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Public Key Cryptography
1. Key exchange: two parties agree on a 
common secret using only publicly 
exchanged information 
2. Signature schemes: allows parties to g p
authenticate themselves
Examples of public key cryptosystems:Examples of public key cryptosystems:
RSA, Diffie-Hellman, ECDH, DSA, ECDSA
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Applications:

Secure browser sessions (https: SSL/TLS)Secure browser sessions (https: SSL/TLS)
Signed, encrypted email (S/MIME)
Virtual private networking (IPSec)
Authentication (X.509 certificates)( )
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Diffie-Hellman Key Exchange
Given a cyclic group G generated by g

b k d bAlice picks random a

Alice sends ga

Bob picks random b

Alice sends ga

Bob sends gb

Secret : 

g ab  = (g b) a =  (g a) b
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Problem:

Public key operations are computationally 
i d t t i kexpensive compared to symmetric key 

(block ciphers, stream ciphers, DES, AES)
Public keys can be long: currently in use 
1024-bit RSA up to 16,000-bit keys
Issues of power, bandwidth, and time
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Elliptic Curve Cryptography

Elliptic Curve Cryptography (ECC) is an 
lt ti t RSA d Diffi H llalternative to RSA and Diffie-Hellman,  

primarily signatures and key exchange 
Proposed in 1985 (vs. 1975 for RSA)
Security is based on a hard mathematical y
problem (different than factoring)
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Group of points on an elliptic curve

Traditional group: integers modulo prime 
ith d l lti li tiwith modular multiplication

Minimum size of prime: 1024 or 2048 bits
Alternative: group of points (x, y) on an 
elliptic curve, y 2 = x 3 + a x + b, modulo p , y ,
a prime of minimum size: 160 or 256-bits
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G  L    Elli i  CGroup Law on an Elliptic Curve

R1Q2
1

Q1

R

Q1 + Q2 = −R1

−R1

Q1 Q2 1

8



Advantages over RSA/DH

Shorter key lengths (for equivalent security levels 
against known attacks)against known attacks)

1) Fewer bits to store and send
2) L t ti l2) Less computational power
3) Faster
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Key length equivalencesKey length equivalences

symmetric ECC RSA/DH

80 163 102480 163 1024
128 283 3072
192 409 7680192 409 7680
256 571 15360

(equal difficulty against currently known attacks)
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Sample timing comparison
On Intel Pentium IV 1700Mhz :

Key length Ratio RSA:ECC

RSA1024/ECC163 7:1RSA1024/ECC163 7:1

RSA3072/ECC283 60:1

Ratios more dramatic for special curves: 28 and 242
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Implementations

Marketed for mobile commerce by 
Certicom. (2003 NSA-Certicom deal)Ce t co ( 003 S Ce t co dea )
Implemented by Motorola, Sony, Lucent, 
RIM Qualcomm Verisign OpenWaveRIM, Qualcomm, Verisign, OpenWave 
(Sun donated it to OpenSource)
MSR Crypto implemented ECC for MMEMSR-Crypto implemented ECC for MME 
(Microsoft Mobile Explorer) in June 2000, 
shipped in Vista 2007
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U.S. Standards governing ECC
Draft ietf standards for ECC for

1) TLS, successor to SSL (secure browser)
2) S/MIME, CMS (secure email)
3) IPSec, X509 certificates, …
FIPS, Digital Signature Standard (NIST)
ANSI X9.62, X9.63 (Financial Services)
IEEE P1363 (MS participating member)
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NIST CurvesNIST Curves 
(National Institute of Standards and Technology)

Standard curves for P-256, B-256, K-256
P- prime fields
B- binary fields
K- Koblitz curves (defined over F2)

Prime fields use special primes:
Generalized Mersenne Primes with very fast 

modular reduction
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Binary exponentiation NAFBinary exponentiation, NAF
To compute 7P = (111)P:

4P+2P+P (2 doubles, 2 add)
2(2P+P) + P (2 doubles, 2 add) ( ) ( , )
different order
left to right vs right to leftleft-to-right vs right-to-left

NAF=non-adjacent form
Sparser expansion using subtractions:
7P = (100-1)P( )
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Affine vs. Projective coordinatesj
(weighted) Projective coordinates allow 
group law computation on E without fieldgroup law computation on E without field 
inversions, at the cost of more multiplies
Ro ghl 16 field m ltiplies to comp te 2PRoughly 16 field multiplies to compute 2P
Better than affine if field inversions are 
very expensive
e.g. for NIST prime curves, some estimate g p
1 inversion ~ 80 multiplies.
MS implementation general curve, 1 I ~ 5MMS implementation general curve, 1 I  5M
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Optimizations: 2P+Q p Q
P = (x1, y1) and Q = (x2, y2)

x1 not = x2

P + Q = (x3, y3)
( )/( )s = (y2 − y1)/(x2 − x1)

x3 = s2 - x2 − x1

y3 = (x1 − x3)s − y1
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2P+Q2P+Q
Now add (P + Q) to P 
Add (x1, y1) to (x3, y3) 
Assume x3 not = x1. 3 1

2P+Q = (x4, y4)
r = (y − y )/(x − x )r = (y3  y1)/(x3  x1)
x4 = r2− x1 − x3

( )y4 = (x1 − x4)r − y1.
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Omit y3
[Eisentraeger-L-Montgomery RSA03]
We can omit the y3 computation, because it isWe can omit the y3 computation, because it is 
used only in the computation of r
r = −s − 2y1/(x3 − x1).y1/( 3 1)
Omitting the y3 computation saves a field 
multiplication. 
Each formula requires a field division, so the 
overall saving is 1 field multiplication.
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[Ciet-Joye-L-Montgomery 05]

Trick extends to projective coordinates
Extends to 3P+Q, ternary exponentiation
mixed binary/ternaryy/ y
Can be used for multi-exponentiation:

to compute k P + k Pto compute k1P1 + k2P2
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Table 1. Costs of simple operations on E

Doubling 2P 2 squarings, 1 multiplication, 1 divisiong q g , p ,
Add P ± Q 1 squaring, 1 multiplication, 1 division
Double-add 2P ± Q  2 squarings, 1 multiplication, 2 divisions
Tripling 3P 3 squarings, 1 multiplication, 2 divisions
Triple-add 3P ± Q    3 squarings, 1 multiplication, 3 divisions
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Another group for DLP: g p
Jacobians of hyperelliptic curves

Genus 2 curves given by the equationGenus 2 curves given by the equation
C: y2 = f(x), degree f = 5 or 6
Group of points on the Jacobian J(C)
Represented by pairs of points on Cep ese ted by pa s o po ts o C
Efficient group law: Cantor’s algorithm
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y=h(x)

(P1, P2)+(Q1, Q2) = (-R1, -R2)

R
P2 Q1

R1

P1
Q2 R2

y2 =f(x)

23Group Law on the Jacobian of a Genus 2 curve



Pairings in Cryptography
MOV attack on ECDLP

Menezes-Okamoto-Vanstone

In 2001, Boneh-Franklin introduced IBE
Identity-Based Encryption 

Joux, Tri-partite Diffie-Hellman
Many other applications…y pp

ABE (attribute-based encryption)
PEKS (Public Key Encryption with Keyword Search) 
Predicate Encryption …
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BLS Short signatures: Boneh, Lynn, Shacham
Given a bilinear pairing  (map):

e: G1 x G1 G2,
With t l t P i G d h h f ti hWith a secret, x,  a group element, P, in G1, and a hash function h

1. Create a public key pair (P, Q=xP)

2. Sign messages M (M, S(M)),  S(M) = x h(M)

3. Verification is:   e(Q,h(M)) = e(P,S(M)) ?
bilinearity e(xP,h(M)) = e(P,xh(M))bilinearity e(xP,h(M))  e(P,xh(M))

Implemented using Weil or Tate pairing, when G1 is an elliptic curve 
and G2 is the multiplicative group of a finite field
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PairingsPairings
Weil pairing on elliptic curves
T t i i lli tiTate pairing on elliptic curves
Squared Weil and Tate pairings
Ate pairing
Eta pairing and generalized formsEta pairing and generalized forms

All th f J bi h lli tiAll these for Jacobians hyperelliptic curves:
[Duursma-Lee 03], [ELM 04], [Lee et al] 
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Computing functions for Miller’s loop

To compute em(P,Q):   P,Q in E[m]
Find a function fc on E with a c-fold zero 
at P, a simple pole at cP , a pole of order , p p , p
c − 1 at O, and no other zeroes or poles.
Compute fm recursivelyCompute fm recursively
(fm) = mP – mO
e (P Q) f (Q )/f (Q )em(P,Q) = fm(Q1)/fm(Q2)
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Recursive stepRecursive step
Compute fb+c , fb−c from (fb, bP ), (fc, cP) 

gb,c = line through bP and cP  
gb+c = vertical line through (b+c)P 

fb+c = fb · fc ·gb c/gb+cfb+c  fb  fc gb,c/gb+c

fb−c = fb · gb / (fc · g−b,c)

Denote hb = fb(Q1)/fb(Q2)
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Parabola trick for pairings
[Eisentraeger-L-Montgomery RSA03] 
(h (2b + c)P) given (h bP ) (h cP )(h2b+c, (2b + c)P) given (hb, bP ), (hc, cP )

Compute (h2b+c, (2b + c)P) directly, only the 
x-coordinate of bP + cP  

f2b+c = fb+c ·fb · gb+c,b /g2b+c

= fb · fc · gb c ·fb · gb+c b /(g2b+c gb+c ) fb  fc  gb,c fb  gb+c,b /(g2b+c  gb+c )
= fb · fc ·fb /(g2b+c)· gb+c,b · gb,c /(gb+c )
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Parabola
replace gb+c,b · gb,c /(gb+c ) by a parabola 
through the pointsthrough the points 

bP , bP , cP , −(2b+c)P 
(x−x1)(x+x1+x3+rs) − (r+s)(y−y1).
Note: do not compute y3p y3

Evaluate the formula for f2b+c at Q1 and 
Q2 to get a formula for h2b+c.Q2 to get a formula for h2b+c.
Saving 8-12% overall.
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Squared PairingsSquared Pairings
Eisentraeger-L-Montgomery
Can compute the pairing without using a 

random R 
Q-O ~ (Q+R) – R

Get some denominator cancellationGet some denominator cancellation
Tatem(P,Q)2 = (fm(Q)/fm(-Q))q-1/m

20% performance improvement
Works for hyperelliptic curves, too.yp p ,
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The Network Coding Model

Let G = (V ,E ) be a directed graph.

The vertices v ∈ V may represent, for example, peers in a
peer-to-peer content distribution or content storage system.

A source s ∈ V wishes to transmit content to a set T ⊆ V (G ) of
receivers in the system using network coding.

The file to be transmitted is broken up into blocks of equal length
and represented as vectors in an Fp-vector space of dimension d .

w1, · · · ,wk ∈ Fd
p



Tags for network coding

Network coding was introduced by: [Alswede, Cai, Li, Yeung 2000],
[Chou, Jain, Wu 2003], [Gkantsidis, Rodriguez 2005], ...

The source transmits the augmented vectors to its neighbors.

vi = 〈0, . . . , 0︸ ︷︷ ︸
i−1

, 1, 0, . . . , 0,wi1, . . . ,wid〉 ∈ Fk+d
p for 1 ≤ i ≤ k

the ith entry of vi is a 1, and wi = (wi1, . . . ,wid)



Recombination

Each edge e, computes

y(e) =
∑

f :out(f )=in(e)

me(f )y(f ),

where me(f ) ∈ Fp.

Another peer receives y(e) and then continues to recombine it with
other received inputs.



Recovery of original content

If a receiver t ∈ T gets

u1 = 〈g11, · · · , g1k , u11, · · · , u1d〉
u2 = 〈g21, · · · , g2k , u21, · · · , u2d〉

...

uk = 〈gk1, · · · , gkk , uk1, · · · , ukd〉
then t can find w1, · · · ,wk by solving

u11 · · · u1d

u21 · · · u2d

...

uk1 · · · ukd


=



g11 · · · g1k

g21 · · · g2k

...

gk1 · · · gkk




w11 · · · w1d

...

wk1 · · · wkd

 .



Pollution attacks

Network coding for peer-to-peer content distribution improves
throughput since there are no ”bottlenecks”.

No peers are left waiting for the last piece of the file, since almost
any subsequent linear combination of the pieces will contain new
information which can be used to reconstruct the file, until the
peer has received enough pieces of information.

The problem with network coding is that it is very suceptible to
pollution attacks, since garbage packets are quickly recombined
with other ”clean” packets and redistributed to pollute the whole
network.



The Signature Scheme

Let E/Fq be an elliptic curve and let

R1, · · · ,Rk ,P1, · · · ,Pd ∈ E (Fq)[p]

p-torsion points on E : pRi = pPj = 0 for 1 ≤ i ≤ k , 1 ≤ j ≤ d .
Define a function hR1,··· ,Rk ,P1,··· ,Pd

: Fk+d
p → E (Fq) by

hR1,··· ,Rk ,P1,··· ,Pd
(u1, · · · , uk , v1, · · · , vd) =

∑
1≤i≤k

uiRi +
∑

1≤j≤d

vjPj .



Signing vectors

The source s selects s1, · · · , sk , r1, · · · , rd and signs the vector

vi = 〈0, · · · , 0︸ ︷︷ ︸
i−1

, 1,wi1, · · · ,wik〉 ∈ Fk+d
p for 1 ≤ i ≤ k

by computing

σi = hs1R1,··· ,skRk ,r1P1,··· ,rdPd
(vi ).

Source also publishes Q, s1Q, · · · , skQ, r1Q, · · · , rdQ where Q is
another p-torsion point such that e(Ri ,Q) 6= 1 and e(Pi ,Q) 6= 1.



Recombining signed vectors

Now σi is transmitted together with vi to the neighbors of the
source s. Each edge e computes

y(e) =
∑

f :out(f )=in(e)

me(f )y(f ).

and

σ(e) =
∑

f :out(f )=in(e)

me(f )σ(f ).



Verification

Suppose y(e) = 〈u1, · · · , uk , v1, · · · , vd〉 we check whether∏
1≤j≤k

e(ujPj , sjQ)
∏

1≤i≤d

e(viPi , riQ) = e(σ(e),Q).



Hardness assumptions

Fact: [CJL’05] Finding a collision of the hash function h is
polynomial-time equivalent to computing the discrete log on the
elliptic curve E .

Fact: Forging signatures is as hard as the computational
Diffie-Hellman problem on the curve E .



Remarks

If we take the prime p ≈ 256-bits, this is equivalent to 2048 bits of RSA
security. We can setup the system with q ≈ p2.

? Our scheme establishes authentication in addition to security.

? Communication overhead per vector is two elements of Fp (the x
and y coordinates of a point) = 512 bits. We can reduce this
overhead to 257 bits at the cost of increasing computational cost.

? Computation of signature of vector at an edge e is O(indeg(in(e))
operations in Fp.

? Verification requires O((d + k) log2+ε q) bit operations for any
ε > 0.

? Scheme requires p of size 256-bits.



Example

p = 26330018368571742206574632566065508402231508999153.

` = p2 + 18751503026220398352630035174344702002312902302177302

= 3516881927290816899634862215683448167044556755196219915726

547928600461026413407979747354244426961070309.

The complex multiplication method tells us that the elliptic curve

E : y2 = x3 + x (in affine form)

is a suitable elliptic curve. MAGMA tells us that #E (F`) is

3516881927290816899634862215683448167044556755196219863066511191456

976613264142847616337439963943072004,

which is indeed ≡ 0 mod p.

This computation took 0.063 seconds on an AMD Opteron 252
(2.6Ghz) processor.



Example (continued)

The number of points on E (F`2) according to MAGMA is

123684584905047707258686141200578231465582664681874593612259486008465018

014484601426538373930078429096341769913557802164349311875508547262692347

03885776384142268869493894468081319453336772812036965744626464

and this is ≡ 0 mod p2, which is a necessary condition for E [p]
being a subgroup of E (F`2).

We show that E [p] is indeed contained in E (F`2) by finding two
points that generate the p-torsion subgroup. We find two p-torsion
points, P and Q, that generate the whole p-torsion of E (F`2)



Example (continued)

P = (276701049983509532234106338452082440292711762773463732533683876759414

8148602058330843763239769722154862, 7368956190748628704419932604283633092

12341952700619999020137331297834986221601940750818713297548511336)

Q = (170343693342782875614389009934880452275069084044323551866473740367532

4957564303078396992524604785250333u + 157128874698661854995016811716722095

1525077600977567312986377817436996986291386148589353156799909434396,

2932629794146247765964324029396184318939075174280958297655205533263210294

72565240814005665686795414190u + 282722913652845416300118493715740616379

52191623737718932812446648142173368705416653836715431228856385081).



Example (continued)

Here u is a variable that gives the isomorphism F`2
∼= F`[u]/(f (u))

for a quadratic irreducible f ∈ F`[u]. The Weil pairing of P and Q
is

ep(P,Q) = 18803618029983537254653390382035462993205409477769908010460

37660415779359581593172656075406185808275672u+

31284655683961117025378938265048897550540714

78912095275807108199402549356171889616725860797979581965315.


	slide_lauter_first talk.pdf
	slide_lauter_second talk

