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ABSTRACT

A positive definite quadratic form f is said to be regular if it

globally represents all integers that are represented by the genus

of f . In 1997, Jagy, Kaplansky and Schiemann provided a list

of 913 candidates of primitive positive definite regular ternary

quadratic forms, and all but 22 of them are verified to be regular.

In this talk we show that 8 forms among 22 candidates are, in

fact, regular. At the end of the talk, we show some finiteness

result on ternary forms that represent every eligible integer in

some arithmetic progression.
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[1] Quadratic Forms

(1.1) Definition of quadratic forms

(i) Sm(Z) = {Symmetric matrices of rank m over Z}

(ii) L = Zx1+· · ·+Zxm with a non-degenerate symmetric bilinear

form

B(xi, xj) = mij ∈ Z and Q(x) := B(x, x).

(iii) fL(x1, x2 . . . , xm) =
∑

i,j mijxixj

L ←→ ML := (B(xi, xj)) ←→ fL



(1.2) Representation of quadratic forms

(i) For M ∈ Sm(Z) and N ∈ Sn(Z),

N −→ M iff ∃T ∈ Mm,n(Z) such that T tMT = N.

(ii) For two Z-lattices ` and L,

` −→ L iff σ : ` ↪→ L such that

B(x, y) = B(σ(x), σ(y)) for all x, y ∈ `.

(iii) For f(x1, . . . , xm), g(y1, . . . , yn),

g −→ f iff ∃T ∈ Mm,n(Z) such that f(Ty) = g(y).



(1.3) We define

R(`, L) = {σ : ` −→ L} and O(L) = R(L, L)

If ` and L is positive definite, then R(`, L) is a finite set.

(1.4) If ` −→ L and L −→ `, we write ` ' L.

(1.5) A Z-lattice L is called even if Q(x) ∈ 2Z for every x ∈ L.

(1.6) Throughout this talk, we always assume that

every Z-lattice L is primitive and positive definite.



[2] Well Known Theorems

L : Z-lattice, Zp : p-adic integer ring

(2.1) Scalar extension of a Z-lattice L

We define Lp = L⊗ Zp for every prime p.

If ∃x ∈ Lp such that Q(x) = a, then we write a −→ Lp.

Note that a −→ Lp if and only if there is an xn ∈ L such that

Q(xn) ≡ a (mod pn),

for every non-negative integer n.



(2.2) Genus and class number

gen(L) := {L′ | L′p ' Lp for every prime p}, h(L) :=| gen(L)/ ∼|

(2.3) Local information

If a −→ Lp for every prime p (we write a −→ gen(L)), then

a −→ L′ for some L′ ∈ gen(L).

Hence if h(L) = 1, then

a −→ L if and only if a −→ gen(L).

• We define

Q(L) = {a ∈ Z | a −→ L} and Q(gen(L)) = {a ∈ Z | a −→ gen(L)}.
Every integer a ∈ Q(gen(L)) is called eligible and a ∈ Q(gen(L))−
Q(L) is called exceptional.



(2.4) Definition of regular lattices

• A Z-lattice L is called regular if it represents every integer a

that is represented by the genus of L.

Note that

L is regular ⇐⇒ Q(L) = Q(gen(L))

• If h(L) = 1, L is regular. The converse is not true in general.

For example,

gen(h = 2x2 + 2xy + 2y2 + 18z2) = {h,2x2 + 6y2 + 6z2 + 6yz}.
Both are regular forms (Hsia).



[3] Brief History

(3.1) (Kitaoka) If L is a binary Z-lattice, then

L is regular if and only if h(L) = 1.

(3.2) (Earnest) There are infinitely many quaternary regular Z-
lattices.

(3.3) (Kim) classified all diagonal quaternary regular Z-lattices:

x2 + y2 + z2 + dt2 : for d = 1,3,5,7 or d = 22r+1x (x = 1,2,3)
...

3x2 + 16y2 + 48z2 + dt2 : for d = 16 · 32r+1x (x = 1,2)
3x2 + 4y2 + 8z2 + dt2 : for d = 8,12,16,20.



(3.4) There is no known example of a ternary Z-lattice L such

that Q(L) is completely determined and

|Q(gen(L))−Q(L)| ≥ 2,

except the following result:

(3.5) (Ono-Soundararajan) (Assuming that GRH is true)

For the Ramanujan form fL = x2 + y2 + 10z2,

Q(gen(L))−Q(L) = 3,7,21,31,33,43,67,
79,87,133,217,219,223,253,307,391,
679(Jones and Pall), 2719(Gupta).



(3.4) (Legendre, Gauss and Dirichlet)

x2 + y2 + z2 = n has a solution if and only if n 6= 4k(8s + 7).

(3.5) (Lebesque, Dirichlet, Liouville)

x2 + y2 + az2 is regular for a = 2,3,5.

(3.6) (∼ Jones-Pall)

There are exactly 102 diagonal regular ternary Z-lattices (up to

equivalence). Among them, 20 lattices have class number bigger

than 1, for example, h(x2 + 48y2 + 144z2) = 4.



(3.7) (Watson)

There are only finitely many regular ternary Z-lattices.

(3.8) (∼ Hsia, Kaplansky, Jagy, Jagy-Kaplansky-Schiemann)

There are at most 913 regular ternary Z-lattices.

• They remained the following 22 ternary Z-lattices as candi-

dates:



L(1) =

(
2 1 1
1 10 2
1 2 26

)
, L(2) =

(
2 0 1
0 12 3
1 3 26

)
, L(3) =

(
4 1 2
1 10 2
2 2 22

)
,

L(4) =

(
6 3 3
3 10 3
3 3 30

)
, L(5) =

(
2 0 1
0 20 5
1 5 58

)
, L(6) =

(
4 1 1
1 14 −6
1 −6 44

)
,

L(7) =

(
10 2 1
2 16 −4
1 −4 22

)
, L(8) =

(
10 3 3
3 18 9
3 9 30

)
, L(9) =

(
10 3 5
3 18 6
5 6 34

)
,

L(10) =

(
4 0 1
0 30 15
1 15 64

)
, L(11) =

(
14 2 7
2 16 6
7 6 46

)
, L(12) =

(
10 3 3
3 18 0
3 0 54

)
,

L(13) =

(
10 1 3
1 26 −6
3 −6 66

)
, L(14) =

(
18 6 3
6 22 −4
3 −4 58

)
, L(15) =

(
22 3 6
3 30 −3
6 −3 78

)
,

L(16) =

(
3 1 1
1 6 2
1 2 14

)
, L(17) =

(
7 2 2
2 8 0
2 0 20

)
, L(18) =

(
7 3 1
3 15 −3
1 −3 23

)
,

L(19) =

(
11 4 1
4 16 4
1 4 19

)
, L(20) =

(
5 2 2
2 20 −4
2 −4 68

)
, L(21) =

(
11 4 1
4 16 4
1 4 51

)
,

L(22) =

(
7 1 2
1 23 6
2 6 92

)
.



• Exactly 794 lattices have class number 1 among 913.

(3.9) (O) The following 8 Z-lattices among 22 candidates are,

in fact, regular:

L(6) =

(
4 1 1
1 14 −6
1 −6 44

)
, L(11) =

(
14 2 7
2 16 6
7 6 46

)
, L(17) =

(
7 2 2
2 8 0
2 0 20

)
,

L(18) =

(
7 3 1
3 15 −3
1 −3 23

)
, L(19) =

(
11 4 1
4 16 4
1 4 19

)
, L(20) =

(
5 2 2
2 20 −4
2 −4 68

)
,

L(21) =

(
11 4 1
4 16 4
1 4 51

)
, L(22) =

(
7 1 2
1 23 6
2 6 92

)
.



[4] Watson Transformation

Let L be a Z-lattice.

(4.1) Gamma transformation

Let ε = 2 if L is even and p = 2, ε = 1 otherwise.

Γp(L) = {x ∈ L | Q(x + z) ≡ Q(z) mod εp, ∀z ∈ L}.
γp(L) : primitive Z-lattice obtained from Γp(L) by a suitable

scaling.



(4.2) A Zp-lattice Lp is called isotropic if ∃x ∈ L− {0} such that

Q(x) = 0, otherwise L is called anisotropic.

• Lp = Lp,0 ⊥ · · · ⊥ Lp,t : Jordan decomposition such that

s(Lp,i) = piZp or Lp,i = 0.

(4.3) Lemma

Assume that Lp,0 is anisotropic and additionally, L2,1 = 0 only

when p = 2 and L2 is even. Then

Q(L) ∩ εpZ = Q(Γp(L)) and Q(gen(L)) ∩ εpZ = Q(gen(Γp(L))).

Hence if L is regular, then so is γp(L). Conversely, if γp(L) is

regular (that is, Γp(L) is regular), then

(Q(gen(L))−Q(L)) ∩ εpZ = ∅.



• If Lp,0 is isotropic, γp-transformation does not preserve the

regularity in general. For example fL = x2 + y2 + z2 + 7t2 is

regular, but fγ7(L) = x2 + 7y2 + 7z2 + 7t2 is not regular.

(4.4) Note that

γ3(L(18)) = L(20), γ5(L(19)) = L(22).



(4.5) Sketch of proof

Let L = L(17) with fL = 7x2 + 8y2 + 20z2 + 4xy + 4xz.

(i) ` = γ3(L) with f` = 3x2 + 7y2 + 7z2 + 2xy + 2xz + 6yz is

regular. Hence

(Q(gen(L))−Q(L)) ∩ 3Z = ∅.
(ii) Since 3` −→ L −→ `,

Q(gen(L)) ⊂ Q(gen(`)) = Q(`).

Assume that a ∈ Q(gen(L)) and 3 - a. Then there is an x ∈ `

such that Q(x) = a. Define

S± = {y ∈ `/3` | Q(y) ≡ ±1 (mod 3)}.
Assume that a ≡ 1 (mod 3). Then x (mod 3) ∈ S+.



(iii) Show that there is an isometry σy ∈ R(3`, L) such that

σy(3y) ∈ 3L, for every y ∈ S+.

Hence a ∈ Q(L) for every a ≡ 1 (mod 3).

If a ≡ −1 (mod 3), there are some vectors y ∈ S− such that

σ(3y) 6∈ 3L for every σ ∈ R(3`, L). Let S−1 be the set of such

vectors and S−2 = S− − S−1 . Assume that x (mod 3) ∈ S−1 .

(iv) Find isometries τ1, τ2 ∈ R(3`, `) such that 1
3τi(3x) ∈ ` for

i = 1,2 and τ1 ◦ τ2 ∈ O(Q`) has an infinite order. Note that

Q(1
3τi(3x)) = a. We may assume that 1

3τi(3x) ∈ S−1 .

(v) Define x0 = 1
3τ2(3x) and xn = 1

9(τ1 ◦ τ2)
n(9x). Show that if

xn ∈ S−1 , then xn+1 ∈ `.



(vi) Show that xn 6= xm for every n 6= m. If xn ∈ S−1 for every n,

then there are infinitely many vectors xn ∈ ` such that Q(xn) = a.

This is a contradiction to the fact that R(a, `) < ∞. Therefore

there is an integer m such that xm (mod 3) ∈ S−2 and hence

a ∈ Q(L). This completes the proof.

• We may replace 3 and ` in the above with other integers and

Z-lattices, respectively, to prove the regularity for some other

Z-lattices.



(4.6) Numerical data for L = L(17)

R(3`, L) =
{(−1 −3 −1

1 0 −2
1 0 1

)
,

(−1 −1 −3
1 −2 0
1 1 0

)
,

(
1 1 3−1 2 0
−1 −1 0

)
,

(
1 3 1−1 0 2
−1 0 −1

)}
,

S+ =







0
0
1


 ,



0
0
2


 ,



0
1
0


 ,



0
2
0


 ,



1
2
2


 ,



2
1
1








,

S− =







0
1
1


 ,



0
1
2


 ,



0
2
1


 ,



0
2
2


 ,



1
0
2


 ,



1
1
2


 ,



1
2
0


 ,



1
2
1


 ,



2
0
1


 ,



2
1
0


 ,



2
1
2


 ,



2
2
1








.

S−1 = {(0,±1,±1), (0,±1,∓1)}.
If x ≡ (0,±1,±1) (mod 3),

τ1 =
(

1 −4 −2
−2 −1 −2
0 0 3

)
, τ2 =

(
1 −2 −4
0 3 0−2 −2 −1

)
∈ R(3`, `),



and if x ≡ (0,±1,∓1) (mod 3),

τ1 =
(

3 2 2
0 0 −3
0 −3 0

)
, τ2 =

(
1 4 4
1 1 −2
1 −2 1

)
∈ R(3`, `).

(4.7) Remaining candidates

• γ3(L(8)) = L(4) and γ3(L(4)) = L(1), γ3(L(1)) = L(4).

• γ3(L(13)) = L(15), γ3(L(15)) = L(13).

• There are exactly 14 candidates of regular ternary Z-lattices:



Candidates of regular ternary Z-lattices

L(2) =

(
2 0 1
0 12 3
1 3 26

)
, L(3) =

(
4 1 2
1 10 2
2 2 22

)
, L(5) =

(
2 0 1
0 20 5
1 5 58

)
,

L(7) =

(
10 2 1
2 16 −4
1 −4 22

)
, L(8) =

(
10 3 3
3 18 9
3 9 30

)
, L(9) =

(
10 3 5
3 18 6
5 6 34

)
,

L(10) =

(
4 0 1
0 30 15
1 15 64

)
, L(12) =

(
10 3 3
3 18 0
3 0 54

)
, L(13) =

(
10 1 3
1 26 −6
3 −6 66

)
,

L(14) =

(
18 6 3
6 22 −4
3 −4 58

)
, L(16) =

(
3 1 1
1 6 2
1 2 14

)
.

L(1) =

(
2 1 1
1 10 2
1 2 26

)
, L(4) =

(
6 3 3
3 10 3
3 3 30

)
, L(15) =

(
22 3 6
3 30 −3
6 −3 78

)
.



[5] Representations of an Arithmetic Progression

Sd,a = {dn + a | n = 0,1, . . . } (d ∈ Z+, a ∈ Z+ ∪ {0})

(5.1) Definitions

(i) A Z-lattice L is called Sd,a-universal if Sd,a ⊂ Q(L).

(ii) A Z-lattice L is called Sd,a-regular if

Sd,a ∩Q(L) = Sd,a ∩Q(gen(L)) 6= ∅.
• If L is Sd,a-universal, then L is Sd,a-regular.

Assume that rank(L) ≥ 3.

• If L is Sd,a-regular, then for any m dividing 8
∏

p|dL,odd p2, there
is an integer a0 such that L is Smd,a0

-universal.



(5.2) Sd,a-universal Z-lattices

• Unary case (Fermat’s four squares theorem)

There are no four distinct squares in arithmetic progression.

• Binary case (Alaca-Alaca-Williams)

There is no binary Sd,a-universal Z-lattice for any d, a.

• Ternary case

There is no Sd,0-universal ternary Z-lattice for every positive in-

teger d.



(i) (Kaplansky)

◦ There are exactly 5 ternary S2,1-universal Z-lattices.

◦ There are at most 18 ternary even S4,2-universal Z-lattices
including 4 as candidates (one was confirmed by Jagy).

(ii) (Lemma) If L is an Sd,a-universal ternary Z-lattice, then

dL ≤ 16d3(3d + a)2.

Hence there are only finitely many ternary Sd,a-universal Z-lattices
for any d, a.



(5.3) Ternary Sd,a-regular Z-lattices

• The Ramanujan form x2 + y2 + 10z2 is S3,2-regular and S10,5-

regular though it is not regular.

• L(1) is S4,0, S16,6 and S16,10−regular.

• (Main Theorem) For any d, a, there is a polynomial f(d, a)

satisfying the following: For any Sd,a-regular ternary Z-lattice L,

det(L) ≤ f(d, a).

Therefore there are only finitely many Sd,a-regular Z-lattices.



(5.4) Sketch of proof

L : Sd,a-regular lattice.

(i) Find d1, a1 with d1 ≡ 0 (mod 2) such that L is Sd1,a1
-regular

and for any p | d1, Sd1,a1
⊂ Q(Lp).

(ii) Show that for any prime p (gcd(p, d1) = 1) such that the

unimodular component of Lp is anisotropic, γp(L) is also Sd1,a2
-

regular for some integer a2.

(iii) By using (ii), show that Lp is isotropic for every large prime

p.

(iv) If p is large enough, show that det(L) is not divisible by p.



(v) For any p | det(L), by taking γq-transformation to L, if nec-

essary repeatedly, for any prime q 6= p, show that ordp(det(L)) is

bounded.

(vi) In each step, show that every constant has a polynomial

growth to d, a.



• (Duke and Schulze-Pillot) For any ternary Z-lattice L, there is
a constant C satisfying the following property: If an integer a

satisfies

(i) a is primitively represented by the genus of L;

(ii) a is represented by the spinor genus of L;

(iii) a > C;

then a is represented by L.

• (Corollary) For any integers S and d, a with gcd(d, a) = 1,
there is a constant C satisfying the following property: For any
Z-lattice L with det(L) > C,

|(Q∗(gen(L))−Q(L)) ∩ {m | m ≡ a (mod d)}| ≥ S.


