M,k)�+j∗ → TorR� (M,k)�+j∗ → TorS1

�−1(M,k)�−1+j∗

is injective and βS1
�−1,j∗(M) 	= 0. Consequently, we get

proj.dimS1
(M) = proj.dimR(M) − 1,

as we wished. �
Proposition 2.3. Let M be a finitely generated graded R-module satisfying property NR

d,α (α ≥ 1). If M is 
also finitely generated as an S1-module, then we have the following:

(a) M satisfies property NS1
d,α−1. In particular, regS1

(M) = regR(M).
(b) βS1

i−1,d−1(M) ≤ βR
i,d−1(M) for 1 ≤ i ≤ α.

Proof. Suppose that M satisfies NR
d,α (α ≥ 1) and let 1 ≤ i ≤ α and j ≥ d.

(a): Consider the exact sequence from Theorem 2.1
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· · · → TorRi (M,k)i+j → TorS1
i−1(M,k)i−1+j

δ=×x0−−−−−→

TorS1
i−1(M,k)i−1+j+1 → TorRi−1(M,k)i−1+j+1 → · · ·

By the property NR
d,α, we see that TorRi (M, k)i+j = 0. Hence we obtain an isomorphism

TorS1
i−1(M,k)(i−1)+j

δ=×x0−−−−−→ TorS1
i−1(M,k)i+j .

By the assumption that M is a finitely generated S1-module, we conclude as in the proof of Corollary 2.2
that TorS1

i−1(M, k)(i−1)+j = 0 for 1 ≤ i ≤ α and j ≥ d. Hence M satisfies NS1
d,α−1.

If α = ∞, we have that regS1
(M) ≤ regR(M). Conversely, if m ≥ regS1

(M) then it follows from the 
following exact sequence

· · · δ=×x0−−−−−→ TorS1
i (M,k)i+m → TorRi (M,k)i+m → TorS1

i−1(M,k)i−1+m+1 = 0

that regS1
(M) ≥ regR(M).

(b): Note that we have the following surjection map for 1 ≤ i ≤ α

TorRi (M,k)i+d−1 → TorS1
i−1(M,k)i−1+d−1

δ=×x0−−−−−→ TorS1
i−1(M,k)i−1+d = 0,

which is obtained from Theorem 2.1. This implies that for 1 ≤ i ≤ α

βS1
i−1,d−1(M) ≤ βR

i,d−1(M)

as we wished. �
From Proposition 2.3(b), one obtains immediately the following result.

Corollary 2.4. Let M be a finitely generated graded R-module satisfying property NR
d,α for some α ≥ 1. If 

M is also finitely generated as an St = k[xt, xt+1, . . . , xn+e]-module for every 1 ≤ t ≤ α then M satisfies 
property NSt

d,α−t. Moreover, in the strand of j = d − 1, we have the inequality

βSα

0,d−1 ≤ β
Sα−1
1,d−1 ≤ · · · ≤ βS1

α−1,d−1 ≤ βR
α,d−1.

Let Λ be a linear subvariety in Pn+e with homogeneous coordinates x0, . . . , xt−1 and let W =
〈x0, . . . , xt−1〉 be a vector space. Consider a projection of X from the center Λ

πΛ : X → P
n+e−t = P(W ).

We say that πΛ is an outer projection if X ∩ Λ = ∅. The most interesting case for us is a projective 
coordinate ring M = R/IX of an algebraic set X. In this case, the elimination mapping cone theorem is 
naturally associated to outer projections of X ⊂ P

n. Our starting point is to understand some algebraic 
and geometric information on X via the relation between TorRi (R/IX , k) and TorSα

i (R/IX , k).
Let X be a non-degenerate algebraic set of dimension n in Pn+e. Let Λ = P

α−1 be an (α−1)-dimensional 
linear subspace with homogeneous coordinates x0, . . . , xα−1 (α ≤ e) such that Λ ∩X is empty. Then each 
point qi = [0 : 0 : · · · : 1 : · · · : 0] whose i-th coordinate is 1 is not contained in X for 0 ≤ i ≤ α−1. Therefore, 
there is a homogeneous polynomial fi ∈ IX of the form xmi

i + gi where gi ∈ R = k[x0, x1, . . . , xn+e] is a 
homogeneous polynomial of degree mi with the power of xi less than mi. Therefore, R/IX is a finitely 
generated Sα = k[xα, xα+1, . . . , xn+e]-module with monomial generators
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{
xj0

0 xj1
1 . . . x

jα−1
α−1 | 0 ≤ jk < mk, 0 ≤ k ≤ α− 1

}
.

Note that the above generating set is not minimal. If X satisfies NR
d,α then X also satisfies NSα

d,0. This 
implies that R/IX is generated in degree < d as an Sα-module and thus βSα

0,i ≤
(
α−1+i

i

)
for 0 ≤ i ≤ d − 1. 

To sum up, we have the following corollary.

Corollary 2.5. Let X be a non-degenerate algebraic set of dimension n in Pn+e and let Λ = P
α−1 be an 

(α− 1)-dimensional linear subspace with homogeneous coordinates x0, . . . , xα−1 (α ≤ e) such that Λ ∩X is 
empty. Suppose X satisfies the property NR

d,α and consider the following minimal free resolution of R/IX
as a graded Sα = k[xα, . . . , xn+e]-module:

· · · → F1 → F0 → R/IX → 0.

(a) R/IX satisfies the property NSα

d,0 as an Sα-module;
(b) The Betti numbers of F0 satisfy the following:

(i) βSα
0,0 = 1, βSα

0,1 = α, and βSα
0,i ≤

(
α−1+i

i

)
for 2 ≤ i ≤ d − 1;

(ii) Furthermore, βSα

0,d−1 ≤ β
Sα−1
1,d−1 ≤ · · · ≤ βS1

α−1,d−1 ≤ βR
α,d−1.

(c) When α = e, R/IX is a free Se-module if and only if X is arithmetically Cohen–Macaulay. In this case, 
letting d = reg(X),

R/IX = Se ⊕ Se(−1)e ⊕ · · · ⊕ Se(−d + 1)β
Se
0,d−1

and πΛ∗OX = OPn ⊕OPn(−1)e ⊕ · · · ⊕ OPn(−d + 1)β
Se
0,d−1 .

Proof. Note that 
(
α−1+i

i

)
is the dimension of the vector space of all homogeneous polynomials of degree 

i in k[x0, . . . , xα−1] defining Λ = P
α−1. Since X is non-degenerate, {xi | 0 ≤ i ≤ α − 1} is contained in 

the minimal generating set of R/IX as an Sα-module. So, βSα
0,1 = α. The remaining part of (b) is given by 

Proposition 2.3 and the argument is given in Corollary 2.4 below.
For a proof of (c), first note that by Corollary 2.2 and Proposition 2.3,

proj.dimSe
(R/IX) = proj.dimR(R/IX) − e

regSe
(R/IX) = regR(R/IX).

Consequently, R/IX is a free Se-module if and only if proj.dimR(R/IX) = e, as we wished. �
Remark 2.6. If a reduced algebraic set X is arithmetically Cohen–Macaulay, then it is locally Cohen–
Macaulay, equidimensional and connected in codimension one. Furthermore, as shown in Corollary 2.5,

πΛ∗OX = OPn ⊕OPn(−1)e ⊕ · · · ⊕ OPn(−d + 1)β
Se
0,d−1 .

However, in general, if X is locally Cohen–Macaulay and equidimensional, then πΛ∗OX is a vector bundle 
of rank r = deg(X) because the map is flat (see [4, Exercise 18.17]). Furthermore, by the well-known splitting 
criterion due to Horrocks or Evans and Griffith [8,14], πΛ∗OX is a direct sum of line bundles if and only 
if Hi(Pn, πΛ∗OX(j)) = Hi(X, OX(j)) = 0 for all 1 ≤ i ≤ n − 1, ∀j ∈ Z. This condition is weaker than 
arithmetically Cohen–Macaulayness.

Example 2.7 (Macaulay 2 [13]). For one’s familiarity with these topics, we show the simplest examples in 
the following table: Let Λ = P

i−1 be a general linear subspace with coordinates x0, · · · , xi−1 and R/I is an
Si = k[xi, · · · , xn+e]-module. Note that by Corollary 2.2 and Proposition 2.3,
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proj.dimSi
(R/IX) = proj.dimR(R/IX) − i and regSi

(R/IX) = regR(R/IX).

R-modules S1-modules S2-modules

A rational normal curve C ⊂ P
4 in 

generic coordinates

0 1 2 3
0 1 0 0 0
1 0 6 8 3

0 1 2
0 1 0 0
1 1 5 3

0 1
0 1 0
1 2 3

A generic complete intersection
S ⊂ P

4 of quadric and cubic

0 1 2
0 1 0 0
1 0 1 0
2 0 1 0
3 0 0 1

0 1
0 1 0
1 1 0
2 0 1
3 0 1

0
0 1
1 2
2 2
3 1

The secant variety of a rational 
normal curve Sec(C) ⊂ P

5 in 
generic coordinates

0 1 2
0 1 0 0
1 0 0 0
2 0 4 3

0 1
0 1 0
1 1 0
2 1 3

0
0 1
1 2
2 3

In generic coordinates, the Betti table for R/I as an Si-module can be computed with Macaulay 2 [13]
as follows:

minresS = (I,i) -> (
R := ring I;
n := # gens R;
RtoR := map(R,R,random(R^{0}, R^{numgens R:-1}));
S := (coefficientRing R)[apply(n-i, j -> (gens R)#(j+i))];
F := map(R,S);
use R;
betti res pushForward(F, coker gens RtoR I)
);

3. Syzygetic properties of algebraic sets satisfying property Nd,e

For an algebraic set X of dimension n in Pn+e satisfying property N2,p, it is proved by Eisenbud et al.
in [10] that if Λ is a linear space of dimension ≤ p which intersects X in a finite scheme, then the length 
of the intersection is at most dim(Λ) + 1. In addition, it is known that X satisfies property N2,e if and 
only if X is an ACM scheme with 2-linear resolution. In this section, we generalize these results to the 
case of Nd,α (d ≥ 3 and α ≤ e). Theorem 1.1 gives us a sharp upper bound on the degree of X when 
X satisfies property Nd,e. One might ask whether the equality holds if and only if X is an arithmetically 
Cohen–Macaulay scheme with d-linear resolution. In the case when d = 3, Theorem 1.2 gives an affirmative 
answer to this question. Theorem 1.3 gives a more general inequality than in Theorem 1.1, concerning the 
length of the finite intersection of X with a linear space of not necessarily complementary dimension.

3.1. The proof of Theorem 1.1

Let X be a non-degenerate algebraic set of dimension n in Pn+e. Let Λ = P
α−1 be an (α−1)-dimensional 

linear subspace with homogeneous coordinates x0, . . . , xα−1 (α ≤ e) such that Λ ∩ X is empty. Sup-
pose X satisfies the property NR

d,α. Consider the minimal free resolution of R/IX as a graded Sα =
k[xα, . . . , xn+e]-module

· · · → Sα ⊕ Sα(−1)α ⊕ Sα(−2)β
Sα
0,2 ⊕ · · · ⊕ Sα(−d + 1)β

Sα
0,d−1 → R/IX → 0. (2)

Sheafifying the sequence (2), we have the following surjective morphism
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· · · → OPn+e−α ⊕OPn+e−α(−1)α ⊕OPn+e−α(−2)β
Sα
0,2 ⊕ · · · ⊕ OPn+e−α(−d + 1)β

Sα
0,d−1

ϕ̃α→ πΛ∗OX → 0.

For any point q ∈ πΛ(X), note that πΛ∗OX ⊗ k(q) � H0(〈Λ, q〉, OπΛ
−1(q)). Thus, by tensoring OPn+e−α(d −

1) ⊗ k(q) on both sides, we have the surjection on vector spaces:

[
OPn+e−α(d− 1) ⊕ · · · ⊕ OPn+e−α(1)β

Sα
0,d−2 ⊕OβSα

0,d−1
Pn+e−α

]
⊗ k(q) � H0(〈Λ, q〉,OπΛ

−1(q)(d− 1)
)
→ 0

where [OPn+e−α(d − 1) ⊕ · · · ⊕ OPn+e−α(1)β
Sα
0,d−2 ⊕OβSα

0,d−1
Pn+e−α ] ⊗ k(q) ⊂ H0(〈Λ, q〉, O〈Λ,q〉(d − 1)). This implies 

that π−1
Λ (q) = 〈Λ, q〉 ∩ X is d-regular. Moreover, since we have βSα

0,i ≤
(
α−1+i

i

)
for 0 ≤ i ≤ d − 1 from 

Corollary 2.5(b), the length of any fiber of πΛ satisfies the following inequality:

length
(
〈Λ, q〉 ∩X

)
≤ 1 + α +

d−1∑
i=2

βSα
0,i ≤

d−1∑
i=0

(
α− 1 + i

i

)
=

(
α + d− 1
d− 1

)
. (3)

Now we are ready to prove Theorem 1.1.

The proof of Theorem 1.1. Suppose that Lα ⊂ P
n+e is a linear space of dimension α (α ≤ e) whose 

intersection with X is zero-dimensional. Choose a linear subspace Λ ⊂ Lα of dimension α − 1 such that 
X ∩ Λ = ∅. Consider a projection πΛ : X → πΛ(X) ⊂ P

n+e−α and regard Lα ∩X as a fiber of πΛ at the 
point πΛ(Lα \ Λ) ∈ πΛ(X). Then it follows from (3) that

length
(
X ∩ Lα

)
≤

(
α + d− 1
d− 1

)
.

In particular, when α = e, if Le is a general linear space then we have

deg(X) ≤
(
e + d− 1
d− 1

)
, (4)

which completes the proof. �
The bound in (4) is sharp because if M is a 1-generic matrix of size d × t for t ≥ d then the determinantal 

variety X defined by maximal minors of M achieves this degree bound. In this case, the minimal free 
resolution of IX is a d-linear resolution, which is given by Eagon–Northcott complex.

In fact, we have proved the following result in the proof of Theorem 1.1.

Corollary 3.1. Assume that X ⊂ P
n+e is a non-degenerate algebraic set of dimension n and satisfies Nd,α

for some α ≤ e. If Lα ⊂ P
n+e is a linear space of dimension α whose intersection with X is 0-dimensional, 

then X ∩ Lα is d-regular and

length
(
X ∩ Lα

)
≤

(
α + d− 1
d− 1

)
.

It was first proved by Eisenbud et al. [10, Theorem 1.1] that if X satisfies Nd,α then every finite linear 
section X ∩ Lα is d-regular.

Remark 3.2. In the proof of Theorem 1.1, if X ⊂ P
n+e satisfies N3,e then we have the surjection on vector 

spaces:

[
OPn(2) ⊕OPn(1)e ⊕OβSe

0,2
n

]
⊗ k(q) � H0(〈Λ, q〉,OπΛ

−1(q)(2)
)

P
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where [OPn(2) ⊕ OPn(1)e ⊕ OβSe
0,2

Pn ] ⊗ k(q) ⊂ H0(〈Λ, q〉, O〈Λ,q〉(2)). Thus, π−1
Λ (q) = X ∩ 〈Λ, q〉 is 2-normal 

and so 3-regular. Moreover, the length of any fiber of πΛ is at most 1 + e + βSe
0,2. This will be used to prove 

Theorems 1.2 and 1.3.

3.2. The proof of Theorem 1.2

Suppose that X satisfies property N3,e. Then we have the following inequality from Theorem 1.1;

deg(X) ≤
(
e + 2

2

)
. (5)

Note that if X is arithmetically Cohen–Macaulay and IX has 3-linear resolution then the degree of X is (
e+2
2
)

(see [7, Corollary 1.1]). The converse is not true in general. For example, let Y be the secant variety 
of a rational normal curve in Pn and let P be a general point in Pn. Then the algebraic set X = Y ∪ P has 
the geometric degree 

(
e+2
2
)

but it does not satisfy N3,e because there exists a 
(
e+2
2
)
+1 secant e plane to X. 

This also implies that IX does not have 3-linear resolution.
It is natural to ask what makes the ideal IX have 3-linear resolution under the condition deg(X) =

(
e+2
2
)
. 

Theorem 1.2 shows that property N3,e is sufficient for this.

Remark 3.3. Note that the condition N3,e is essential and cannot be weakened. For example, let S be 
a smooth complete intersection surface of type (2, 3) in P4. Then the codimension e is two such that 
deg(S) = 6 =

(
e+2
2
)
. However IX does not have 3-linear resolution. Note that S satisfies N3,e−1 but not 

N3,e.

For a proof of Theorem 1.2, we need the following lemma.

Lemma 3.4. Suppose that X satisfies property N3,e and deg(X) =
(
e+2
2
)
. Then,

(a) IX has no quadric generators. This implies that IX is 3-linear up to e-th step.
(b)

(
α+1

2
)
≤ βR

α,2(R/IX) for all 1 ≤ α ≤ e.

Proof. Suppose that deg(X) =
(
e+2
2
)

and there is a quadric hypersurface Q containing X. For a general 
linear space Le of dimension e, let Λ ⊂ Le be a linear space of dimension e − 1 disjoint from X with 
homogeneous coordinates x0, . . . , xe−1. By the same argument given in the proof of Theorem 1.1, we can 
regard Le ∩ X as a fiber of a projection πΛ : X → πΛ(X). Since Le is general, we may assume that the 
point q = (1, 0, · · · , 0) is not contained in Q. Then we have a surjective morphism S1 ⊕ S1(−1) � R/IX as 
a graded S1-module (see the proof in [2, Theorem 4.2]). This implies that TorS1

0 (R/IX , k)2 = 0. Consider 
the following exact sequences

TorSe
0 (R/IX , k)1

×xe−1−−−−−→ TorSe
0 (R/IX , k)2 � TorSe−1

0 (R/IX , k)2 → 0,

TorSe−1
0 (R/IX , k)1

×xe−2−−−−−→ TorSe−1
0 (R/IX , k)2 � TorSe−2

0 (R/IX , k)2 → 0,
...

TorS2
0 (R/IX , k)1 ×x1−−−→ TorS2

0 (R/IX , k)2 � TorS1
0 (R/IX , k)2 = 0. (6)

Since we see from (6) that βSi
0,2 ≤ βSi

0,1 + β
Si−1
0,2 for each 2 ≤ i ≤ e, it follows from Corollary 2.5(b) that

βSe
0,2 ≤ βSe

0,1 + β
Se−1
0,1 + · · · + βS2

0,1 + βS1
0,2 = e + (e− 1) + · · · + 2 + 0 =

(
e + 1

)
− 1.
2
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By the same argument given in the proof of Theorem 1.1 and Remark 3.2 we have

deg(X) ≤ 1 + e + βSe
0,2 ≤

(
e + 2

2

)
− 1,

which contradicts our assumption. So, there is no quadric vanishing on X and the minimal free resolution 
of IX is 3-linear up to e-th step. In addition, in the case of 3-linearity up to e-th step, there are no syzygies 
in degree 2 and

βSe
0,2 = βSe

0,1 + β
Se−1
0,1 + · · · + βS2

0,1 + βS1
0,1 =

(
e + 1

2

)
≤ βR

e,2(R/IX),

as we wished. �
For a proof of Theorem 1.2, it suffices to show that deg(X) =

(
e+2
2
)

implies IX has a 3-linear resolution 
under the condition N3,e [7, Corollary 1.11]. Our proof is divided into four steps.

The proof of Theorem 1.2. Step I. First we show that if H is a general linear space of dimension i where 
e ≤ i ≤ n, then IX∩H,H cannot have quadric generators.

For general linear space L of dimension e, we see from Remark 3.2 that IX∩L,L is 3-regular. Since X ∩L

is a zero dimensional scheme of

deg(X ∩ L) = deg(X) =
(
e + 2

2

)
=

(
codim(X ∩ L,L) + 2

2

)
,

it follows from Lemma 3.4 that IX∩L,L has a 3-linear resolution and hence there is no quadric generator in 
the ideal IX∩L,L. This implies that if H is a general linear space of dimension i for some e ≤ i ≤ n, then 
IX∩H,H cannot have quadric generators. In particular, if H = P

n then IX does not have quadric generators 
and hence

βk,1(R/IX) = 0 for all k ≥ 0.

0 1 ... e-1 e e+1 e+2 ...
0 1 0 ... 0 0 0 0 ...
1 0 * ... * * * * ...
2 0 * ... * * * * ...
3 0 0 ... 0 0 * * ...

=⇒

0 1 ... e-1 e e+1 e+2 ...
0 1 0 ... 0 0 0 0 ...
1 0 0 ... 0 0 0 0 ...
2 0 * ... * * * * ...
3 0 0 ... 0 0 * * ...

Step II. The goal in this step is to show that

βk,3(IX) = βk+1,2(R/IX) = 0 for all k ≥ e.

0 1 ... e-1 e e+1 e+2 ...
0 1 0 ... 0 0 0 0 ...
1 0 0 ... 0 0 0 0 ...
2 0 * ... * * * * ...
3 0 0 ... 0 0 * * ...

=⇒

0 1 ... e-1 e e+1 e+2 ...
0 1 0 ... 0 0 0 0 ...
1 0 0 ... 0 0 0 0 ...
2 0 * ... * * 0 0 ...
3 0 0 ... 0 0 * * ...

To show this, we prove that if k ≥ e then βk,3(gin IX) = 0, where gin(IX) is a generic initial ideal of IX with 
respect to the reverse lexicographic monomial order. Note that βk,3(gin(IX)) = 0 implies that βk,3(IX) = 0
[12, Corollary 1.21]. Let G(gin(IX))d be the set of monomial generators of gin(IX) in degree d. For each 
monomial T in R = k[x0, . . . , xn], we denote by m(T )
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max{i ≥ 0 | a variable xi divides T}.

Now suppose that

βk,3
(
gin(IX)

)
	= 0 for some k ≥ e, (7)

and let k be the largest integer satisfying the condition (7). By the result of Eliahou and Kervaire [11] we 
see that

βk,3
(
gin(IX)

)
=

∣∣{T ∈ G
(
gin(IX)

)
3 | m(T ) = k

}∣∣.
Since βk,3(gin(IX)) 	= 0, we can choose a monomial T ∈ G(gin(IX))3 such that m(T ) = k. This implies that 
T is divisible by xk. If H is a general linear space of dimension k then it follows from [12, Theorem 2.30]
that the ideal

gin(IX∩H,H) =
[
(gin(IX), xk+1, . . . , xn)

(xk+1, . . . , xn)

]sat

=
[
(gin(IX), xk+1, . . . , xn)

(xk+1, . . . , xn)

]
xk→1

(8)

has to contain the quadratic monomial T/xk. This means that X ∩H is cut out by a quadric hypersurface, 
which contradicts the result in Step I. Hence we conclude that βk,3(IX) = 0 for all k ≥ e.

Step III. We claim that

G
(
gin(IX)

)
3 = gin(IX)3 = k[x0, . . . , xe−1]3. (9)

By Lemma 3.4 and [12, Corollary 1.21], we see that

(
e + 1

2

)
≤ βe,2(R/IX) = βe−1,3(IX) ≤ βe−1,3

(
gin(IX)

)
. (10)

Since βk,3(gin(IX)) = 0 for each k ≥ e, any monomial generator T ∈ G(gin(IX))3 is not divisible by xk for 
any k ≥ e. Thanks to the result of Eliahou and Kervaire [11] again,

βe−1,3
(
gin(IX)

)
=

∣∣{T ∈ G
(
gin(IX)

)
3 | m(T ) = e− 1

}∣∣
≤ dimk

(
xe−1 · k[x0, . . . , xe−1]2

)
=

(
e + 1

2

)
.

By the dimension counting and Eq. (10), we have βe−1,3(gin(IX)) =
(
e+1
2
)

and thus

{
T ∈ G

(
gin(IX)

)
3 | m(T ) = e− 1

}
= xe−1 · k[x0, . . . , xe−1]2,

which implies that x3
e−1 ∈ gin(IX). Note that gin(IX) does not have any quadratic monomial. Hence we 

conclude from Borel fixed property of gin(IX) that

G
(
gin(IX)

)
3 = gin(IX)3 = k[x0, . . . , xe−1]3. (11)

Step IV. Finally, by the result in Step II, we only need to show that, for all k ≥ e and j ≥ 3,

βk,j(IX) = 0.
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0 1 ... e-1 e e+1 e+2 ...
0 1 0 ... 0 0 0 0 ...
1 0 0 ... 0 0 0 0 ...
2 0 * ... * * 0 0 ...
3 0 0 ... 0 0 * * ...
4 0 0 ... 0 0 * * ...

=⇒

0 1 ... e-1 e e+1 e+2 ...
0 1 0 ... 0 0 0 0 ...
1 0 0 ... 0 0 0 0 ...
2 0 * ... * * 0 0 ...
3 0 0 ... 0 0 0 0 ...
4 0 0 ... 0 0 0 0 ...

Since βk,j(IX) ≤ βk,j(gin(IX)) (see [12, Proposition 2.11]), it is sufficient to prove that gin(IX) has no 
generators in degree ≥ 4. To prove this, suppose that there is a monomial generator T ∈ G(gin(IX))j for 
some j ≥ 4. Then the monomial T can be written as a product of two monomials N1 and N2 such that

N1 ∈ k[xe, . . . , xn], N2 ∈ k[x0, . . . , xe−1].

By the result in Step III, if the monomial N2 is divisible by some cubic monomial in k[x0, . . . , xe−1] then 
T cannot be a monomial generator of gin(IX). Hence we see deg(N2) is at most 2. If L is a general linear 
space of dimension e then it follows from the similar argument given in the proof of Step III with Eq. (8)
that N2 ∈ gin(IX∩L,L). Hence IX∩L,L has a hyperplane or a quadratic polynomial, which contradicts the 
result proved in Step I. �
Remark 3.5. The similar argument in the proof of Theorem 1.2 can also be applied to show that X satisfies 
property N2,e if and only if X is an ACM scheme with 2-linear resolution.

Example 3.6. In [15], the authors have shown that if a non-degenerate reduced scheme X ⊂ P
n satisfies N2,p

for some p ≥ 1 then the inner projection from any smooth point of X satisfies at least property N2,p−1. 
So it is natural to ask whether the inner projection from any smooth point of X satisfies at least property 
N3,p−1 when X satisfies N3,p for some p ≥ 1. Our result shows that this is not true in general. For example, 
if we consider the secant variety X = Sec(C) of a rational normal curve C then the inner projection Y from 
any smooth point of X has the degree

deg(Y ) =
(

2 + e

2

)
− 1 =

(
e + 1

2

)
+

(
e

1

)
>

(
2 + (e− 1)

2

)
,

where e = codim(X) and e −1 = codim(Y). This implies that X satisfies N3,e but Y does not satisfy N3,e−1.

Example 3.7. Remark that there exists an algebraic set X of degree <
(
e+2
2
)

whose defining ideal IX
has 3-linear resolution. For example, let I = (x3

0, x
2
0x1, x0x

2
1, x

3
1, x

2
0x2) be a monomial ideal of R =

k[x0, x1, x2, x3]. Note that the sufficiently generic distraction DL(I) of I is of the form

DL(I) = (L1L2L3, L1L2L4, L1L4L5, L4L5L6, L1L2L7),

where Li is a generic linear form for each i = 1, . . . , 7 (see [3] for the definition of distraction). Then the 
algebraic set X defined by the ideal DL(I) is a union of 5 lines and one point such that its minimal free 
resolutions are given by

R-modules S1-modules S2-modules
0 1 2 3

0 1 0 0 0
1 0 0 0 0
2 0 5 5 1

0 1 2
0 1 0 0
1 1 0 0
2 1 4 1

0 1
0 1 0
1 2 0
2 3 1

In this case, we see that e = 2, deg(X) = 5 <
(2+2

2
)

= 6 and there is a 6-secant 2-plane to X. We see 
that a general hyperplane section of X is contained in a quadric hypersurface from βe+1,2(R/IX) 	= 0.
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3.3. The proof of Theorem 1.3

Let X ⊂ P
n+e be a non-degenerate algebraic set of dimension n satisfying N2,p for some p ≥ 0. If α ≤ e

is such that X satisfies N3,α, and Lα ⊂ P
n+e is a linear space of dimension α whose intersection with X is 

zero-dimensional then we have to show that

length
(
X ∩ Lα

)
≤ 1 + α + min

{
|α− p|(α + p + 1)

2 , βR
α,2(R/IX)

}
. (12)

The proof of Theorem 1.3. Note that βR
α,2 = 0 if α ≤ p. In this case, the inequality (12) follows from [10, 

Theorem 1.1] directly. Now we assume α > p and βR
α,2 	= 0. Suppose dim(X ∩ Lα) = 0 and choose a linear 

subspace Λ ⊂ Lα of dimension (α− 1) disjoint from X with homogeneous coordinates x0, . . . , xα−1.
By the same argument given in the proof of Theorem 1.1 and Remark 3.2, we have the following surjective 

morphism

· · · → OPn+e−α ⊕OPn+e−α(−1)α ⊕OPn+e−α(−2)β
Sα
0,2

ϕ̃α→ πΛ∗OX −→ 0.

For any point q ∈ πΛ(X), note that πΛ∗OX ⊗k(q) � H0(〈Λ, q〉, OπΛ
−1(q)). Thus, by tensoring OPn+e−α(2) ⊗

k(q) on both sides, we have the surjection on vector spaces:

[
OPn+e−α(2) ⊕OPn+e−α(1)α ⊕OβSα

0,2
Pn+e−α

]
⊗ k(q) � H0(〈Λ, q〉,OπΛ

−1(q)(2)
)
. (13)

Therefore, 〈Λ, q〉 ∩ X is 3-regular and the length of any fiber of πΛ is at most 1 + α + βSα
0,2. Hence it is 

important to get an upper bound of βSα
0,2.

Claim. There are following inequalities on graded Betti numbers:

(i) βSα
0,2 ≤ β

Sα−1
1,2 ≤ · · · ≤ βS1

α−1,2 ≤ βR
α,2, α ≤ e = codim(X);

(ii) βSα
0,2 ≤ (α−p)(α+p+1)

2 .

Due to the claim, we have the following inequality:

βSα
0,2 ≤ min

{
|α− p|(α + p + 1)

2 , βR
α,2(R/IX)

}
.

Therefore, the length of any fiber of πΛ : X → P
n+e−α is at most

1 + α + βSα
0,2 ≤ 1 + α + min

{
|α− p|(α + p + 1)

2 , βR
α,2(R/IX)

}
.

Since X∩Lα can be regarded as a fiber of the map πΛ : X → P
n+e−α, this completes the proof of Theorem 1.3.

Now let us prove the Claim. Note that Claim (i) follows directly from Corollary 2.5(b) for d = 3. Hence we 
only need to show Claim (ii). We consider the multiplicative maps appearing in the mapping cone sequence 
as follows:

TorSα
0 (R/IX , k)1

×xα−1−−−−−→ TorSα
0 (R/IX , k)2 � TorSα−1

0 (R/IX , k)2 → 0,

TorSα−1
0 (R/IX , k)1

×xα−2−−−−−→ TorSα−1
0 (R/IX , k)2 � TorSα−2

0 (R/IX , k)2 → 0,

· · · · · · · · ·
TorSp+1

0 (R/IX , k)1
×xp−−−→ TorSp+1

0 (R/IX , k)2 � TorSp

0 (R/IX , k)2 = 0. (14)
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Since R/IX satisfies property NSp

2,0 as an Sp-module by Corollary 2.5(a), we get

TorSp

0 (R/IX , k)2 = 0.

From the above exact sequences, we have the following inequalities on the graded Betti numbers by dimension 
counting:

βSα
0,2 ≤ βSα

0,1 + β
Sα−1
0,2 ≤ βSα

0,1 + β
Sα−1
0,1 + β

Sα−2
0,2 ≤ · · · ≤ βSα

0,1 + β
Sα−1
0,1 + · · · + β

Sp+1
0,1 + β

Sp

0,2

= α + (α− 1) + · · · + (p + 1) = (α− p)(α + p + 1)
2 .

Thus, we obtain the desired inequality

βSα
0,2(R/IX) ≤ min

{
(α− p)(α + p + 1)

2 , βR
α,2(R/IX)

}
,

as we claimed. �
The following result shows that if X is a nondegenerate variety satisfying N3,e then there is some sort 

of rigidity toward the beginning and the end of the resolution. This means the following Betti diagrams are 
equivalent;

Property N3,e and βR
e,2 = 0 X is 2-regular

0 1 2 ... e-1 e e+1 e+2 ...
0 1 0 ... 0 0 0 0 ...
1 0 * ... * * * * ...
2 0 * ... * 0 * * ...
3 0 0 ... 0 0 * * ...
4 0 0 ... 0 0 * * ...

⇐⇒

0 1 2 ... e-1 e e+1 e+2 ...
0 1 0 ... 0 0 0 0 ...
1 0 * ... * * * * ...
2 0 0 ... 0 0 0 0 ...
3 0 0 ... 0 0 0 0 ...
4 0 0 ... 0 0 0 0 ...

Corollary 3.8. Suppose X ⊂ P
n+e is a non-degenerate variety of dimension n and codimension e with 

property N3,e. Then, βR
e,2 = 0 if and only if X is 2-regular.

Proof. Let Le be a linear space of dimension e and assume that X∩Le is finite. By Theorem 1.3, length(X∩
Le) ≤ 1 + e + βR

e,2. Therefore, βR
e,2 = 0 implies length(X ∩ Le) ≤ 1 + e. Since X is a nondegenerate variety 

this implies that X is small (i.e. for every zero-dimensional intersection of X with a linear space L, the 
length of X∩L is at most 1 +dim(L) (see [6, Definition 11])). Then it follows directly from [9, Theorem 0.4]
that X is 2-regular. �
Remark 3.9. What can we say about the case βR

α,2 = 0 where α < e? In this case, we see that if Λ ∩X is 
finite for a linear subspace Λ of dimension ≤ α then length(Λ ∩X) ≤ dimΛ + 1. Note that this condition is 
a necessary condition for property N2,α. However, the converse is false in general, as for example in the case 
of a double structure on a line in P3 or the case of the plane with embedded point (see [10, Example 1.4]). 
We do not know if there are other cases when X is a variety.

Example 3.10 (Macaulay 2 [13]). (a) The two skew lines X in P3 satisfy deg(X) = 2 < 1 + e = 3. The Betti 
table of R/IX is given by
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0 1 2 3 4 ...
0 1 0 0 0 0 ...
1 0 4 4 1 0 ...
2 0 0 0 0 0 ...

Note that X is 2-regular but not a CM.
(b) Let C be a rational normal curve in P4, which is 2-regular. If X = C ∪ P for a general point P ∈ P

4

then deg(X) = 1 + e = 4. However a general hyperplane L passing through P is 5-secant 3-plane such that 
deg(L ∩X) = 5 > 4 = 1 + e. This implies that βR

e,2(R/IX) 	= 0. If P ∈ Sec(C) then there is a 3-secant line 
to X. Therefore βR

1,2(R/IX) 	= 0. For the two cases, the corresponding Betti tables for X are computed as 
follows [13, Macaulay 2]:

0 1 2 3 4 5 ...
0 1 0 0 0 0 0 ...
1 0 5 5 0 0 0 ...
2 0 1 3 4 1 0 ...
3 0 0 0 0 0 0 ...

0 1 2 3 4 5 ...
0 1 0 0 0 0 0 ...
1 0 5 4 0 0 0 ...
2 0 0 3 4 1 0 ...
3 0 0 0 0 0 0 ...

Case 1: P ∈ Sec(C) Case 2: P /∈ Sec(C)

Since a small algebraic set is 2-regular, if X satisfies property N2,e then X is 2-regular. One may ask 
if property Nd,e implies X is d-regular. The following example (suggested by F.-O. Schreyer) shows that 
condition Nd,e does not imply d-regularity in general.

Example 3.11 (F.-O. Schreyer). Let C be a rational normal curve and Z be a set of general 4 points in P3.

i1 : R=QQ[x_0..x_3];
C=minors(2,matrix{{x_0,x_1,x_2},{x_1,x_2,x_3}}); -- a rational normal curve
Z=minors(2,random(R^2,R^{4:-1})); -- general 4 points
X=intersect(C,Z);

Using Macaulay 2, we can compute the Betti table of X = C ∪ Z as follows:

i5 : betti res X

0 1 2 3
o5 = total : 1 6 6 1

0 : 1 . . .
1 : . . . .
2 : . 6 6 .
3 : . . . 1

Since the codimension e of X is two, X satisfies property N3,e. Note that X is not 3-regular. Unlike the 
case of N2,e, the condition N3,e does not imply 3-regularity.
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