Elliptic Curve Cryptography
Pairing-based Cryptography:

Applications and Optimizations




Public Key Cryptography

. 1. Key exchange: two parties agree on a
common secret using only publicly
exchanged information

2. Signature schemes: allows parties to
authenticate themselves

Examples of public key cryptosystems:
RSA, Diffie-Hellman, ECDH, DSA, ECDSA




Applications:
-

Secure browser sessions (https: SSL/TLS)
Signed, encrypted email (S/MIME)
Virtual private networking (IPSec)
Authentication (X.509 certificates)




Diffie-Hellman Key Exchange

. Given a cyclic group G generated by g

Alice picks random Bob picks random

Alice sends g >
< Bob sends gP

Secret :

ga =(gP)e= (g?)P




Problem:

Public key operations are computationally
expensive compared to symmetric key
(block ciphers, stream ciphers, DES, AES)

Public keys can be long: currently in use
1024-bit RSA up to 16,000-bit keys

Issues of power, bandwidth, and time




Elliptic Curve Cryptography

Elliptic Curve Cryptography (ECC) is an
alternative to RSA and Diffie-Hellman,
primarily signatures and key exchange

Proposed in 1985 (vs. 1975 for RSA)

Security is based on a hard mathematical
problem (different than factoring)




Group of points on an elliptic curve

Traditional group: integers modulo prime
with modular multiplication

Minimum size of prime: 1024 or 2048 bits

Alternative: group of points (X, y) on an
elliptic curve, y 2 = x 3 + a x + b, modulo
a prime of minimum size: 160 or 256-bits




Group Law on an Elliptic




Advantages over RSA/DH

Shorter key lengths (for equivalent security levels
against known attacks)

‘ 1) Fewer bits to store and send
2) Less computational power

3) Faster




Key length equivalences

symmetric |[ECC |RSA/DH

80 163 |1024
128 283 3072
192 409 | 7680
256 571 | 15360

(equal difficulty against currently known attacks)




Sample timing comparison

. On Intel Pentium IV 1700Mhz :

Key length Ratio RSA:ECC
RSA1024/ECC163 | 7:1

RSA3072/ECC283 | 60:1

Ratios more dramatic for special curves: 28 and 242




Implementations

Marketed for mobile commerce by
Certicom. (2003 NSA-Certicom deal)

Implemented by Motorola, Sony, Lucent,
RIM, Qualcomm, Verisign, OpenWave
(Sun donated it to OpenSource)

MSR-Crypto implemented ECC for MME
(Microsoft Mobile Explorer) in June 2000,

shipped in Vista 2007




U.S. Standards governing ECC

Draft ietf standards for ECC for

1) TLS, successor to SSL (secure browser)
2) S/MIME, CMS (secure email)
3) IPSec, X509 certificates, ...

FIPS, Digital Signature Standard (NIST)
ANSI X9.62, X9.63 (Financial Services)
IEEE P1363 (MS participating member)




NIST Curves

(National Institute of Standards and Technology)

Standard curves for P-256, B-256, K-256

m P- prime fields
m B- binary fields
m K- Koblitz curves (defined over F,)

Prime fields use special primes:
Generalized Mersenne Primes with very fast

modular reduction




Binary exponentiation, NAF
To compute 7P = (111)P:
4P+2P+P (2 doubles, 2 add)
2(2P+P) + P (2 doubles, 2 add)

different order

left-to-right vs right-to-left
NAF=non-adjacent form

Sparser expansion using subtractions:

7P = (100-1)P




Affine vs. Projective coordinates

(weighted) Projective coordinates allow
group law computation on E without field
inversions, at the cost of more multiplies

Roughly 16 field multiplies to compute 2P

Better than affine if field inversions are
very expensive

e.g. for NIST prime curves, some estimate
1 inversion ~ 80 multiplies.

MS implementation general curve, 1 I ~ 5M




Optimizations: 2P+Q

P = (X]_l Y1) and Q — (XZI YZ)
Xy hot = X,

P + Q = (X3, Y3)
S = (Y, — Y/ (X3 — Xy)
X3 = S§% - X5 — X4
Y3 = (X; = X3)S — Y4




2P+Q

Nowadd (P+ Q) to P
. Add (x4, Y1) to (X3, Y3)
Assume X3 not = Xx;.

2P+Q = (X4, Y4)
r=(ys = Yi)/(X3 — X;)
X4 = P— Xy — X3

Ya = (X3 = X)F = Y;-




Omit y;

[Eisentraeger-L.-Montgomery RSAQ3]

We can omit the y3 computation, because it is
used only in the computation of r

r=—s — 2y,/(X3 — Xy).

Omitting the y; computation saves a field
multiplication.

Each formula requires a field division, so the
overall saving is 1 field multiplication.




[Ciet-Joye-L-Montgomery 05]

Trick extends to projective coordinates
Extends to 3P+Q, ternary exponentiation
mixed binary/ternary
Can be used for multi-exponentiation:

to compute k,P,; + k,P,




Table 1. Costs of simple operations on E

Doubling 2P 2 squarings, 1 multiplication, 1 division

Add P £ Q 1 squaring, 1 multiplication, 1 division
Double-add 2P = Q 2 squarings, 1 multiplication, 2 divisions
Tripling 3P 3 squarings, 1 multiplication, 2 divisions
Triple-add 3P = Q 3 squarings, 1 multiplication, 3 divisions




Another group for DLP:
Jacobians of hyperelliptic curves

. Genus 2 curves given by the equation
C:y?2 =f(x), degreef =5o0r6
Group of points on the Jacobian J(C)
Represented by pairs of points on C
Efficient group law: Cantor’s algorithm




(Pl, P2)+(Q1’ Q2) = (-Ry, -Ry)

Group Law on the Jacobian of a Genus 2 curve




Pairings in Cryptography
MOV attack on ECDLP

Menezes-Okamoto-Vanstone

In 2001, Boneh-Franklin introduced IBE

Identity-Based Encryption
Joux, Tri-partite Diffie-Hellman

Many other applications...
ABE (attribute-based encryption)
PEKS (Public Key Encryption with Keyword Search)
Predicate Encryption ...




BLS Short signatures: Boneh, Lynn, Shacham

Given a bilinear pairing (map):
e: G xG; 2 Gy,

With a secret, x, a group element, P, in G;, and a hash function h

Create a public key pair (P, Q=xP)

Sign messages M > (M, S(M)), S(M) = x h(M)

Verification is: e(Q,h(M)) = e(P,S(M)) ?
bilinearity > e(xP,h(M)) = e(P,xh(M))

Implemented using Weil or Tate pairing, when G, is an elliptic curve
and G, is the multiplicative group of a finite field




Pairings
Weil pairing on elliptic curves
. Tate pairing on elliptic curves
Squared Weil and Tate pairings
Ate pairing

Fta pairina and a
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neralized form
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All these for Jacobians hyperelliptic curves:
[Duursma-Lee 03], [ELM 04], [Lee et al]




Computing functions for Miller’s loop

To compute e (P,Q): P,Q in E[m]
Find a function f. on E with a c-fold zero

at P, a simple pole at cP, a pole of order
c — 1 at O, and no other zeroes or poles.

Compute f , recursively
(f.,) = mP-mO
em(PlQ) = fm(Ql)/fm(QZ)




Recursive step

Compute f, .., f,_. from (f,, bP ), (f., cP)
m g, = line through bP and cP
m g, = vertical line through (b+c)P

f

lb+c = 1:b ' fc lgb,c/gb+c

foe="Tp 9/ (fc " 9p )

Denote h, = f,(Q,)/f,(Q,)




Parabola trick for pairings

[Eisentraeger-L-Montgomery RSAQ3]
(Nap1er (2b + C)P) given (hy, BP ), (h, P )

Compute (h,,.., (2b + c)P) directly, only the
x-coordinate of bP + cP

f2b+c = fb+c 'fb " Ob+c,b /92b+C
= fb : fC ] gb,C .fb ' gb+c,b /(92b+c gb+C )
= 1:b ' fc 'fb /(92b+c)' gb+c,b . gb,C /(gb+C )




Parabola

replace gy, * 9b,c /(Ip+c ) DY @ parabola
. through the points

bP, bP, cP, —(2b+c)P
(X—X;)(X+X;+X3+rS) — (r+s)(Y=Y,).
Note: do not compute y;

Evaluate the formula for f,,, . at Q, and
Q, to get a formula for h,,, ..

Saving 8-12% overall.




Squared Pairings

Eisentraeger-L-Montgomery
. Can compute the pairing without using a
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Tate,(P,Q)* = (m(Q)/fm Q))q /m

20% performance improvement
Works for hyperelliptic curves, too.




Digital Signatures for Network Coding

Kristin Lauter, Microsoft Research
Joint work with: Denis Charles, Kamal Jain (Microsoft)

NIMS Workshop on Mathematical Cryptology
June 16, 2009



The Network Coding Model

Let G = (V, E) be a directed graph.

The vertices v € V may represent, for example, peers in a
peer-to-peer content distribution or content storage system.

A source s € V wishes to transmit content to a set T C V/(G) of
receivers in the system using network coding.

The file to be transmitted is broken up into blocks of equal length
and represented as vectors in an F,-vector space of dimension d.

Wi, wy € B



Tags for network coding

Network coding was introduced by: [Alswede, Cai, Li, Yeung 2000],
[Chou, Jain, Wu 2003], [Gkantsidis, Rodriguez 2005], ...

The source transmits the augmented vectors to its neighbors.

vi=1(0,...,0,1,0,...,0,wj1,..., wyg) € Fg* for 1 < i < k
N— —

i—1

the ith entry of v; is a 1, and w; = (wj1,..., wiq)



Recombination

Each edge e, computes

ye)= Y me(y(),

f:out(f)=in(e)
where me(f) € Fp,.

Another peer receives y(e) and then continues to recombine it with
other received inputs.



Recovery of original content

If a receiver t € T gets

ui = (g1, , 81k, U11, -
uz = (€21, , 82k, U1, "+ -
Uk = (K1,  Bkks Ukl
then t can find wy, - - -, wy by solving
uir -+ Uid 811 - Blk
. --v Ug | _ | 821 - 82k

Ukl -+ Ukd 8k1 " 8kk

) uld)
) u2d>
, Ukd)
wiir - Wid
Wk1 -+ Wid



Pollution attacks

Network coding for peer-to-peer content distribution improves
throughput since there are no "bottlenecks”.

No peers are left waiting for the last piece of the file, since almost
any subsequent linear combination of the pieces will contain new
information which can be used to reconstruct the file, until the
peer has received enough pieces of information.

The problem with network coding is that it is very suceptible to
pollution attacks, since garbage packets are quickly recombined
with other "clean” packets and redistributed to pollute the whole
network.



The Signature Scheme

Let E/IF, be an elliptic curve and let
Rla"' 7RkaP1a"' 7Pd € E(Fq)[P]

p-torsion points on E: pR; = pP; =0for 1 <i <k, 1<) <d.
Define a function hg, ... ,.p,. P, :F’;er — E(Fq) by

)

ARy oo RePre (UL, s+ s Uk VI, o V) = E uiR; + E viP;.
1<i<k 1<j<d



Signing vectors

The source s selects s1,--- , Sk, 1, -+, rg and signs the vector
vi=(0,-+,0,1,wi, - ,wy) EFET? for 1 < i<k
N——

i—1
by computing
i = hS1R17“'75kRk,f1P1,'“,fde(Vi)'

Source also publishes Q,51Q, -+ ,5(Q,nQ,--- ,rqyQ where Q is
another p-torsion point such that e(R;, Q) # 1 and e(P;, Q) # 1.



Recombining signed vectors

Now o7} is transmitted together with v; to the neighbors of the
source s. Each edge e computes

yie)= Y me(y(f)

f:out(f)=in(e)

and

ale)= > mefo(f).

f:out(f)=in(e)



Verification

Suppose y(e) = (u1, -+, Uk, v1,- - , Vq) we check whether

IT ewPisQ) ] e(viPi,riQ) =e(o(e), Q).

1<j<k 1<i<d



Hardness assumptions

Fact: [CJL’05] Finding a collision of the hash function h is
polynomial-time equivalent to computing the discrete log on the
elliptic curve E.

Fact: Forging signatures is as hard as the computational
Diffie-Hellman problem on the curve E.



Remarks

If we take the prime p /= 256-bits, this is equivalent to 2048 bits of RSA

security. We can setup the system with g ~ p2.

* Our scheme establishes authentication in addition to security.

» Communication overhead per vector is two elements of F, (the x
and y coordinates of a point) = 512 bits. We can reduce this
overhead to 257 bits at the cost of increasing computational cost.

* Computation of signature of vector at an edge e is O(indeg(in(e))
operations in Fp,.

* Verification requires O((d + k) log>™® q) bit operations for any
e>0.

* Scheme requires p of size 256-bits.



Example

p = 26330018368571742206574632566065508402231508999153.

¢ = p? + 1875150302622039835263003517434470200231290230217730?
= 351688192729081689963486221568344816704455675519621991572€
547928600461026413407979747354244426961070309.

The complex multiplication method tells us that the elliptic curve
E : y? = x3 + x (in affine form)
is a suitable elliptic curve. MAGMA tells us that #E(F) is

3516881927290816899634862215683448167044556755196219863066511.
076613264142847616337439963943072004,

which is indeed =0 mod p.

This computation took 0.063 seconds on an AMD Opteron 252
(2.6Ghz) processor.



Example (continued)

The number of points on E(F;2) according to MAGMA is

1236845849050477072586861412005782314655826646818745936122594
0144846014265383739300784290963417699135578021643493118755085:
0388577638414226886949389446808131945333677281203696574462646:

and this is =0 mod p?, which is a necessary condition for E[p]
being a subgroup of E(IFy2).

We show that E[p] is indeed contained in E(IFy2) by finding two
points that generate the p-torsion subgroup. We find two p-torsion
points, P and Q, that generate the whole p-torsion of E(F )



Example (continued)

P = (27670104998350953223410633845208244029271176277346373253.
8148602058330843763239769722154862, 736895619074862870441993Z
12341952700619999020137331297834986221601940750818713297548%

Q = (17034369334278287561438900993488045227506908404432355186
4957564303078396992524604785250333 1 + 1571288746986618549950
15250776009775673129863778174369969862913861485893531567999(
29326297941462477659643240293961843189390751742809582976552(
72565240814005665686795414190u + 282722913652845416300118493
52191623737718932812446648142173368705416653836715431228856



Example (continued)

Here u is a variable that gives the isomorphism Fp. = Fy[u]/(f(u))
for a quadratic irreducible f € Fy[u]. The Weil pairing of P and Q
is

ep(P, Q) = 188036180299835372546533903820354629932054094 777699
37660415779359581593172656075406185808275672u+
31284655683961117025378938265048897550540714
789120952758071081994025493561718896167258607979795819
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