
Trends in Mathematics - New Series

Information Center for Mathematical Sciences

Volume 10, Number 1, 2008, pages 1–64

Toric Topology Workshop

KAIST 2008

c©2008 ICMS in KAIST

LECTURES ON TORIC TOPOLOGY

VICTOR M BUCHSTABER

Contents

Preface 2

Lecture I. Face-polynomials of simple polytopes and applications 3

Lecture II. Toric Topology of Stasheff Polytopes 15

Lecture III. Minkowski sum and simple polytopes 34

Lecture IV. Moment-angle complexes and applications 42

Lecture V. Quasitoric manifolds 52

Appendix A. Cohomological rigidity for polytopes and manifolds

by Taras E. Panov 60

1



2 VICTOR M BUCHSTABER

Preface

Toric topology is a new and actively developing field gaining a constantly in-

creasing interest from the specialists in algebraic topology and related fields (see

[27]). An invitational overview to the subject can be found in [9].

These lecture notes aim on introducing the reader to several aspects of toric

topology where a significant progress has been achieved very recently. The exposi-

tion appeals to a broad audience and contains the necessary definitions, statements

of results, and examples. Proofs are given only when they are short and illustrative.

Many details may be found in [3].

I take this opportunity to express my gratitude to the Korea Advanced Insti-

tute of Science and Technology (KAIST) and particularly to Professor Dong Youp

Suh for organising a Toric Topology Workshop in June 2008, where these lectures

were delivered, and providing excellent work conditions. The atmosphere during

the workshop was especially creative and inspiring, and the numerous informal

discussions of talks greatly influenced the contents of these lecture notes.

I am grateful to Dong Youp for his work on preparing these lecture notes for

publication.

My thanks also go to Taras Panov for the valuable discussions of these lectures

and preparing Appendix A on certain important problems in toric topology.
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Lecture I. Face-polynomials of simple polytopes and applications

[Abstract] A convex n-dimensional polytope is called simple if

there are exactly n facets meeting at every vertex. For many

decades simple polytopes have been studied in convex geometry

and combinatorics. Recently it has become clear that they play im-

portant role in algebraic and symplectic geometry, in applications

to physics. They are also main objects in toric topology. There is

a commutative associative ring P generated by simple polytopes.

The ring P possesses a natural derivation d, which comes from the

boundary operator. We shall describe a ring homomorphism from

the ring P to the ring of polynomials Z[α, t] transforming a simple

polytope to the face-polynomial and the operator d to the partial

derivative ∂/∂t.

This result opens way to a relation between theory of polytopes

and differential equations. As it has turned out, certain important

series of polytopes (including some recently discovered) lead to fun-

damental non-linear differential equations in partial derivatives.

We shall discuss constructions of important series of simple poly-

topes, and transformations of these series into non-linear differential

equations. Particular examples of the transformations link Stash-

eff polytopes (also known as associahedra) to the E.Hopf equation,

and Bott-Taubes polytopes (cyclohedra) to the Burgers equation.

In the next series of lectures, I will discuss in details many ideas

from this lecture.

1. Introduction

Definition 1.1. A convex polytope Pn of dimension n is said to be simple if every

vertex of P is the intersection of exactly n facets, i.e. faces of dimension (n − 1).

It is easy to check that each k-face of a simple polytope Pn is again a simple

polytope and is the intersection of exactly (n − k) facets.
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n = 2. Any polygon (2-polytope) is simple
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n = 3. Simple polytopes
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Non simple polytope

�

� �

�

�

�

Definition 1.2. Two polytopes P1 and P2 of the same dimension are said to be

combinatorially equivalent if there is a bijection between their sets of faces that

preserves the inclusion relation.

Definition 1.3. A combinatorial polytope is a class of combinatorially equivalent

geometrical polytopes.

The collection of all n-dimensional combinatorial simple polytopes is denoted

by P2n. An Abelian group structure on P2n is induced by the disjoint union of

polytopes. The zero element of the group P2n is the empty set. The direct product

Pn
1 × Pm

2 of simple polytopes Pn
1 and Pm

2 is a simple polytope as well.

The weak direct sum

P =
∑
n�0

P2n
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yields a graded commutative associative ring. The unit element is a single point.

Let m be the number of facets. Set ν(Pn) = m − n and ν(Pn1
1 + Pn2

2 ) =

max
(
ν(Pn1

1 ), ν(Pn2
2 )

)
. We obtain a multiplicative filtration in P:

P0 ⊂ P1 ⊂ P2 ⊂ · · · ⊂ Pk ⊂ · · · ,

where ν(P 0) = 0 and Pn ∈ Pk, if ν(Pn) � k. We have PkP l ⊂ Pk+l because

ν(Pn1
1 × Pn2

2 ) = ν(Pn1
1 ) + ν(Pn2

2 ).

Let Pn ∈ P2n be a simple polytope. Denote by dPn ∈ P2(n−1) the disjoint

union of all its facets.

Lemma 1.4. We have a linear operator of degree −2

d : P −→ P,

such that

d(Pn
1 Pm

2 ) = (dPn
1 )Pm

2 + Pn
1 (dPm

2 ).

and ν(Pn) � ν(dPn), where ν(dPn) = max ν(Pn−1). Here Pn−1 runs over all

facets of Pn.

Example 1.5.

d∆n = (n + 1)∆n−1, ν(∆n) = 1,

dIn = n(dI)In−1 = 2nIn−1, ν(In) = n,

where ∆n is the standard n-simplex and In = I × · · · × I is the standard n-cube.

2. Face-polynomial

Consider the linear map

F : P −→ Z[t, α],

which send a simple polytope Pn to the homogeneous face-polynomial

F (Pn) = αn + fn−1,1α
n−1t + · · · + f1,n−1αtn−1 + f0,ntn,

where fk,n−k = fk,n−k(Pn) is the number of its k-dimensional faces. Thus, fn−1,1

is the number of facets, and f0,n is the number of vertices.

Theorem 2.1. The mapping F is a ring homomorphism such that

F (dPn) =
∂

∂t
F (Pn).
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Corollary 2.2. The face polynomials of the standard n-cube In and the standard

n-simplex are

F (In) = (α + 2t)n

and

F (∆n) =
(α + t)n+1 − tn+1

α
.

Example 2.3. (1) Simple polytope P 3
1 (tetrahedron)

�

�

�

�

dP 3
1 = 4∆2

F (P 3
1 ) = α3 + 4tα2 + 6t2α + 4t3

∂

∂t
F (P 3

1 ) = 4α2 + 12tα + 12t2

F (dP 3
1 ) = 4F (∆2) = 4(α2 + 3tα + 3t2)

F (dP 3
1 ) =

∂

∂t
F (P 3

1 )

(2) Non simple polytope P 3
2 (octahedron)

�

� �

�

�

�

dP 3
2 = 8∆2

F (P 3
2 ) = α3 + 8tα2 + 12t2α + 6t3

∂

∂t
F (P 3

2 ) = 8α2 + 24tα + 18t2

F (dP 3
2 ) = 8F (∆2) = 8(α2 + 3tα + 3t2)

F (dP 3
2 ) �= ∂

∂t
F (P 3

2 )
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Set

U(t, x;α, I) =
∑
n�0

F (In)xn+1,

U(t, x;α,∆) =
∑
n�0

F (∆n)xn+2.

Lemma 2.4. We have the following:

(1) The function U(t, x;α, I) is the solution of the equation

∂

∂t
U(t, x) = 2x2 ∂

∂x
U(t, x) with U(0, x) =

x

1 − αx
.

(2) The function U(t, x;α,∆) is the solution of the equation

∂

∂t
U(t, x) = x2 ∂

∂x
U(t, x) with U(0, x) =

x2

1 − αx
.

We have

U(t, x;α, I) =
x

1 − (α + 2t)x
,

U(t, x;α,∆) =
x2

(1 − tx)(1 − (α + t)x)
.

Theorem 2.5. Let F̃ : P → Z[t, α] be a linear map such that

F̃ (dPn) =
∂

∂t
F̃ (Pn) and F̃ (Pn)|t=0 = αn.

Then F̃ (Pn) = F (Pn).

Proof. We have F̃ (P 0) = 1 = F (P 0). Let, by induction, it be true for all k � n.

Then

F̃ (dPn+1)(α, t) = F (dPn+1)(α, t)

for all simple (n + 1)-dim polytopes. We obtain

∂

∂t
F̃ (Pn+1) =

∂

∂t
F (Pn+1)

Thus,

F̃ (Pn+1)(α, t) = F (Pn+1)(α, t) + c(α).

Setting t = 0, we obtain

αn+1 = αn+1 + c(α),

i.e. c(α) = 0. �
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3. Dehn–Sommerville relations

Theorem 3.1. For any simple polytope Pn we have

F (Pn)(α, t) = F (Pn)(−α, α + t).

Proof. We have

F (P 0)(α, t) = 1 = F (P 0)(−α, α + t).

Let, by induction, it be true for all k � n. Then

F (dPn+1)(α, t) = F (dPn+1)(−α, α + t).

Thus
∂

∂t
F (Pn+1)(α, t) =

∂

∂t
F (Pn+1)(−α, α + t).

Hence,

F (Pn+1)(α, t) − F (Pn+1)(−α, α + t) = c(α).

Setting t = 0, we obtain

αn+1
[
1 −

(
(−1)n+1 + (−1)nfn,1 + · · · + f0,n+1

)]
= c(α).

The boundary ∂Pn+1 of a simple polytope Pn+1 is n-dim sphere Sn. Using the

classical Euler–Poincaré formula for the sphere Sn we obtain

f0,n+1 − f1,n + · · · + (−1)nfn,1 = 1 + (−1)n,

i.e. c(α) = 0. �

The classical Dehn–Sommerville relations

fk,n−k =
n∑

j=k

(−1)n−j

(
j

k

)
fj,n−j

are equivalent to the formula

F (Pn)(α, t) = F (Pn)(−α, α + t).

Thus we obtain a new proof of Dehn–Sommerville relations.

Corollary 3.2. The function F (Pn)
(
α, 1

2 (z − α)
)

is an even function of α.

Proof.

F (Pn)
(

α,
1
2
(z − α)

)
= F (Pn)

(
−α, α +

1
2
(z − α)

)

= F (Pn)
(
−α,

1
2
(z + α)

)
.

�
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Example 3.3. n = 3

8F (P 3)
(
α,

1
2
(z − α)

)
= 8α3 + 4f2,1(z − α)α2+

+ 2f1,2(z − α)2α + f0,3(z − α)3.

Coefficient at αk, k = 1 and 3 must be zero. Hence,

2f1,2 = 3f0,3 for k = 1,

8 − 4f2,1 + 2f1,2 − f0,3 = 0 for k = 3.

Thus f1,2 = 3(f2,1 − 2), f0,3 = 2(f2,1 − 2).

Set

h(Pn)(α, t) = αn + h1tα
n−1 + · · · + hn−1t

n−1α + tn,

where

h(Pn)(α, t) = F (Pn)(α − t, t).

For example,

h(In)(α, t) = (α + t)n =
n∑

k=0

(
n

k

)
tkαn−k,

h(∆n)(α, t) =
αn+1 − tn+1

α − t
=

n∑
k=0

tkαn−k.

From Dehn–Sommervile relations we obtain

h(Pn)(α, t) = h(Pn)(t, α).

The mapping

h : P −→ Z[α, t] : Pn −→ h(Pn)(α, t)

is the ring homomorphism such that

h(dPn) = ∂h(Pn), h(Pn)
∣∣
t=0

= αn,

where ∂ = ∂
∂α + ∂

∂t .

Theorem 3.4. The ring homomorphism h satisfies the following:

(1) Image of h is generated by

h(∆1) = α + t and h(∆2) = α2 + αt + t2.

(2) Let

H : P −→ Z[α, t]

be a linear mapping such that

H(dPn) = ∂H(Pn), H(Pn)
∣∣
t=0

= αn,

where ∂ = ∂
∂α + ∂

∂t . Then H(Pn) = h(Pn) for any simple polytope Pn.



10 VICTOR M BUCHSTABER

4. Graph-associahedra

The faces of a polytope P of all dimensions form a poset with respect to inclusion.

Given a finite graph Γ. The graph-associahedron P (Γ) is a simple polytope

whose poset is based on the connected subgraph of Γ (see details in Lecture III and

[33]).

When Γ is:
� ���� ��

� �����

� �

n

n + 1

�

�

�

��

�

�

�

�

�

�

��

2

n

n + 1

a path

a cycle

a complete graph

1 2 n n + 1

1

2

1

� ���

��
�

�
�

�
��

� � ��� � ��� ����� � �

����

�

�

�� � �

1 2 n

n + 1

an n-star graph

The polytope P (Γ) results in the:

associahedron (Stasheff polytope) Asn; cyclohedron (Bott–Taubes polytope) Cyn;

permutohedron Pen; stellohedron Stn, respectively.

As2 = St2 is 5-gon and Cy2 = Pe2 is 6-gon.
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Associahedron As3 and 3-path

The Stasheff polytope K5

Cyclohedron Cy3 and 3-cycle

Bott–Taubes polytope

Permutohedron Pe3 and 3-complete graph
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Stellohedron St3 and 3-star graph

Theorem 4.1 (see [24, 33]). For a connected graph Γ on n + 1 nodes, we have

dP (Γ) =
∑
G

P (ΓG) × P (ΓGc)

where

(1) G � {1, . . . , n + 1},
(2) ΓG is the subgraph of Γ with the vertex set G,

(3) ΓGc is the graph with the vertex set {1, . . . , n + 1}\G and arcs between two

vertices i and j if they are path connected in ΓG∪{i,j},

(4) G runs over all proper subsets of {1, . . . , n + 1} such that ΓG is connected.

We have these formulas for d
(
P (Γ)

)
(see [24])

dAsn =
∑

i+j=n−1

(i + 2)Asi × Asj

dCyn = (n + 1)
∑

i+j=n−1

Asi × Cyj

dPen =
∑

i+j=n−1

(
n + 1
i + 1

)
Pei × Pej

dStn = n · Stn−1 +
n−1∑
i=0

(
n

i

)
Sti × Pen−i−1

For example (see pictures)

dAs3 = 2As0 × As2 + 3As1 × As1 + 4As2 × As0

dCy3 = 4(As0 × Cy2 + As1 × Cy1 + As2 × Cy0)

dPe3 = 4Pe0 × Pe2 + 6Pe1 × Pe1 + 4Pe2 × Pe0

dSt3 = 3St2 + St0 × Pe2 + 3St1 × Pe1 + 3St2 × Pe0



LECTURES ON TORIC TOPOLOGY 13

Application to the associahedra.

Consider the series of Stasheff polytopes (the associahedra)

As = {Asn = Kn+2, n � 0}.
Set

U(t, x;α,As) =
∑
n�0

F (Asn)xn+2.

Using that
∂

∂t
F (Asn) =

∑
i+j=n−1

(i + 2)F (Asi)F (Asj)

we obtain

Theorem 4.2 (see [5]). The function U(t, x;α,As) is the solution of the Hopf

equation
∂

∂t
U(t, x) = U(t, x)

∂

∂x
U(t, x) with U(0, x) =

x2

1 − αx
.

The function U(t, x;α,As) satisfies the equation

t(α + t)U2 − (1 − (α + 2t)x)U + x2 = 0.

5. Quasilinear Burgers–Hopf Equation and solitons

The Hopf equation (Eberhard F.Hopf, 1902–1983) is the equation

Ut + f(U)Ux = 0.

The Hopf equation with f(U) = U is a limit case of the following equations:

Ut + UUx = µUxx (the Burgers equation),

Ut + UUx = εUxxx (the Korteweg–de Vries equation).

The Burgers equation (Johannes M.Burgers, 1895–1981) occurs in various areas of

applied mathematics (fluid and gas dynamics, acoustics, traffic flow). It is used for

describing of wave processes with velocity u and viscosity coefficient µ. The case

µ = 0 is a prototype of equations whose solution can develop discontinuities (shock

waves).

K-d-V equation (Diederik J.Korteweg, 1848–1941 and Hugo M. de Vries, 1848–

1935) was introduced in 1895 as equation for the long waves over water. It appears

also in plasma physics. Today K-d-V equation is one of the most famous equation

in soliton theory. The discovery that gave birth to the modern study of solitons

was made in 1834 by John Scott Russell (1808–1882).

Let us consider the Burgers equation

Ut = UUx − µUxx.
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Set U = U0 +
∑
k�1

µkUk. Then

U0,t+
∑
k�1

µkUk,t =

⎛
⎝U0 +

∑
k�1

µkUk

⎞
⎠
⎛
⎝U0,x +

∑
k�1

µkUk,x

⎞
⎠−µU0,xx−

∑
k�1

µk+1Uk,xx.

Thus we obtain:

U0,t = U0U0,x,

U1,t = (U0U1)x − U0,xx.

Consider the series of Bott–Taubes polytopes (the cyclohedra)

Cy = {Cyn : n � 0}.
Set

U(t, x;α,Cy) =
∑
n�0

F (Cyn)xn.

Using that
∂

∂t
F (Cyn) = (n + 1)

∑
i+j=n−1

F (Cyi)F (Asj),

we obtain

Theorem 5.1. The function U(t, x;α,Cy) is the solution

of the equation

∂

∂t
U1 =

∂

∂x
(U0U1) with U1,0(0, x) =

1
1 − αx

,

where U0 is the solution of the Hopf equation

∂

∂t
U0 = U0

∂

∂x
U0 with U0(0, x) =

x2

1 − αx
.
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Lecture II. Toric Topology of Stasheff Polytopes

[Abstract] The Stasheff polytopes Kn, n > 2, appeared in the

Stasheff paper [35] (1963) as the spaces of homotopy parameters

for maps determining associativity conditions for a product a1...an

for n > 2. Stasheff polytopes are in the limelight of several research

areas. Nowadays they have become well-known due to applications

of operad theory in physics. We will describe geometry and combi-

natorics of Stasheff polytopes using several different constructions

of these polytopes and the methods of toric topology.

1. Euler’s polygon division problem

In his letter (1751) to C.Goldbach (1690–1764) L.Euler (1707–1783) provides a

guessing formula for computing the number of triangulations of a polygon with

n + 2 sides. In 1756 J.Segner (1704–1777) gave the solution of this problem by

the recurrence formula: En = E2En−1 + E3En−2 + · · · + En−1E2, n > 3, with

E1 = E2 = E3 = 1 and En+2 is the number Cn of triangulation of (n + 2)-

gon Gn. However Segner’s method did not establish the validity (or invalidity)

of Euler’s guessing formula. This problem was posed as an open challenge to the

mathematicians in the late 1830’s by J.Liouville (1809–1882). He received a lot of

papers with solutions. The most elegant from them (by Liouville’s opinion) was

communicated in a paper of G.Lame (1795–1870) in 1838.

In how many ways can one partition a convex (n + 2)-gon Gn into triangles

by means of diagonals?

n = 1

� �

�

n = 2
� �

� �

� �

� �
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n = 3

�

�

�

��

�
�

�
��

�
�

� �

�

�

��

�
�

�
��

�
�

� �

�

�

��

�
�

�
��

�
�

�

�

�

�
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�
�

�
��

�
�

� �

�

�

��

�
�

�
��

�
�

�

The number of triangulation of (n + 2)-gon Gn is equal to the Catalan number

Cn =
1

n + 1

(
2n

n

)
.

For example,

C1 = 1, C2 = 2, C3 = 5, C4 = 14, . . . .

The sequence {Cn} is named in honour of E. Catalan (1814–1894) who discovered

in 1844 the connection to bracketings of (n + 1)-monomials.

n = 1 a1a2

n = 2 (a1a2)a3 a1(a2a3)

n = 3
(
(ab)c

)
d

(
a(bc)

)
d (ab)(cd)

a
(
(bc)d

)
a
(
b(cd)

)
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Plane trees

The connection between bracketing and plane binary trees with one root and

(n + 1) end points was known to A. Cayley (1821–1895) (see [12]).

n = 1

n = 2

n = 3

The number of sequences of whole numbers a1, . . . , an such that

1 � a1 � · · · � an, where ai � i, is equal to Cn

n = 1 1

n = 2 1, 1 1, 2

n = 3 1, 1, 1 1, 1, 2 1, 1, 3

1, 2, 2 1, 2, 3

and such that a1 = 0 and 0 � ai+1 � ai + 1 is equal to Cn

The number of ways to obtain a product of n + 1 factors in a non-commutative

and non-associative algebra is equal to Cn



18 VICTOR M BUCHSTABER

n = 1 0

n = 2 0, 0 0, 1

n = 3 0, 0, 0 0, 0, 1 0, 1, 0

0, 1, 1 0, 1, 2

n = 1

a1, a2 −→ a1 · a2

n = 2
a1, a2, a3

�������������

�������������

a1, a2 · a3

��

a1 · a2, a3

��
a1 · (a2 · a3) (a1 · a2) · a3

n = 3

a, b, c, d

������������

��������������

ab, c, d

������������

������������
a, bc, d

������������

������������
a, b, cd

������������

������������

(ab)c, d

��

a(bc), d

��

ab, cd

��

a, (bc)d

��

a, b(cd)

��
((ab)c)d (a(bc))d (ab)(cd) a · ((bc)d) a(b(cd))

You can find a lot other examples where arise Cn in [34].

2. Operads and Stasheff polytopes

A geometric realization of an An−2-operad is given by the Stasheff polytope

Kn, n � 2, where dim Kn = (n − 2) and the number of vertices of Kn is the

Catalan number Cn−2. The boundary of Kn, n � 3, has the subdivision

∂Kn =
n−1⋃
i=2

i⋃
k=1

Ki,k
n ,

where dim Ki,k
n = n − 3 and Ki,k

n = Ki × Kn−i+1 ⊂ ∂Kn.
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Example 2.1. (1) K2 is a point.

(2) K3 is an interval I and ∂K3 = K2,1
3

⋃
K2,2

3 .

(3) K4 is a 5-gon and ∂K4 =
2⋃

k=1

K2,k
4

⋃ 3⋃
k=1

K3,k
4 .

An-structure.

An An−2-structure on a topological space X is a sequence of continuous maps

µ2, . . . , µn, where each µn : Kn ×Xn −→ X is appropriately defined on ∂Kn ×Xn

in terms of µi for i < n.

For example, an A0-space is an H-space X with

µ2 = µ : X2 −→ X; K2 = (point).

An A1-space is a homotopy associative H-space X with

µ2 = µ : X2 −→ X and µ3 : I × X3 −→ X,

where I = [0, 1] = K3 such that

[0] × X × X × X

µ×1

��

⊂ �� I × X × X × X

µ3

��

[1] × X × X × X

1×µ

��

⊃��

X × X
µ �� X X × X

µ��

that is

µ3(0;x1, x2, x3) = µ(µ(x1, x2), x3),

µ3(1;x1, x2, x3) = µ(x1, µ(x2, x3)).

So, µ3 gives the usual condition of the homotopy equivalence of the maps µ(µ× 1)

and µ(1 × µ).

In general, for n � 3 the restriction of µn : Kn × Xn → X on the ∂Kn × Xn

gives the maps

µi,k
n : Ki × Kn−i+1 × Xn −→ X, 2 � i � n − 1, 1 � k � i,

such that

µi,k
n (t, τ ;x1, . . . , xn)

= µi(t;x1, . . . , xk−1, µn−i+1(τ ;xk, . . . , xn−i+k), xn−i+k+1, . . . , xn),

where t ∈ Ki and τ ∈ Kn−i+1.
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For example, in the case n = 4 we obtain the conditions on five functions:

µ2,1
4 (t, τ ;x1, . . . , x4) = µ2

(
t;µ3(τ ;x1, x2, x3), x4

)
,

µ2,2
4 (t, τ ;x1, . . . , x4) = µ2

(
t;x1, µ3(τ ;x2, x3, x4)

)
,

µ3,1
4 (t, τ ;x1, . . . , x4) = µ3

(
t;µ2(τ ;x1, x2), x3, x4

)
,

µ3,2
4 (t, τ ;x1, . . . , x4) = µ3

(
t;x1, µ2(τ ;x2, x3), x4

)
,

µ3,2
4 (t, τ ;x1, . . . , x4) = µ3

(
t;x1, x2, µ2(τ ;x3, x4)

)
.

3. Equivalent ways to describe Stasheff polytopes

We will use four equivalent ways to describe the combinatorics and toric topology

of Stasheff polytopes Kn: bracketing, polygon dissection, plane trees and intervals.

The language of brackets.

Definition 3.1. The set Γi, 0 � i < n − 2, of i-dimensional faces of the Stasheff

polytope Kn of dimension n − 2 is the set of correct bracketings of the monomial

a1 · . . . · an with n− 2− i pairs of brackets. The outer pair of brackets (a1 · . . . · an)

is not taken into account.

The incidence relation is defined as follows. Let γ ∈ Γk and δ ∈ Γl, where k > l.

The cell δ lies at the boundary of the cell γ (i.e., δ ⊂ ∂γ geometrically) if γ ⊂ δ (as

sets of bracketings).

The set of 0-dimensional faces of the polytope Kn, i.e., the set of its vertices,

is the set of correct bracketings of the monomial a1 · . . . · an with n − 2 pairs of

brackets.

Two vertices in Kn are joined by an edge if and only if the bracketing corre-

sponding to one vertex can be obtained from the bracketing corresponding to the

other vertex by deleting a pair of brackets and inserting, in a unique way, another

pair of brackets different from the deleted one. For example, in the case K3:

� �(a1a2)a3 a1(a2a3)

The language of diagonals.

Definition 3.2. Consider a convex (n + 1)-gon Gn−1. The set Γi, 0 � i < n − 2,

of i-dimensional faces of the Stasheff polytope Kn of dimension n − 2 is the set of

all distinct sets of n − i − 2 disjoint diagonals of Gn−1. (That is, each face of Kn

is associated with a set of disjoint diagonals of Gn−1, and vice versa.)
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The incidence relation is defined in the same way as in the preceding definition.

Let γ ∈ Γk and δ ∈ Γl, where k > l. The cell δ lies at the boundary of γ (i.e.,

δ ⊂ ∂γ geometrically) if γ ⊂ δ (as sets of diagonals).

Corollary 3.3. The dihedral group Dn+1 of symmetries of a regular (n + 1)-gon

Gn−1 is the transformation group of the Stasheff polytope Kn.

The number of diagonals

(n − 2)(n + 1)
2

=
(

n + 1
2

)
− (n + 1)

of Gn−1 is equal to the number m of (n−3)-dimensional faces (facets) of Kn. Thus

ν(Kn) = m − dim Kn =
(
n−1

2

)
for n � 3.

Example 3.4. (The Stasheff polytope K3)

�

�

� � �

�

�

� � �

�

� � �

�

�

(a1a2)a3

a1(a2a3)

a1a2a3

The languages: diagonals, brackets and plane trees.
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Example 3.5. (The Stasheff polytope K4)

(a1 · a2) · (a3 · a4)

((a1 · a2) · a3) · a4

(a1 · (a2 · a3)) · a4

a1 · ((a2 · a3) · a4) a1 · (a2 · (a3 · a4))

(a1 · a2) · a3 · a4(a1 · a2 · a3) · a4

a1 · (a2 · a3) · a4

a1 · (a2 · a3 · a4)

a1 · a2 · (a3 · a4)

The languages: correct bracketings and disjoint diagonals.

Example 3.6. (The Stasheff polytope K4)

�

�

�

�

�

� � � �

�

�

�

� � � �

�

�

�

� � � �

�

�

�

� � � �

�

�

�

� � � �

�

��

� � � �

�

�

� � � �

�

�

����

�

�

� � � �

�

�

� � � �

�

�

� � � �

�
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The language of plane trees.

The language of intervals.

To each pair of brackets of the form

a1 · · · ai(ai+1 · · · ai+l+1)ai+l+2 · · · an+1

we assign the interval Ii,l = [i + 1, · · · , i + l] ⊂ [1, · · · , n], where 0 � i � n − l and

1 � l � n − 1.

For example:

K3 (a1 · a2) · a3 −→ I0,1, a1 · (a2 · a3) −→ I1,1.

K4 (a1 · a2 · a3) · a4 → I0,2, a1 · (a2 · a3) · a4 → I1,1,

a1 · (a2 · a3 · a4) → I1,2, a1 · a2 · (a3 · a4) → I2,1,

(a1 · a2) · a3 · a4 → I0,1.

4. A realization of the Stasheff polytope Kn+1

as a simple polytope in Rn

with integer vertices lying in a hyperplane

Consider the formal monomial a1 · . . . ·an+1. Let us label all multiplication signs

“·” in this monomial from left to right with the numbers 1, 2, . . ., n, so that the i-th

multiplication sign, 1 � i � n, is between ai and ai+1, i.e.

a1
1· a2 · · · ai

i· ai+1 · · · an
n· an+1.

To each correct bracketing of this monomial with n − 1 pairs of brackets, we

assign the n-dimensional vector J = (m1, . . . ,mn) whose coordinates mi are defined

as follows: each multiplication sign stands for the multiplication of two smaller

monomials. Set mi = liri, where li and ri are the lengths of the right and left

monomials corresponding to the i-th multiplication sign. For example, in the case

n = 3, the bracketing

a1
1· ((a2

2· a3)
3· a4)

gives rise to the vector (3, 1, 2), because m1 = 1 · 3, m2 = 1 · 1, and m3 = 2 · 1; and

the bracketing (a1 · a2) · (a3 · a4) gives rise to the vector (1, 4, 1).

This defines a map from the set of vertices of the (n − 1)-dimensional Stasheff

polytope Kn+1 into Rn. Extending it by linearity, we obtain a mapping

J : Kn+1 → Rn.
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For example, in the case n = 2 we obtain

J : K3 → R2.

J
(
(a1 · a2) · a3

)
= (1, 2), J

(
a1 · (a2 · a3)

)
= (2, 1).

Let 1 � l � n− 1, 0 � i � n− l. Take the linear function pi,l : Rn → R, where

for 1 � l � n − 1

p0,l(x) =
1
l
(x1 + · · · + xl) − 1

n − l
(xl+1 + · · · + xn),

pn−l,l(x) =
1
l
(xn−l+1 + · · · + xn) − 1

n − l
(x1 + · · · + xn−l)

= −p0,n−l(x);

and for 0 < l < n − 1, 0 < i < n − l

pi,l(x) =
1
l
(xi+1 + · · · + xi+l) − 1

n − l
(x1 + · · · + xi + xi+l+1 + · · · + xn).

Set

Li,l = {x ∈ Rn : pi,l(x) + 1
2n � 0}.

Theorem 4.1. The mapping J : Kn+1 → Rn is an embedding. Its image is the

intersection of the hyperplane

H = {x ∈ Rn :
1
n

(x1 + · · · + xn) =
n + 1

2
}

with the half-spaces Li,l, 1 � l � n − 1, 0 � i � n − l.

For each vertex of Kn+1, its image lies in the intersection of the n − 1 half-

spaces Li,l determined by the pairs of brackets occurring in the correct bracketing

corresponding to this vertex. This result is some improvement of the main result

of J.-L. Loday (see [29]), who used the language of plane binary trees.

Set B = {x ∈ Rn : −n
2 � p0,l(x) � n

2 , l = 1, . . . , n − 1}.

Corollary 4.2. The image of Kn+1 in Rn is the intersection of the (n − 1)-

dimensional cube H ∩ B with the half spaces Li,l, where 0 < l < n − 1, 0 < i <

n− l. Thus, Kn+1 is a truncated (n− 1)-dimensional cube with
(
n−1

2

)
truncations.

N.B.
(
n−1

2

)
= ν(Kn).
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5. A realization of the Stasheff polytope Kn+1

as a simple polytope with integer vertices in Rn−1

Set

nyl = l(n − l)p0,l(x) +
1
2
nl(n − l), l = 1, . . . , n − 1.

We have for x ∈ Kn+1 ⊂ Rn:

0 � yl � l(n − l).

Let

zl = x1 + · · · + xl, l = 1, . . . , n.

Using that zn = 1
2n(n + 1) for x ∈ Kn+1, we obtain:

nyl = (n − l)zl − l(zn − zl) +
1
2
nl(n − l)

= n
(
zl − 1

2
l(l + 1)

)
.

So,

yl = zl −
(

l + 1
2

)
.

We have for 0 < l < n − 1, 0 < i < n − l

l(n − l)pi,l(x) = (n − l)(zi+l − zi) − l(zi + zn − zi+l)

= n[zi+l − zi − 1
2
l(n + 1)].

Thus

l(n − l)pi,l(x) +
1
2
nl(n − l) = n[zi+l − zi − 1

2
(l + 1)l]

= n[yi+l − yi + il].

Theorem 5.1. There is the embedding

J : Kn+1 −→ Rn−1

with the image

{y = (y1, . . . , yn−1) : 0 � yl � l(n − l), yi − yi+l � il},
where l = 1, . . . , n − 1, i = 1, . . . , n − l − 1.

Set y0 = yn = 0 and take

Li,l = {y ∈ R
n−1 : yi − yi+l � il}, 1 � l � n − 1, 0 � i � n − l.

Any vertex vq ∈ Kn+1, q = 1, . . . , Cn, gives a set {Ii,l, (i, l) ∈ s(q)} of intervals

determined by the pairs of brackets occurring in the bracketing corresponding to

this vertex vq.
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Corollary 5.2. We have

Li,l ∩ J(Kn+1) � Kl+1 × Kn−l+1.

For each vertex vq ∈ Kn+1 we have

J(vq) = ∩
(i,l)∈s(q)

∂Li,l.

Example 5.3. (The Stasheff polytope K3)

n = 2 =⇒ l = 1, K3 = {y ∈ R1 : 0 � y � 1},

(a1 · a2) · a3 −→ I0,1, a1 · (a2 · a3) −→ I1,1

v1 = {0 ∈ R1}, v2 = {1 ∈ R1}.

Example 5.4. (The Stasheff polytope K4)

n = 3 =⇒ 1 � l � 2, 0 � i � 3 − l

K4 = {(y1, y2) : 0 � yi � 2, i = 1, 2, y1 − y2 � 1},

�
�

�
��

�
�

�
��

�

�

y1

y2

�

�

�

�

�

�

(0, 2)

(0, 1)

(2, 1)

(1, 2)

(1, 1)

K4 � I2 ∩ L1,1(
(a1 · a2) · a3

)
· a4 =⇒ v1 = ∂L0,1 ∩ ∂L0,2,(

a1 · (a2 · a3)
)
· a4 =⇒ v2 = ∂L0,2 ∩ ∂L1,1,

a1 ·
(
(a2 · a3) · a4

)
=⇒ v3 = ∂L1,1 ∩ ∂L1,2,

a1 ·
(
a2 · (a3 · a4)

)
=⇒ v4 = ∂L1,2 ∩ ∂L2,1,

(a1 · a2) · (a3 · a4) =⇒ v5 = ∂L2,1 ∩ ∂L0,1.
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Example 5.5. (The Stasheff polytope K5)

n = 4 =⇒ 1 � l � 3, 0 � i � 4 − l

Let I3 = {(y1, y2, y3) : 0 � yi � 3, i = 1, 3, 0 � y2 � 4}

K5 � I3 ∩ L1,1 ∩ L1,2 ∩ L2,1,

where

L1,1 = {y ∈ R3 : y1 − y2 � 1},
L1,2 = {y ∈ R3 : y1 − y3 � 2},
L2,1 = {y ∈ R3 : y2 − y3 � 2}.

Consider the 5-monomial a1 · a2 · a3 · a4 · a5. We have 9 pairs of brackets

(a1 · a2) → I0,1; (a2 · a3) → I1,1; (a3 · a4) → I2,1; (a4 · a5) → I3,1;

(a1 · a2 · a3) → I0,2; (a2 · a3 · a4) → I1,2; (a3 · a4 · a5) → I2,2;

(a1 · a2 · a3 · a4) → I0,3; (a2 · a3 · a4 · a5) → I1,3

and C4 vertices v1, . . . , v14.

For example((
(a1 · a2) · a3

) · a4

)
· a5 =⇒ ∂L0,3 ∩ ∂L0,2 ∩ ∂L0,1,(

(a1 · a2) · (a3 · a4)
)
· a5 =⇒ ∂L0,3 ∩ ∂L0,1 ∩ ∂L2,1,

a1 ·
((

(a2 · a3) · a4

) · a5

)
=⇒ ∂L1,1 ∩ ∂L1,2 ∩ ∂L1,3.
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Proposition 5.6. The Stasheff polytopes are simple.

You can find all details about simple polytopes in [3]

Theorem 5.1 provides an explicit description of the (n − 1) facets whose inter-

section is a given vertex of the (n − 1)-dimensional polytope Kn+1.

Definition 5.7. An n-dimensional polytope P ∗ is said to be dual to P if for each i,

0 � i � n−1, there exists an one-to-one correspondence between the i-dimensional

faces γi of P and the (n − i − 1)-dimensional faces γ∗
n−i−1 of P ∗ such that the

embedding γ∗
n−j−1 ⊂ γ∗

n−i−1 corresponds to the embedding γi ⊂ γj .

Each facet of Asn is Asi ×Asj , i � 0, i+ j = n− 1, where embedding ιk : Asi ×
Asj → ∂Asn, 1 � k � i + 2, corresponds to the pairing

(a1 · · · ai+2) × (b1 · · · bj+2) −→ a1 · · · ak−1(b1 · · · bj+2)ak+1 · · · ai+2.

Lemma 5.8. The boundary of the associahedra is

dAsn =
∑

i+j=n−1

i+2∑
k=1

ιk(Asi × Asj)

=
∑

i+j=n−1

(i + 2)(Asi × Asj).

Each pair of brackets in the monomial a1 · . . . · an+1 determines a facet of the

polytope Kn+1. Thus, in terms of the dual polytope, it corresponds to a vertex of

the polytope K∗
n+1. The number of vertices of K∗

n+1 is (n−1)(n+2)
2 .

Definition 5.9. A polytope S is said to be simplicial if every face of S is a simplex.

The dual P ∗ of a simple polytope P is simplicial and vice versa.

Proposition 5.10. The dual K∗
n of a Stasheff polytope Kn is a simplicial polytope.

Proposition 5.11. The boundary of the polytope K∗
n is a triangulation of the

(n − 3)-dimensional sphere.

Example 5.12. Construction K∗
5 (the fragment) via stellar subdivision (see [3]).
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Octahedron (I3)∗ is dual to cube I3.

Definition 5.13. A polytope P is called a flag polytope if each set of vertices of P

pairwise joined by edges forms a simplex.

Proposition 5.14. The dual K∗
n of a Stasheff polytope Kn is a flag polytope.

Proof. To each set of k vertices of K∗
n, there corresponds a set of k diagonals of a

convex (n + 1)-gon Gn−1. These vertices are pairwise joined by edges if and only if

the corresponding diagonals are disjoint. By definition, this collection of diagonals

determines a face of Kn and hence a face of K∗
n. Since K∗

n is a simplicial polytope,

it follows that this face is a simplex. �

6. Stanley–Reisner ring of Stasheff polytopes

Let P be a simple polytope with m facets F1, . . . , Fm. Fix a commutative ring

k with unit. Let k[v1, . . . , vm] be a polynomial graded k-algebra, deg vi = 2.

Definition 6.1. The face ring k(P ) (or the Stanley–Reisner ring) of a simple

polytope P is the quotient ring

k(P ) = k[v1, . . . , vm]/JP ,

where JP is the ideal generated by all square-free monomials vi1 · vi2 · · · vis
, i1 <

· · · < is, such that Fi1 ∩ · · · ∩ Fis
= ∅ in P .

Corollary 6.2. k(Kn) = k[v1, . . . , vm]/JKn
where the set {v1, . . . , vm} corre-

sponds to the set of diagonals {d1, . . . , dm}, m = (n−2)(n+1)
2 of a convex (n + 1)-

gon Gn−1 and JKn
is the ideal generated by all monomials vivj , i < j, such that

di ∩ dj �= ∅ in Gn−1.

Example 6.3. k(K3) = k[v1, v2]/(v1v2).
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Corollary 6.4. A generator in JKn
corresponds to a set of four vertices in a convex

(n + 1)-gon Gn−1, that is the number of generators δ in JKn
, n � 3, is

(
n+1

4

)
.

For example,

n = 4 : m = 5, δ = 5

n = 5 : m = 9, δ = 15

Let k[Dn+1] be the group ring over k of the dihedral group Dn+1.

Corollary 6.5. The face ring k(Kn) is a k[Dn+1]-module.

Example 6.6.

k(K3) = k[v, τv]/(v · τv),

where τ is the generator in Z2.

k(K4) = k[τ iv, i = 0, . . . , 4]/(τ iw, i = 0, . . . , 4),

where τ is a generator in Z5 and w = v · τv.

k(K5) = k[τ iv1, i = 0, . . . , 5, τ iv2, i = 0, 1, 2]/JK5 ,

where τ is a generator in Z6, JK5 = (τ iwj , i = 0, . . . , 5, j = 1, 2, τ iw3, i = 0, 1, 2),

and w1 = v1 · τv1, w2 = v1 · v2, w3 = v2 · τv2.

7. The solution of the E.Hopf equations

It follows from the theory of partial differential equations that the quasilinear

Hopf equation

Ut + f(U)Ux = 0

with the initial condition U(0, x) = ϕ(x) has the solution U = ϕ(ξ), where ξ =

ξ(t, x) is determined by the relation x = ξ + f(ϕ(ξ))t.

We consider only the case f(U) = −U . The transformation t → −t takes this

equation to the equation Ut +UUx = 0. For the initial condition ϕ(x) = x2/(1−x),

the function ξ(t, x) is given by the quadratic equation

(t + 1)ξ2 − (1 + x)ξ + x = 0.

By solving this equation, we obtain a closed-form expression for the solution of

the Cauchy problem in a neighborhood of the point (0, 0): U(t, x) = ξ2

1−ξ , where

ξ = 2x

x+1+
√

(x+1)2−4(t+1)x
.

For a general initial condition, the relation x = ξ − ϕ(ξ)t implies that

ϕ(ξ) =
1
t
(ξ − x).
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Thus, ξ(t, x) = tU(t, x) + x; i.e., we can eliminate the function ξ(t, x) from the

equation U = ϕ(ξ).

Corollary 7.1. The solution of the equation Ut = UUx with U(0, x) = ϕ(x) is a

solution of the functional equation (equation on the characteristics)

U = ϕ(x + tU).

In particular, if ϕ(x) is a rational function, then U(t, x) satisfies an algebraic func-

tional equation of the form
n∑

k=0

ak(t, x)Uk = 0,

where ak(t, x) are polynomials in t and x.

8. The case related with the family of Stasheff polytopes

In our case, ϕ(x) = x2/(1 − x), and the function U(t, x) satisfies the equation

t(1 + t)U2 + (2xt + x − 1)U + x2 = 0.

It can readily be seen from this equation that U has the symmetry

U(t, x) = U(−(t + 1),−x).

Let us treat ξ(t, x) as a function of x with parameter t. Then it is the inverse

of the function x − ϕ(x)t. Hence we can apply the classical Lagrange formula for

computing the inverse function:

ξ(t, x) =
1

2πi

∫
|z|=ε

− ln
(

1 − x

z

(
1 − ϕ(z)

z
t

)−1)
dz

=
∑ xn

n

[(
1 − ϕ(z)

z
t

)−n]
n−1

,

where [γ(z)]k is the coefficient of zk in the series γ(z). By substituting the initial

condition ϕ(x) = x2/(1 − x) into this formula, we obtain

ξ(t, x) =
∑
n≥1

xn

n

[(
1 +

tz

1 − (t + 1)z

)n]
n−1

.

Hence

U(t, x) =
∑
n≥2

Vn(t)xn,

where

Vn(t) =
1
n

n−2∑
l=0

(
n

l + 1

)(
n − 2

l

)
tl(1 + t)n−2−l.
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Note that this formula readily implies the identity

U(t, x) = U(−(t + 1),−x).

Moreover, if we use the identity
k∑

l=0

(
n

l + 1

)(
k

l

)
=
(

n + k

k + 1

)
, 0 ≤ k ≤ n − 2,

then this formula for Vn(t) implies the classical result

fk−1(Kn) =
1
n

(
n − 2

k

)(
n + k

k + 1

)
, 0 ≤ k ≤ n − 2.

Here fk−1(Kn) is the number of (n−k−2)-dimensional faces of the Stasheff polytope

Kn.

Another way to obtain the solution is to consider conservation laws. Let U(t, x)

be the solution of the Cauchy problem for the Hopf equation

Ut = UUx, U(0, x) = ϕ(x).

This equation has the conservation laws(
Uk+1

k + 1

)
x

=
(

Uk

k

)
t

, k = 1, 2, . . . .

Hence for any k and l, 1 ≤ k ≤ l, l = 1, 2, . . . ,

we have
dk

dxk

(
U l+1

l + 1

)
=

dk−1

dxk−1

(
U l

l

)
t

=
dk

dtk

(
U l−k+1

l − k + 1

)
.

Let us define Uk(x) as the coefficient of tk in the expansion

U(t, x) =
∑

n

∑
k

uk,ntkxn =
∑

Uk(x)tk.

Then
dk

dtk
U

∣∣∣∣
t=0

= k!Uk(x) =
dk

dxk

(
Uk+1

0 (x)
k + 1

)
for l = k. Therefore,

Uk(x) =
1

(k + 1)!
dk

dxk
ϕk+1(x).

By using the binomial expansion

(1 − x)−(k+1) = 1 + (k + 1)x + · · · + (k + l) · · · (k + 1)
l!

xl + · · · ,

we obtain

uk,n =
1
n

(
n − 2

k

)(
n + k

k + 1

)
= fk−1(Kn).

Thus we have computed the number

fk−1(Kn), n � 3, 1 � k < n − 2
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with the help of conservation laws for the Hopf equation.

We can find the first computation of this number in the Cayley’s paper (1891),

where he also used the function Uk(x). Note that Cayley obtained the above form

of Uk(x) by using the recursion formula

f(k, n) =
n

2k

∑
l+m=n+2

∑
i+j=k−1

f(i, l)f(j,m),

where f(k, n) = uk,n−1 = fk−1(Kn−1) (see details in [25]).
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Lecture III. Minkowski sum and simple polytopes

1. Minkowski sum

Let M1 and M2 be subsets in Rn.

Definition 1.1. The Minkowski1 sum of M1 and M2 is the set

M1 + M2 = {x ∈ Rn : x = x1 + x2, x1 ∈ M1, x2 ∈ M2}.

Lemma 1.2. If M1 and M2 are convex polytopes then M1 + M2 is again a convex

polytope.

The collection of all convex polytopes in Rn is denoted by Mn. The Minkowski

sum gives an abelian monoid structure on Mn, where zero 0 is the point 0 =

(0, . . . , 0) ∈ Rn.

Proposition 1.3. The following hold:

(1) There is the canonical homomorphism Rn → Mn:

the image of a vector v ∈ Rn is the one point polytope.

(2) Mn has the structure of R-module: for given λ ∈ R and M ∈ Mn

λM = {λx ∈ Rn, x ∈ M}.

(3) In Mn we have M1 + M = M2 + M ⇒ M1 = M2 for any M ∈ Mn.

(4) Any linear map L : Rn → Rk induces the homomorphism

L∗ : Mn −→ Mk.

Denote by conv(v1, . . . , vN ) the convex hull of the points v1, . . . , vN in Rn.

Lemma 1.4. The Minkowski sum of convex hulls is the convex hull:

conv(v1, . . . , vk) + conv(w1, . . . , wl) = conv(v1 + w1, . . . , vi + wj , . . . , vk + wl).

Proof. Set M1 = conv(v1, . . . , vk) and M2 = conv(w1, . . . , wl). Then vi + wj ∈
M1 + M2 for any 1 � i � k and 1 � j � l. Take

x1 =
k∑

i=1

tivi, x2 =
l∑

j=1

τjwj ,

1Hermann Minkowski, 1864–1909
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where
k∑

i=1

ti = 1, ti � 0 and
l∑

j=1

τj = 1, τj � 0. Then

x1 + x2 =
k∑

i=1

ti

( l∑
j=1

τj

)
vi +

l∑
j=1

τj

( k∑
i=1

ti

)
wj

=
k∑

i=1

l∑
j=1

ξij(vi + wj),

where ξij = tiτj � 0 and
k∑

i=1

l∑
j=1

ξij = 1. �

2. Minkowski sums in R1
and R2

For example, when M1 = [−1, 2] ⊂ R1, M2 = [1, 2] ⊂ R1,

M1 + M1 = [−2, 4] = 2M1,

M1 + (−M1) = [−1, 2] + [−2, 1] = [−3, 3],

M1 + M2 = [0, 4], and

M1 + (−M2) = [−3, 1].

In general, if Mi = [ai, bi], ai � bi, i = 1, 2,

M1 + M2 = [a, b],where a = a1 + a2, b = b1 + b2,

M1 − M2 = [a′, b′],where a′ = a1 − b2, b′ = b1 − a2.

So,

M1 − M1 = (b1 − a1)[−1, 1].

Let M1 = conv
(
(0, 0), (1, 0)

)
⊂ R2 and M2 = conv

(
(0, 1), (1, 0)

)
⊂ R2.

� �

�

�

�

�

�

x1

x2

10 2

1

M2

M1

M1 + M2�����

M1 + M2 is the convex hull of the set {(1, 0), (0, 1), (2, 0), (1, 1)}.
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Set e0 = (0, 0), e1 = (1, 0), e2 = (0, 1). Let M1 = conv(e0, e1, e2) and M2 =

conv(e0, x), where x ∈ R2, x �= 0. Then

(M1 + M2)[x] = conv(e0, e1, e2, x, e1 + x, e2 + x).

For example, we obtain 5-gon if x = e1 + e2 and 4-gon if x = e1. Moreover, if M2

is parallel to one of the edges of M1 then M1 + M2 is 4-gon, otherwise M1 + M2 is

5-gon.

3. Support functions

The support function of M ∈ Mn is the function

sM : Rn −→ R : sM (x) = max
y∈M

< x, y >,

where < x, y >=
n∑

k=1

xkyk is the scalar product.

It is easy to chek that:

• sM (λx) = λsM (x) for any non negative λ ∈ R. So, if |x| �= 0, then sM (x) =

|x|sM

(
x
|x|
)
.

• sM is a piece linear function.

• sM is a linear function iff M is a point in Rn.

• sM is a convex (concave up) function, that is

sM (tx1 + (1 − t)x2) � tsM (x1) + (1 − t)sM (x2)

for any x1, x2 and t ∈ [0, 1].

Lemma 3.1. For any M1, M2 ∈ M we have

sM1+M2 = sM1 + sM2 .

Proof. Let M(x) be the image of M on mapping Rn → R : y �→< x, y >. We

have M(x) = [a, b], where a = max
y∈M

< x, y >= sM (x) and b = min
y∈M

< x, y >. It is

clear that

M1(x) + M2(x) = (M1 + M2)(x).

Using that in R1

[a1, b1] + [a2, b2] = [a1 + a2, b1 + b2],

we obtain the proof. �
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4. Fan of a convex polytope

Consider the set {v1, . . . , vN} of all vertices of convex polytope M . For any

x ∈ Rn there exists such vi that sM (x) =< x, vi >. Set

Vi = {x ∈ Rn : sM (x) =< x, vi >}.

We have Rn =
N⋃

i=1

Vi and any Vi is the convex polyhedral cone with vertex O ∈ Rn.

The set {Vi, i = 1, . . . , N} gives the fan of convex polytope M .

Example 4.1. M = conv
(
(1, 0), (0, 1)

) ⊂ R2. Then

Vi = {x = (x1, x2) ∈ R2 : max
y∈M

< x, y >= xi},

max
y∈M

< x, y >= max
t∈[0,1]

(
tx1 + (1 − t)x2

)
.

� �

�

�

�

x1

x2

10�
�

�
�

�
�

�
�

�
�

�
�

��

1

V1

V2

5. Minkowski sum of simple polytopes

A zonohedron is a convex polyhedron in R3 where every face is a polygon with

point symmetry or, equivalently, symmetry under rotations through 180◦. Any

zonohedron may equivalently be described as the Minkowski sum of line segments

in R3, or as the 3-dim projection of a hypercube. Zonohedra were originally defined

and studied by E. S. Fedorov (1853–1919), a Russian crystallographer.

More generally, in Rn the Minkowski sum of line segments forms a polytope

known as a zonotope. Set v0 = (0, 0, 0), v1 = (
√

3, 0, 0), v2 = (0,
√

3, 0), v3 =

(1, 1, 1), v4 = (1, 1,−1). Let Mi = conv(v0, vi). Then M1 + M2 + M3 + M4 is

the well known rhombic dodecahedron. It is a convex polyhedron with 12 rhombic

faces, 24 edges and 14 vertices. Some minerals such as garnet form a rhombic

dodecahedral crystal habit. Honeybees use the geometry of rhombic dodecahedra

to form honeycomb. It gives an example when a Minkowski sum of the simple

polytopes forms a nonsimple polytope.
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Problem 5.1. When does Minkowski sum of simple polytopes give a simple poly-

tope?

Let ∆1 = I1 = {(t1, t2), ti � 0, t1+t2 = 1}. Consider a collection {(v1,1, v1,2), . . . ,
(vN,1, vN,2)} of pairs of vectors in Rn and the mapping

ϕ : IN −→ R
n : ϕ

(
(t1,1, t1,2), . . . , (tN,1, tN,2)

)
=

N∑
i=1

(ti,1vi,1 + ti,2vi,2).

The image of ϕ is a zonotope in Rn.

Problem 5.2. When does ϕ give a simple polytope?

For more general problem, consider a collection {(v1,1, . . . , v1,i1+1), . . . ,
(vN,1, . . . , vN,iN+1)} of the finite sets of vectors in Rn and the mapping

Φ: ∆i1 × · · · × ∆iN −→ R
n : Φ(t1, . . . , tN ) =

N∑
k=1

ik+1∑
j=1

tk,jvk,j ,

where ∆ik = {tk = (tk,1, . . . , tk,ik+1), tk,j � 0,
∑ik+1

j=1 tk,j = 1}.

Problem 5.3. When does Φ give a simple polytope?

6. Building sets

Consider a collection B of non-empty subsets of the set [n] = {1, . . . , n}. Let

ei, i = 1, . . . , n, be the endpoints of the standard basis vectors in Rn. For any

I ∈ B set ∆I = conv(ei|i ∈ I) and PB =
∑

I∈B

∆I . Convex polytope PB is the image

of the map ϕB :
∏

I∈B

∆I −→ Rn.

Problem 6.1. When does ϕB give a simple polytope?

Definition 6.2. A collection B of non-empty subsets of the set [n] = {1, . . . , n} is

called a building set if:

• I, J ∈ B and I
⋂

J �= ∅ ⇒ I ∪ J ∈ B

• {i} ∈ B for all i ∈ [n].

Theorem 6.3 ([33]). The convex polytope PB ⊂ Rn is a simple polytope.

Definition 6.4. Let Γ be a graph with the vertex set [n] = {1, . . . , n} and no

loops or multiple edges. The graphical building set B(Γ) is the set of all non-empty

subsets I ⊂ [n] such that the graph Γ|I is connected.
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For example, for the graph Γ

� � �

�

�
�

�
�

�
�

1 2 3

4

we have

� �

�

2 3

4

Γ
∣∣
{2,3,4}

� �

�

�
�

�
�

�
�

1 3

4

Γ
∣∣
{1,3,4}

that is {2, 3, 4} ∈ B(Γ), and {1, 3, 4} �∈ B(Γ).

It is easy to obtain the following result.

Lemma 6.5. The graphical building set B(Γ) is a building set.

You can find a lot of results concerning the building sets and graphical building

set in [33].

Given a finite graph Γ. The graph-associahedron P (Γ) is a simple polytope

PB(Γ). We have obtained (see Lecture I):

• associahedron (Stasheff polytope) Asn is the graph-associahedron P (Γ)

where Γ is an n-path;

• cyclohedron (Bott–Taubes polytope) Cyn is P (Γ) where Γ is an n-cycle;

• permutohedron Pen is P (Γ) where Γ is an n-complete graph;

• stellohedron Stn is P (Γ) where Γ is an n-star graph.

Lemma 6.6. Let [n] ∈ B. Then for any Ik ∈ B such that Ik �= [n], the equation∑
i∈Ik

xi = µ(Ik) (∗)
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gives a facet of PB in the hyperplane
n∑

i=1

xi = µ([n]), where µ(Ik) is the number of

Il ∈ B such that Il ⊆ Ik. Any facet of PB can be described by equation (∗) for some

Ik ∈ B.

Corollary 6.7. The polytope PB is result of successive truncations of the simplex

{x ∈ Rn :
n∑

i=1

xi = µ([n])}.

Example 6.8.

(1)

� � �

1 2 3

Γ : P (Γ) = As2 = St2 is 5-gon

The graphical building set B(Γ) is B = { {1}, {2}, {3}, {1, 2}, {2, 3}, {1, 2, 3} }.
We obtain that the equations

x1 = 1; x2 = 1; x3 = 1; x1 + x2 = 3; x2 + x3 = 3

give the facets of As2 ⊂ L, where L is the hyperplane {x ∈ R3 : x1 +x2 +x3 = 6}.
Thus, the equations

x1 = 1; x2 = 1; x1 + x2 = 5; x1 + x2 = 3; x1 = 3

give the facets of As2 ⊂ R2.

(2)

� �
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1 3

2

Γ : P (Γ) = Cy2 = Pe2 is 6-gon

The graphical building set B(Γ) is B = { {1}, {2}, {3}, {1, 2}, {2, 3}, {1, 3}, {1, 2, 3} }.
We obtain that the equations

x1 = 1; x2 = 1; x3 = 1; x1 + x2 = 3; x2 + x3 = 3; x1 + x3 = 3

give the facets of Cy2 ⊂ L, where L is the hyperplane {x ∈ R3 : x1 +x2 +x3 = 7}.
Thus, the equations

x1 = 1; x2 = 1; x1 + x2 = 6; x1 + x2 = 3; x1 = 4; x2 = 4



LECTURES ON TORIC TOPOLOGY 41

give the facets of Cy2 ⊂ R2.

Corollary 6.9. The equations

xi + . . . + xi+k =
(

k + 2
2

)
, i = 1, . . . , n + 1, k = 0, . . . , n + 1 − i,

give the facets of Asn ⊂ L, where L is the hyperplane{
x ∈ Rn+1 : x1 + . . . + xn+1 =

(
n + 2

2

)}
.
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Lecture IV. Moment-angle complexes and applications

1. Simplicial complexes and maps.

An abstract simplicial complex on a set V = {v1, . . . , vm} is a collection

K = {σ}

of subsets in V such that for every σ ∈ K all subsets in σ (including ∅) also belong

to K . By definition:

• σ ∈ K — (abstract) simplex.

• One-element subsets — vertices.

• dim σ = |σ| − 1, where |σ| — the number of elements.

• dim ∅ = −1.

• dim K = max
σ∈K

dim σ.

A simplicial map ϕ : K1 → K2 is a mapping V1 → V2 such that the image of

every simplex from K1 is a simplex in K2.

A simplicial map ϕ is said to be non-degenerate if |ϕ(σ)| = |σ| for any σ ∈ K1.

Geometric simplices ∆k in Rn for n > k are convex hulls of sets of affinely

independent points α1, . . . , αk+1 ∈ Rn

x =
k+1∑
j=1

xjαj ,

k+1∑
j=1

xj = 1, xj � 0,

where (x1, . . . , xk+1) are called barycentric coordinates of a point x ∈ ∆k.

A face of ∆k is the simplex determined by a subset of vertices α1, . . . , αk+1. The

empty subset of vertices determine the empty face. A face of dim(k − 1) (a facet)

is given by ∆k−1
j = (α1, . . . , α̂j , . . . , αk+1).

A geometrical simplicial complex is a set K of geometric simplices of arbitrary

dimensions lying in Rn such that every face of a simplex from K lies in K and

intersection of any two simplices from K is a face of each of them.

Example 1.1. The boundary of an n-dim simplex ∆n is the union ∪j∆n−1
j of its

(n − 1)-dim facets, together with all their faces. This is an (n − 1)-dim simplicial

complex, the standard simplicial subdivision of the sphere Sn−1.

A map of simplices

∆n
1 → ∆m

2

is a map from the vertices of ∆n
1 to the vertices of ∆m

2 extended linearly to the

whole of ∆n
1 . A simplicial map

f : K1 → K2
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of simplicial complexes is a map whose restriction to each simplex is a map of

simplices.

Example 1.2. Let K be any simplicial complex on the vertex set {v1, . . . , vm}
and ∆m−1 the standard simplex on the vertices {α1, . . . , αm}. Then there exists a

canonical simplicial map (inclusion)

f : K ↪→ ∆m−1, f(vj) = αj .

Let S be an arbitrary partially ordered set. Order complex ord(S) is the set of

all chains s1 < s2 < · · · < sk, si ∈ S. Complex ord(S) is a abstract simplicial

complex.

The barycentric subdivision K ′ of a simplicial complex K is defined as order com-

plex ord(K\∅) of the partially ordered (with respect to inclusion) set of nonempty

simplices of the complex K.

The barycentric subdivision of an abstract simplicial complex K is the simplicial

complex K ′ on the set {σ ∈ K} of simplices of K whose simplices are chains of

embedded simplices of K. That is {σ1, . . . , σr} ∈ K ′ if and only if σ1 ⊂ σ2 ⊂ . . . ⊂
σr (after possible re-ordering).

Example 1.3. For any (n−1)-dimensional simplicial complex Kn−1 on {v1, . . . , vm}
there is a non-degenerate simplicial map K ′ → ∆n−1 defined on the vertices by

σ → |σ|+ 1, σ ∈ Kn−1. Here σ ∈ K is regarded as a vertex of K ′ and ∆n−1 as the

standard simplex on the set {1, . . . , n}.

2. Main construction.

Let K be a simplicial complex with the vertex set V = {v1, . . . , vm}. For a pair

(X,W ) of topological spaces W ⊂ X and a subset σ ⊂ V set

Zσ = {ξ ∈ XV | ξ(vk) = xk ∈ W, if vk ∈ V \ σ}.
Here, XV = Xm is the space of maps from V into X.

Introduce

ZK(X,W ) = ∪
σ
Zσ ⊂ Xm,

where σ ranges over all simplices in K.

Example 2.1. Let Dn =
{
x = (x1, . . . , xn) ∈ Rn :

∑
x2

i � 1
}

and Sn−1 = ∂Dn.

Then

Z∆1(Dn, Sn−1) = Dn × Dn,

Z∂∆1(Dn, Sn−1) = Dn × Sn−1 ∪ Sn−1 × Dn = ∂(Dn × Dn) = S2n−1.
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In general case

Z∆m−1(X,W ) = Xm,

Z∂∆1(X,W ) = (X × W ) ∪ (W × X).

Example 2.2. We have

ZK(W, ∅) =

⎧⎨
⎩∅ , if k �= ∆m−1,

Wm, if k = ∆m−1.

and

ZK(W,W ) = Wm.

The canonical inclusion (W,W ) ↪→ (X,W ) induced the inclusion Wm ↪→ ZK(X,W ).

Thus the construction of ZK and map GK for a fixed simplicial complex K with

m vertexes gives rise to a covariant functor (X,W ) → (
ZK(X,W ),Wm

)
on the

category of pairs of spaces.

Let g : (X1,W1) → (X2,W2) be a map of pairs of spaces. Then we have the

induced map

GK : ZK(X1,W1) −→ ZK(X2,W2),

where G(ξ) : V
ξ−→ X1

g−→ X2.

Let K1 and K2 be simplicial complexes with the vertex set V1 = {v1, . . . , vm}
and V2 = {v′

1, . . . , v
′
m′}, respectively. Let us fix a point w∗ ∈ W . A simplicial

inclusion ϕ : K1 → K2 induces the inclusion

Φ: (X)m −→ (X)m′
, Φ(x1, . . . , xm) = (y1, . . . , ym′),

where

yk =

⎧⎨
⎩w∗, ϕ−1(v′

k) = ∅,
xj , ϕ−1(v′

k) = vj .

Thus we obtain the inclusion ϕZ : ZK1 → ZK2 such that

ZK1

⊂−−−−→ Xm

ϕZ

⏐⏐! ⏐⏐!Φ

ZK2

⊂−−−−→ Xm′

The inclusion ZK ⊂ Xm = Z∆m−1 is the map of moment-angle complexes induced

by the canonical inclusion f : K ↪→ ∆m−1.
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3. Moment-angle complexes

Let D2 = {z ∈ C : |z| � 1} be a unit disk in C. The space

ZK = ZK(D2, ∂D2) ⊂ (D2)m

is called a moment-angle complex. The action of S1 = ∂D2 = {z ∈ C : |z| = 1}
on D2 (multiplication of complex numbers) defines (coordinate-wise) the action of

torus Tm on (D2)m and induces the canonical action on ZK . Many important

examples of manifolds in topology and geometry are factor spaces of ZK over a

free action of T k ⊂ Tm, for some k.

Example 3.1. Sphere

S2n+1 = {(z1, . . . , zn+1) ∈ Cn+1,
∑

|zk|2 = 1}
is Z∂∆n , where ∆n is the n-simplex.

For n = 1, ∆1 is an interval I1 with boundary

∂I1 = S0 = α0 ∪ α1. We have

S3 = (D2 × S1) ∪ (S1 × D2) ⊂ D2 × D2

and

CP(1) = S3/T 1, CP(1) T 1

−→ ∆1.

For n = 2, we have

S5 = (D2 × D2 × S1) ∪ (D2 × S1 × D2) ∪ (S1 × D2 × D2) ⊂ (D2)3

and

CP(2) = S5/T 1, CP(2) T 2

−→ ∆2.

Let K1 and K2 be simplicial complexes with the vertex set V1 = {v1, . . . , vm}
and V2 = {v′

1, . . . , v
′
m′}, respectively. A simplicial map ϕ : K1 → K2 induces the

map

Φ: (D2)m −→ (D2)m′
, Φ(x1, . . . , xm) = (y1, . . . , ym′),

where

yk =

⎧⎪⎨
⎪⎩

1, ϕ−1(v′
k) = ∅∏

j∈J

xj , ϕ−1(v′
k) = {vj , j ∈ J}

Thus we obtain the map ϕZ : ZK1 → ZK2 such that

ZK1

⊂−−−−→ (D2)m

ϕZ

⏐⏐! ⏐⏐!Φ

ZK2

⊂−−−−→ (D2)m′
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The construction of ZK and map ϕZ : ZK1 → ZK2 gives rise to a covariant

functor from the category of simplicial complexes to the category of Tm-spaces and

equivariant maps.

4. Bigraded cellular complexes

The T 1-space Z∆0 = D2 has the following bigraded cell decomposition:

��

DT 1 Cells: [1], [T ], [D]

Set the bidegree (bdg) of the generators by

bdg[1] = (0, 0), bdg[T ] = (−1, 2), bdg[D] = (0, 2);

∂[1] = 0, ∂[T ] = 0, ∂[D] = [T ].

Then

C∗((D2)m; ∂) =
m⊗

i=1

C∗(D2; ∂),

and ZK ⊂ (D2)m is a bigraded cellular subcomplex !

Thus the cellular chains C∗(ZK) are defined.

The functor K �→ ZK induces a homomorphism between the standard simplicial

chain complex of a simplicial pair (K,K ′) and the bigraded cellular chain complex

of (ZK ,ZK′).

5. Proporties of the functor K �→ ZK

The functor takes a simplicial Lefschetz pair (K,K ′) (i.e. a pair such that K \K ′

is an open manifold) to another Lefschetz pair (of moment-angle complexes) in such

a way that the fundamental cycle is mapped to the fundamental cycle. For instance,

if K is a triangulated manifold, then the simplicial pair (K, ∅) is mapped to the

pair (ZK ,Z∅), where Z∅
∼= Tm and ZK \ Z∅ is an open manifold. Studying the

functor K �→ ZK , one interprets the combinatorics of simplicial complexes in terms

of the bigraded cohomology rings of moment-angle complexes. In the case when K
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is a triangulated manifold, the important additional information is provided by the

bigraded Poincaré duality for the Lefschetz pair (ZK ,Z∅).

Let us consider a map

g : (D2, S1) −→ (X,W )

of pairs and a simplicial map

ϕ : K1 −→ K2

of simplicial complexes. Then we obtain the commutative diagram of the induced

maps:
ZK1 −−−−→ ZK2⏐⏐! ⏐⏐!

ZK1(X,W ) −−−−→ ZK2(X,W )
The important case: Consider the map

ρ : (D2, S1) −→ (I, 1) : ρ(z) = |z|2,

where I = {t ∈ R, 0 � t � 1}. Thus the canonical inclusion f : K → ∆m−1 gives

the commutative diagram:

ZK −−−−→ (D2)m⏐⏐! ⏐⏐!
ZK(I, 1) −−−−→ Im

Lemma 5.1. (see ch. 4 in [3]) The space ZK(I, 1) is

cc(K ′) = cone(K ′),

i.e. the cubical subcomplex of Im, where K ′ is the barycentric subdivision of K,

and (1, 1, . . . , 1) is the vertex of the cone K ′.

Example 5.2.

Z∂∆1(I, 1) = (I × 1) ∪ (1 × I) = cc(∂∆1) = cone(∂∆1).

Let P be a simple convex polytope of dimension n with m facets and K = (∂P )∗

is the (n− 1)-dimensional simplicial m-vertex complex dual to the boundary ∂P of

P (see Lecture II, Definition 5.7). Set ZP (X,W ) = Z(∂P )∗(X,W ).

Lemma 5.3. (see ch. 4 in [3]) The space ZP (I, 1) is the canonical cubical subdivi-

sion of the simple polytope P into cubes, one for each vertex v ∈ P . The resulting

cubical complex embeds canonically into canonical cubical subdivision of the bound-

ary of Im.
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Corollary 5.4. (see [3]) There is the commutative diagram

ZP −−−−→ (D2)m

π

⏐⏐! ⏐⏐!
P −−−−→ Im

where π is the projection map on the orbit space ZP /Tm = P of the canonical

action of Tm on ZP .

Theorem 5.5. (see [7]) The following hold:

(1) ZP is an (n + m)-dimensional smooth manifold with the action of Tm.

(2) The quotient ZP /Tm is P .

(3) There is a realization of ZK as a complete intersection of real quadratic

hypersurfaces.

Theorem 5.6. (see [7]) Manifold ZP is the following framed (m + n)-dimensional
submanifold of R2m:

{((x1, y1), . . . , (xm, ym)
)

:
m∑

k=1

cj,k(x2
k + y2

k − bk) = 0, 1 � j � m − n}.

The importance of the real quadratic viewpoint has been emphasized in the work

of Bosio and Meersseman [1] who considered a specific class of complete intersections

of real quadrics in Cm, called link. They shown that all links (taking products with a

circle in odd-dimensional cases) can be endowed with the structure of a non-Kähler

complex manifold, generalizing the wellknown class of Hopf and Calabi–Ekmann

manifolds (see [13]).

Theorem 5.7. (see [1]) The class of links coincides with the class of moment-angle

complex ZP arising from simple polytopes.

6. Buchstaber’s invariant of simplicial complexes

Let K be a simplicial complex with the vertex set {v1, . . . , vm}. Define s = s(K)

to be the maximal dimension for which there exists a subgroup H ∼= T s in Tm

acting freely on the moment-angle complex ZK .

The number s(K) is a combinatorial invariant of K. This invariant was intro-

duced by the author in 2002 (see [3]).

Problem 6.1. Find a combinatorial description of s(K).

Lemma 6.2. Let K be an (n − 1)-dim simplicial complex with m vertices. Then

1 � s(K) � m − n.
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Proof. Every subtorus H = T s of Tm for s > m − n intersects non-trivially with

any n-dimensional isotropy subgroup, and therefore cannot act freely on ZK . Thus

s(K) � m − n. �

Let Sd := {(e2πiϕ, . . . , e2πiϕ) ∈ Tm}, ϕ ∈ R, be the diagonal circle subgroup.

Every isotropy subgroup for ZK is a coordinate subgroup, and therefore intersects

Sd only at the unit. Thus Sd acts freely on any ZK . Thus s(K) � 1.

Let Pn be a simple convex polytope with m facets. Set s(P ) = s(K), where

K = (∂P )∗ is the (n − 1)-dim simplicial complex with m vertices dual to the

boundary ∂P of P .

Let F = {F1, . . . , Fm} be the set of facets of Pn. A surjective map � : F → [k]

(where [k] = {1, . . . , k}) is called a regular k-paint coloring of Pn if �(Fi) �= �(Fj)

whenever Fi ∩ Fj �= ∅.
The chromatic number γ(Pn) is the minimal k for which there exists a regular

k-paint coloring of Pn. Thus γ(Pn) � n and the equality is achieved if and only

if every 2-face of Pn is an evengon. Note also that γ(P 3) � 4 by the Four Color

Theorem.

Definition 6.3. A simple polytope P is called k-neighborly if any k facets of P

have non-empty intersection.

Example 6.4. Suppose Pn is a 2-neighborly simple polytope with m facets. Then

γ(Pn) = m.

Proposition 6.5 (I.Izmestev). The following inequality holds:

s(Pn) � m − γ(Pn).

Proof. The map � : F → [k] defines an epimorphism of tori �̃ : Tm → T k. It is

easy to see that if � is a regular coloring, then Ker �̃ ∼= Tm−k acts freely on ZP . �

Let Pn be a simple convex polytope with m facets and ν(P ) = m − n.

Theorem 6.6 (see [22, 23]). The invariant s(P ) satisfies the following:

(1) s(P ) + s(Q) � s(P × Q) � s(P ) + s(Q) + min(ν(P ) − s(P ), ν(Q) − s(Q)).

(2) s(P�Q) � s(P ) + s(Q), where � is the connected sum of polytopes along the

vertices.

(3) s(P ) = 1 ⇔ P = ∆n.

(4) s(P ) � m− γ + s(∆γ−1
n−1), where γ = γ(P ) is the chromatic number and ∆l

k

is k-dim skeleton of l-dim simplex ∆l.
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(5) s(P ) − ν(P ) � s(F ) − ν(F ) + 1, where F is a facet of P .

(6) One can not calculate s(P ) if it is known only f-vector f(P ) and γ(P ).

7. Bigraded cohomology ring of moment-angle complexes

Let k[v1, . . . , vm] denote the graded polynomial algebra over a commutative ring

k with unit, deg vi = 2.

Definition 7.1. The face ring (or the Stanley–Reisner ring) of a simplicial complex

K on the vertex set V = {v1, . . . , vm} is the quotient ring

k(K) = k[v1, . . . , vm]/IK ,

where IK is the homogeneous ideal generated by all square-free monomials vσ =

vi1vi2 · · · vis
(i1 < · · · < is) such that σ = {i1, . . . , is} is not a simplex of K.

Theorem 7.2 (see [2]). Let k be a field and K, K ′ be two simplicial complexes

with vertices V = {v1, . . . , vm}, V ′ = {v′
1, . . . , v

′
m′}. Suppose k(K) and k(K ′) are

isomorphic as k-algebras. Then there exists a bijective mapping V → V ′ which

induces an isomorphism ϕ : K → K ′.

Problem 7.3. Find description of s(K) in the term of k(K).

Let K be a simplicial complex on m vertices.

Theorem 7.4 (Hochster, see [3]). The following additive isomorphism holds:

Tork[v1,...,vm]

(
k(K),k

) ∼= ⊕H̃∗(Kω;k),

where ω ranges over the subsets of [m] and the Kω are induced subcomplexes.

Theorem 7.5 (Buchstaber-Panov, see [3]). The following isomorphism of algebras

holds:

H∗,∗(ZK ;k) ∼= Tork[v1,...,vm]

(
k(K),k

)
.

In particular,

Hp(ZK ;k) ∼=
∑

−i+2j=p

Tor−i,2j
k[v1,...,vm]

(
k(K),k

)
.

The following additive isomorphism holds:

H∗(ΩZK ;k
)⊗ Λ[u1, . . . , um] ∼= Tork(K)(k,k).

Rely on theorems 7.2 and 7.5 we put

Problem 7.6. Suppose H∗,∗(ZK ;k) and H∗,∗(ZK′ ;k) are isomorphic as bigraded

k-algebras. When there exists a bijective mapping V → V ′ which induces an

isomorphism ϕ : K → K ′?



LECTURES ON TORIC TOPOLOGY 51

The above question arose during our discussion with Dong Youp Suh of the

recent work [16], where the bigraded cohomology of moment-angle complexes plays

an important role in the study of cohomological rigidity of simple polytopes. In

the preparation of these lectures for publication I asked Taras Panov to write a

survey of different rigidity properties of polytopes and quasitoric manifolds. It is

now included to the text (see Appendix A).

Theorem 7.5 was used also in [20] for computation of the ranks of the homotopy

groups of ZK in terms of the homological algebra of k(K).

8. Toral rank conjecture

A T k-action on a topological space X is almost free if all isotropy subgroups are

finite. The toral rank of X is the largest k for which there exists an almost free

T k-action on X. (Denote it by trk(X).)

Proposition 8.1. If K is an (n−1)-dimensional simplicial complex on m vertices,

then trkZK � m − n.

S. Halperin in 1985 conjectured that

dim H∗(X+; Q) � 2trk(X)

for any finite dimensional space X.

Corollary 8.2 (see [4]). Assuming that the toral rank conjecture is true, we come

to the following inequality:

dim⊕H̃∗(Kω; Q) � 2m−n − 1,

where ω ranges over the subsets of [m] and the Kω are induced subcomplexes.

When K is the boundary of ∆n, the right hand side is 1 and equality holds.

When K is the boundary of an m-gon, then

dim H∗(ZK ; Q) = (m − 4)2m−2 + 4 � 2m−2.

Define the moment curve in Rn by

x : R −→ Rn, t �→ x (t) = (t, t2, . . . , tn) ∈ Rn.

For any m > n define the cyclic polytope Cn(t1, . . . , tm) as the convex hull of

m distinct points x (ti), t1 < t2 < . . . < tm, on the moment curve. Cn(m) =

Cn(t1, . . . , tm) is a simplicial n-polytope. From all simplicial n-polytopes S with

m vertices the cyclic polytope Cn(m) has the maximal number of j-faces, 0 � j �
n − 1. Computer calculations confirmed the exponential growth required by the

corollary for cyclic polytopes (Gadjikurbanov).
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Lecture V. Quasitoric manifolds

[Abstract] Our aim is to bring geometric and combinatorial meth-

ods to bear on the study omnioriented toric manifolds M , in the

context of stably complex manifolds with compatible torus action.

We interpret M in terms of combinatorial data (P,Λ), where P is

the combinatorial type of an oriented simple polytope, and Λ is an

integral matrix whose properties are controlled by P (see [7]).

1. Notation and agreements

We denote by Rn the standard real n-dimensional Euclidean space with the

standard basis consisting of vectors ej = (0, . . . , 1, . . . , 0) with 1 on the j-th place,

for 1 � j � n; and similarly for Zn and Cn. The standard basis gives rise to the

canonical orientation of Rn.

We identify Cn with R2n by means of the real vector space isomorphism Cn →
R2n sending ej to e2j−1 and (

√−1)ej to e2j for 1 � j � n. This provides the

canonical orientation for Cn.

Since C-linear maps from Cn to Cn preserve the canonical orientation, we may

also regard an arbitrary complex vector space as canonically oriented.

We denote by Tn the standard n-dimensional torus Rn/Zn which we identify

with the product of n unit circles in Cn:

Tn = {(e2π
√−1ϕ1 , . . . , e2π

√−1ϕn) ∈ Cn},

where (ϕ1, . . . , ϕn) runs over Rn. The torus Tn is also canonically oriented.

Let H ⊂ Tm be a subgroup of dimension r � m − n. Choosing a basis, we can

write it in the form

H =
{
(e2πi(s11ϕ1+···+s1rϕr), . . . , e2πi(sm1ϕ1+···+smrϕr)) ∈ Tm

}
,

where ϕi ∈ R, i = 1, . . . , r. The integer (m × r)-matrix S = (sij) defines a

monomorphism Zr → Zm. For any subset {i1, . . . , in} ⊂ [m] denote by Sî1,...,̂in
the

(m − n) × r submatrix of S obtained by deleting the rows i1, . . . , in.

Write each vertex v ∈ Pn as an intersection of n facets.

Lemma 1.1. Subgroup H acts freely on ZP if and only if for every vertex v =

Fi1 ∩ . . . ∩ Fin
in Pn the (m − n) × r submatrix Sî1,...,̂in

defines a monomorphism

Zr ↪→ Zm−n to a direct summand.
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Proof. The orbits of Tm-action on ZP corresponding to the vertices of Pn have

maximal (rank n) isotropy subgroups. The isotropy subgroup corresponding to a

vertex v = Fi1 ∩ . . . ∩ Fin
is the coordinate subtorus Tn

i1,...,in
⊂ Tm. Subgroup H

acts freely on ZP if and only if it intersects each isotropy subgroup only at the

unit.

This is equivalent to the condition that the map

H × Tn
i1,...,in

→ Tm

is injective for any v = Fi1 ∩ . . .∩Fin
. This map is given by the integer m× (n+ r)

matrix obtained by adding n columns (0, . . . , 0, 1, 0, . . . , 0)t (with 1 at the place

ij , j = 1, . . . , n) to S. The map is injective if and only if this enlarged matrix

defines a direct summand in Zm. The latter holds if and only if each matrix Sî1,...,̂in

defines a direct summand. �

Corollary 1.2. The subgroup H of rank r = m − n acts freely on ZP if and only

if for any vertex v = Fi1 ∩ . . . ∩ Fin
of Pn holds

det Sî1...̂in
= ±1.

Definition 1.3. An (m × n) matrix Λ gives a characteristic map

� : {F1, . . . , Fm} −→ Zn

for a given simple polytope Pn with facets {F1, . . . , Fm} if the columns λj1 , . . . , λjn

of Λ corresponding to any vertex Fj1 ∩ . . . ∩ Fjn
form a basis for Zn.

Theorem 1.4. A simple polytope Pn admits a characteristic map if and only if

s(Pn) = m − n.

We consider a simple n-dimensional polytope P given as a bounded intersection

of m closed half-spaces in Rn:

P = {x ∈ Rn : 〈ai, x〉 + bi � 0 for 1 � i � m},

where ai ∈ Rn and bi ∈ R.

We assume that there are no redundant inequalities, that is, every hyperplane

bounding a half-space intersects P at an (n − 1)-dimensional facet. It follows that

there are m facets F1, . . . , Fm in total; and we further assume that they are finely

ordered, in the sense that F1 ∩ · · · ∩ Fn defines the initial vertex v1 of P .
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We associate to a simple n-dim polytope P an integral (n × m)-matrix of the

form

Λ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 . . . 0 λ1,n+1 . . . λ1,m

0 1 . . . 0 λ2,n+1 . . . λ2,m

...
...

. . .
...

...
. . .

...

0 0 . . . 1 λn,n+1 . . . λn,m

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

in which the column λj = (λ1j , . . . , λnj) corresponds to the facet Fj , j = 1, . . . , m,

and the columns λj1 , . . . , λjn
corresponding to any vertex Fj1∩· · ·∩Fjn

are required

to form a basis for Zn.

In other words, the associated (n × n)-submatrices (λj1 , . . . ,λjn
) have determi-

nant ±1. We partition Λ as (In | Λ
), where In is identity (n × n)-matrix. Thus

Λ
 is n × (m − n)-matrix, and refer to it as the refined submatrix.

Definition 1.5. The combinatorial quasitoric data (P,Λ) consist of an oriented

combinatorial simple polytope P and integer (n×m)-matrix Λ with the properties

above.

We may specify P by a matrix inequality AP x+bP � 0, where AP is the (m×n)-

matrix of row vectors ai ∈ Rn, and bP ∈ Rm is the column vector of scalars bi.

We may interpret the matrix AP as a linear transformation Rn → Rm. Since the

points of P are specified by the constraint AP x + bP � 0, the intersection of the

affine subspace AP (Rn) + bP with the positive cone Rm
� is a copy of P in Rm. The

formula iP (x) = AP x + bP defines an affine injection

iP : Rn −→ Rm,

which embeds P as a submanifold with corners of the positive cone.

2. Sign and weights of an isolated fixed point

We consider smooth 2n-dimensional manifolds M , equipped with a smooth ac-

tion α of a k-dimensional torus Tk. We may choose an action of Tk on Cl and

a Tk-equivariant embedding i : M → Cl for suitably large l. Let we can choose a

Tk-equivariant unitary structure cν on the Tk-equivariant normal bundle ν(i) of i.

Definition 2.1. Normally complex Tk-manifold is a triple element (M,α, cν).

We interpret M as a tangentially stably complex Tk-manifold (M,α, cτ ) whenever

an equivariant complex structure cτ is chosen for its stable tangent bundle. So

cτ : τ(M) ⊕ R2(l−n) −→ ξ
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is a real isomorphism for some complex vector bundle ξ, and the composition

r(t) : ξ
c−1

τ−→ τ(M) ⊕ R2(l−n) dα(t)⊕I−→ τ(M) ⊕ R2(l−n) cτ−→ ξ

is a complex transformation for any t ∈ Tk, where dα(t) is the differential of the

action by α(t). So r(t) corresponds to a representation

ρ : Tk → HomC(ξ, ξ).

Let x ∈ M be an isolated fixed point of the Tk-action α on a tangentially stably

complex Tk-manifold (M,α, cτ ). The representation

ρx : Tk −→ GL(l, C)

associated with cτ decomposes the fibre ξx
∼= Cl as Cn ⊕ Cl−n, where ρx acts

without trivial summands on Cn, and trivially on Cl−n.

Moreover, the isomorphism cτ,x induces an orientation of the tangent space

τx(M).

Definition 2.2. The sign σ(x) of an isolated fixed point x is +1 if the map

τx(M) I⊕0−→ τx(M) ⊕ R2(l−n) cτ,x−→ ξx
∼= Cn ⊕ Cl−n π−→ Cn

preserves the orientation, and −1 otherwise, where π is projection onto the first

summand.

The representation ρx : Tk → GL(n, C) decomposes as

ρx,1 ⊕ · · · ⊕ ρx,n,

where ρx,j is a non-trivial one-dimensional representation of Tk given by

ρx,j(e2π
√−1ϕ1 , . . . , e2π

√−1ϕk)v = e2π
√−1〈wj(x), φ〉v

where φ = (ϕ1, . . . , ϕk) ∈ Rk, wj(x) = (w1j(x), . . . , wkj(x)) ∈ Zk and

〈wj(x), φ〉 =
k∑

q=1

wqj(x)ϕq.

Definition 2.3. The sequence {w1(x), . . . ,wn(x)} is said to be the sequence of

weight vectors of an isolated fixed point x.
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3. Quasitoric manifolds

The moment-angle manifold ZP (see Lecture IV) is defined by the pull-back

diagram
ZP

iZ−−−−→ Cm

�P

⏐⏐! ⏐⏐!�

P
iP−−−−→ Rm

�
Here �(z1, . . . , zm) is given by (|z1|2, . . . , |zm|2), the vertical maps are projections

onto the quotients by the Tm-actions, and iZ is a Tm-equivariant embedding.

There is a Tm-equivariant decomposition

τ(ZP ) ⊕ ν(iZ ) ∼= ZP × Cm,

where τ(ZP ) is the tangent bundle of ZP and ν(iZ ) is the normal bundle of the

embedding iZ .

Matrix Λ defines a surjective homomorphism � : Tm → Tn. The kernel of �

(which we denote K(Λ)) is isomorphic to Tm−n. The action of K(Λ) on ZP is free

due to the condition on the minors of Λ. So its quotient M = ZP /K(Λ) is a 2n-

dimensional smooth manifold with an action of the n-dimensional torus Tm/K(Λ).

We denote this action by α. It satisfies the Davis–Januszkiewicz’ conditions:

(1) α is locally isomorphic to the standard coordinatewise representation of Tn

in Cn,

(2) there is a projection π : M → P whose fibres are orbits of α.

We refer to M = M(P,Λ) as the quasitoric manifold associated with the combina-

torial data (P,Λ).

Additional structure on quasitoric manifold M is associated to the facial sub-

manifolds Mi, defined as the inverse images of the facet Fi under π, for 1 � i � m.

Every Mi has codimension 2, and its isotropy subgroup is the subcircle �(Ti) ⊂ Tn,

where Ti ⊂ Tm is the i-th coordinate subcircle. The quotient map

ZP ×K Ci −→ M

defines a canonical complex line bundle ρi, whose restriction to Mi is isomorphic to

the normal bundle νi of its embedding in M . The submanifolds Mi are mutually

transverse.

Definition 3.1. An omniorientation of a quasitoric manifold M consists of a choice

of an orientation for M and for every facial normal bundle νi, i = 1, . . . , m.

Theorem 3.2. Every pair (P,Λ) determines a 2n-dimensional omnioriented qua-

sitoric manifold.
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Proof. An interior point of the quotient polytope P admits an open neighborhood

U , whose inverse image under the projection π is canonically diffeomorphic to U×Tn

as a subspace of M . Since Tn is oriented by the standard choice of basis, orientations

of M correspond bijectively to orientations of P . Since the homomorphism � : Tm →
Tn determines a complex structure on each ρi, it encodes equivalent information.

�

Theorem 3.3. Any omnioriented toric manifold admits a canonical stably complex

structure, which is invariant under the Tn-action.

Proof. We obtained an embedding

iP : P −→ Rm
�

which respects facial codimensions and gives a pullback diagram

ZP
iZ−−−−→ Cm

�P

⏐⏐! ⏐⏐!�

P
iP−−−−→ Rm

�

of identification spaces. Here iZ is a Tm-equivariant embedding. So, there is a

K-equivariant decomposition (K = ker �)

τ(ZP ) ⊕ ν(iZ) � ZP × Cm,

obtained by restricting the tangent bundle τ(Cm) to ZP . Factoring out K yields

τ(M) ⊕ (ξ/K) ⊕ (ν(iZ)/K) � ZP ×K Cm,

where ξ denotes the (m − n)–plane bundle of tangents along the fibres of

π� : ZP −→ M.

ZP ×K Cm is isomorphic to
m⊕

i=1

ρi as GL(m, C)-bundles. This is an example of

Szczarba’s Theorem. The embedding iZ : ZP −→ Cm � R2m is Tm-equivariantly

framed, so ν(iZ)/K is trivial. The bundle ξ/K canonically isomorphic to the adjoint

bundle of the principal K-bundle, which is trivial, because K is an abelian group.

So, we obtain an isomorphism

τ(M) ⊕ R2(m−n) � ρ1 ⊕ . . . ⊕ ρm,

although different choices of trivialisations may lead to different isomorphisms.

Since M is connected and GL(2(m−n), R) has two connected components, such

isomorphisms are equivalent when and only when the induced orientations agree on

R2(m−n). We choose the orientation which is compatible with those on τ(M) and
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ρ1 ⊕ . . . ⊕ ρm, as given by the omniorientation. The induced structure is invariant

under the action of Tn, because iZ is Tm-equivariant. �

Every Tn-fixed point x ∈ M = M(P,Λ) can be obtained as the intersection

Mj1 ∩ · · · ∩ Mjn
of n facial submanifolds. The tangent space to M at x therefore

decomposes into the sum of normal subspaces to Mjk
for 1 � k � n:

τx(M) = νj1 |x ⊕ . . . ⊕ νjn
|x.

Lemma 3.4. Let x = Mj1 ∩ . . . ∩ Mjn
be a fixed point.

(1) We have σ(x) = 1 if the orientation of τx(M) determined by the orientation

of M coincides with the orientation of νj1 |x ⊕ . . .⊕ νjn
|x determined by the

orientations of νjk
for 1 � k � n, and σ(x) = −1 otherwise.

(2) In terms of combinatorial data (P,Λ), we have

σ(x) = sign
(
det(λj1 , . . . , λjn

) det(aj1 , . . . , ajn
)
)
.

Let Tn-fixed point x ∈ M = M(P,Λ) be the intersection Mj1 ∩ · · · ∩ Mjn
of

n facial submanifolds. Denote by Λx the (n × n)-submatrix of Λ formed by the

columns λj1 , . . . , λjn
(note detΛx = ±1).

Lemma 3.5. The weight vectors {w1(x), . . . ,wn(x)} of the tangential Tn-represent

ation in τx(M) are given by the column vectors µ1, . . . , µn of the matrix Mx

satisfying

Mt
xΛx = In.

In other words, {w1(x), . . . ,wn(x)} is the basis of Rn conjugated to {λj1 , . . . , λjn
}.

4. Toric manifolds

Every nonsingular projective toric variety (toric manifold) M is determined by

the normal fan of a simple polytope Q ⊂ Rn; it is integral, insofar as its vertices lie

in the lattice Zn.

We may assume that the origin is a distinguished vertex, that its incident facets

lie in the respective coordinate hyperplanes and the remaining facets Fn+1, . . . , Fm

are ordered.

For any such M we let P be the oriented combinatorial type of Q and the

columns of Λ be the primitive integral inward pointing normal vectors to F1, . . . , Fm

respectively. So Λ = At
Q.

We can identify the stably complex structure associated to the combinatorial

data (P,Λ) with the canonical complex structure on M .
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Corollary 4.1. For any fixed point x of the canonical Tn-action on toric manifold

M :

• σ(x) = 1;

• the weight vectors are given by the column vectors of the matrix (AQ,x)−1.

Definition 4.2. A polytope Pn ⊂ Rn is called Delzant if and only if at each vertex

the normal vectors of the facets through the vertex may be chosen to be Z-basis

for Rn.

Thus, Delzant polytope Pn is a simple polytope.

Using our description of the Stasheff polytope Kn+1 as the simple polytope in

Rn−1 one can obtain immediately that Kn+1 is the Delzant polytope.

Let L(Tn) = Rn be the Lie algebra of Tn.

Definition 4.3. A Hamiltonian Tn-manifold is a triple (M2n, ω,H ), where (M2n, ω)

is a symplectic manifold and H : M2n → L(Tn)∗ – the moment map.

A Hamiltonian toric manifold is a compact connected Hamiltonian Tn-manifold

M2n such that Tn action is effective.

Theorem 4.4 (see [19]). There is a bijective correspondence between Delzant poly-

topes and Hamiltonian toric manifolds.

Let Γ be a connected graph on the vertex set [n] = {1, . . . , n} and without loops

or multiple edges.

Consider the graphical building set B(Γ).

Theorem 4.5. The mapping

Rn −→ Rn−1 : ei → ei − e1, i = 1, . . . , n,

transform the simple polytope PB(Γ) in the Delzant polytope.

Proof (see [22]) use that any facet of PB(Γ) in the hyperplane {x ∈ Rn :
∑

xi =

µ([1, n])} can be described by the equation∑
i∈Ik

xi = µ(Ik)

for some Ik ∈ B(Γ) (see Lemma in Lecture III). �
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Appendix A. Cohomological rigidity for polytopes and manifolds

by Taras E. Panov

We fix a coefficient ring k (usually Z or a field).

Definition A.6. We say that a family of closed manifolds is cohomologically rigid

over k if the manifolds in the family are distinguished up to homeomorphism by

their cohomology rings with coefficients in k. That is, a family is cohomologically

rigid if the graded ring isomorphism H∗(M1;k) ∼= H∗(M2;k) implies a homeomor-

phism M1
∼= M2 whenever M1 and M2 are in the family.

A manifold M in the given family is said to be cohomologically rigid if for any

other manifold M ′ in the family the ring isomorphism H∗(M ;k) ∼= H∗(M ′;k)

implies a homeomorphism M ∼= M ′. Obviously a family is cohomologically rigid

whenever every its element is rigid.

There is a smooth version of cohomological rigidity for families of smooth man-

ifolds, with homeomorphisms replaced by diffeomorphisms.

The cohomological rigidity property for families of manifolds arising in toric

topology has been studied by several authors, whose results we briefly review below.

In general, cohomological rigidity remains open for the class of quasitoric mani-

folds (see [18], [3] or Lecture V for definition):

Problem A.7. Assume that M1 and M2 are quasitoric manifolds with isomorphic

integral cohomology rings. Are they homeomorphic (or even diffeomorphic)?

Bott towers constitute an important family of quasitoric manifolds, for which

a machinery has been developed to attack the cohomological rigidity problem. A

Bott tower Bn is the total space of a tower of fibre bundles

(1) Bn → Bn−1 → · · · → B2 → B1

with base B1 = CP 1 and fibres CP 1, where each bundle in the tower is obtained

as the projectivisation of a sum of two line bundles over the previous stage. Every

Bott tower supports an action of the torus Tn turning it into a quasitoric manifold,

or even into a complete non-singular toric variety, see [26] and [17].

Theorem A.8 ([31, Th. 5.1]). Assume that the integral cohomology ring of a Bott

tower Bn is isomorphic to H∗((CP 1)n; Z), where (CP 1)n denotes the product of

n copies of CP 1. Then every fibration in (1) is topologically trivial, i.e. Bn is

diffeomorphic to (CP 1)n.
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In other words, (CP 1)n is cohomologically rigid in the family of Bott towers (in

the smooth category). Another result of [31] states that (CP 1)n is cohomologi-

cally rigid in the wider family of quasitoric manifolds, but only in the topological

category:

Theorem A.9 ([31, Th. 5.7]). If the integral cohomology ring of a quasitoric man-

ifold is isomorphic to that of (CP 1)n, then the two are homeomorphic.

The orbit space of the Tn-action on a Bott tower is a combinatorial cube In.

Theorem A.9 reduces to theorem A.8 by establishing the following two facts:

(i) A cohomology isomorphism H∗(M ; Q) ∼= H∗((CP 1)n; Q) for a quasitoric

manifold over a cube In implies that M is homeomorphic to a Bott tower.

(ii) If M is a quasitoric manifold, and N a quasitoric manifold over a cube,

then a cohomology ring isomorphism H∗(M ; Z) ∼= H∗(N ; Z) implies that

M is also a quasitoric manifold over a cube.

Statement (i) above has been generalised in [14] to quasitoric manifolds over

arbitrary products of simplices (note that the cube is a product of segments) and

generalised Bott towers. The latter means the total space of a tower of fibrations (1)

with base B1 = CP k, where each bundle in the tower is obtained as the projec-

tivisation of a sum of line bundles over the previous stage. These towers where

considered in [21], and the main result there is a criterion of decomposability of

a quasitoric manifold over a product of simplices into such a tower of fibrations.

Theorem A.8 has been also generalised in [15] as follows:

Theorem A.10 ([15, Th. 1.1]). Assume that the integral cohomology ring of a

generalised Bott tower (1) is isomorphic to H∗(
∏n

i=1 CP ki ; Z). Then every fibration

in (1) is trivial, i.e. Bn is diffeomorphic to the product of complex projective spaces.

In other words, the trivial generalised Bott tower is cohomologically rigid in the

family of generalised Bott towers (in the smooth category). Another result of [15]

states that the families of 2- and 3-stage Bott towers are cohomologically rigid.

Statement (ii) above leads to the following combinatorial counterpart for the

notion of cohomological rigidity for manifolds.

Definition A.11. A simple polytope P is cohomologically rigid (over Z) if its

combinatorial type is determined by the integral cohomology ring of any quasitoric

manifold over P . In more detail, P is cohomologically rigid if there exists a qua-

sitoric manifold M over P , and whenever there exists a quasitoric manifold N over

another polytope Q with a graded ring isomorphism H∗(M ; Z) ∼= H∗(N ; Z), there

is a combinatorial equivalence P ≈ Q.
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The above mentioned result of [31] implies that the cube In is cohomologically

rigid. The rigidity of an arbitrary product of simplices has been established in [16],

alongside with the rigidity of a number of low-dimensional polytopes. The proofs

use the bigraded cohomology and Betti numbers of moment-angle complexes (see

Theorem 7.5 in Lecture IV).

Although no examples of cohomologically non-rigid quasitoric manifolds are

known, there are non-rigid simple polytopes. The first examples of these were

constructed in [32, Ex. 4.3] by applying a “vertex cut” operation to a 3-simplex

tree times. There are three combinatorially non-equivalent ways to do so, and each

of the resulting 3-dimensional polytopes P1, P2, P3 arises as the orbit space of a

quasitoric manifold homeomorphic to the connected sum of three copies of CP 3.

Actually, all known cohomologically non-rigid polytopes are obtained as multiple

vertex-cuts.

The above considerations have an R-analogue, with quasitoric manifolds replaced

by small covers [18], Bott towers replaced by real Bott towers, and the cohomology

rings taken with Z/2-coefficients. A small cover over an n-dimensional simple poly-

tope P is a manifold M with an action of the “R-torus” (Z/2)n whose orbit space

is P . The quotient projection M → P is a ramified covering of P by a manifold,

with smallest possible number of leaves. A real Bott tower is defined similarly to

the complex tower, with complex projectivisations replaced by the real ones.

Cohomological rigidity over Z/2 holds for the family of real Bott towers [28], but

fails for generalised real Bott towers [30] (it is open for complex Bott towers). Also,

every small cover over a product of simplices is a generalised real Bott tower [14]

(this fails for quasitoric manifolds).

Finally, moment-angle manifolds (see [3] and Section 7 of Lecture V) constitute

another important family for testing the cohomological rigidity property. A related

question is stated as Problem 7.6 in Lecture IV. We note that there exist combina-

torially non-equivalent simple polytopes for which the corresponding moment-angle

manifolds ZP are diffeomorphic (in particular, their bigraded cohomology algebras

are isomorphic). This was first observed in [1]: according to [1, Th. 6.3], the

moment-angle manifolds corresponding to the above described 3-dimensional poly-

topes obtained by applying a vertex cut to a 3-simplex 3 times are all diffeomorphic.
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