Regular positive ternary quadratic forms

> Byeong-Kweon Oh

Department of Applied Mathematics
Sejong University
22 Jan. 2008

ABSTRACT

A positive definite quadratic form f is said to be regular if it globally represents all integers that are represented by the genus of f. In 1997, Jagy, Kaplansky and Schiemann provided a list of 913 candidates of primitive positive definite regular ternary quadratic forms, and all but 22 of them are verified to be regular. In this talk we show that 8 forms among 22 candidates are, in fact, regular. At the end of the talk, we show some finiteness result on ternary forms that represent every eligible integer in some arithmetic progression.

[1] Quadratic Forms

(1.1) Definition of quadratic forms
(i) $S_{m}(\mathbb{Z})=\{$ Symmetric matrices of rank m over $\mathbb{Z}\}$
(ii) $L=\mathbb{Z} x_{1}+\cdots+\mathbb{Z} x_{m}$ with a non-degenerate symmetric bilinear form

$$
B\left(x_{i}, x_{j}\right)=m_{i j} \in \mathbb{Z} \text { and } Q(x):=B(x, x)
$$

(iii) $f_{L}\left(x_{1}, x_{2} \ldots, x_{m}\right)=\sum_{i, j} m_{i j} x_{i} x_{j}$

$$
L \longleftrightarrow M_{L}:=\left(B\left(x_{i}, x_{j}\right)\right) \longleftrightarrow f_{L}
$$

(1.2) Representation of quadratic forms
(i) For $M \in S_{m}(\mathbb{Z})$ and $N \in S_{n}(\mathbb{Z})$,

$$
N \longrightarrow M \text { iff } \exists T \in M_{m, n}(\mathbb{Z}) \text { such that } T^{t} M T=N .
$$

(ii) For two \mathbb{Z}-lattices ℓ and L,

$$
\ell \longrightarrow L \text { iff } \sigma: \ell \hookrightarrow L \text { such that }
$$

$$
B(x, y)=B(\sigma(x), \sigma(y)) \text { for all } x, y \in \ell
$$

(iii) For $f\left(x_{1}, \ldots, x_{m}\right), g\left(y_{1}, \ldots, y_{n}\right)$,

$$
g \longrightarrow f \text { iff } \exists T \in M_{m, n}(\mathbb{Z}) \text { such that } f(T \mathbf{y})=g(\mathbf{y}) .
$$

(1.3) We define

$$
R(\ell, L)=\{\sigma: \ell \longrightarrow L\} \quad \text { and } \quad O(L)=R(L, L)
$$

If ℓ and L is positive definite, then $R(\ell, L)$ is a finite set.
(1.4) If $\ell \longrightarrow L$ and $L \longrightarrow \ell$, we write $\ell \simeq L$.
(1.5) A \mathbb{Z}-lattice L is called even if $Q(x) \in 2 \mathbb{Z}$ for every $x \in L$.
(1.6) Throughout this talk, we always assume that every \mathbb{Z}-lattice L is primitive and positive definite.

[2] Well Known Theorems

$L: \mathbb{Z}$-lattice, $\mathbb{Z}_{p}: p$-adic integer ring
(2.1) Scalar extension of a \mathbb{Z}-lattice L

We define $L_{p}=L \otimes \mathbb{Z}_{p}$ for every prime p.

If $\exists x \in L_{p}$ such that $Q(x)=a$, then we write $a \longrightarrow L_{p}$.

Note that $a \longrightarrow L_{p}$ if and only if there is an $x_{n} \in L$ such that

$$
Q\left(x_{n}\right) \equiv a \quad\left(\bmod p^{n}\right)
$$

for every non-negative integer n.
(2.2) Genus and class number $\operatorname{gen}(L):=\left\{L^{\prime} \mid L_{p}^{\prime} \simeq L_{p}\right.$ for every prime $\left.p\right\}, \quad h(L):=|\operatorname{gen}(L) / \sim|$
(2.3) Local information

If $a \longrightarrow L_{p}$ for every prime p (we write $a \longrightarrow \operatorname{gen}(L)$), then

$$
a \longrightarrow L^{\prime} \quad \text { for some } L^{\prime} \in \operatorname{gen}(L) .
$$

Hence if $h(L)=1$, then

$$
a \longrightarrow L \quad \text { if and only if } \quad a \longrightarrow \operatorname{gen}(L)
$$

- We define
$Q(L)=\{a \in \mathbb{Z} \mid a \longrightarrow L\}$ and $Q(\operatorname{gen}(L))=\{a \in \mathbb{Z} \mid a \longrightarrow \operatorname{gen}(L)\}$. Every integer $a \in Q(\operatorname{gen}(L))$ is called eligible and $a \in Q(\operatorname{gen}(L))-$ $Q(L)$ is called exceptional.
(2.4) Definition of regular lattices
- A \mathbb{Z}-lattice L is called regular if it represents every integer a that is represented by the genus of L.

Note that

$$
L \text { is regular } \Longleftrightarrow Q(L)=Q(\operatorname{gen}(L))
$$

- If $h(L)=1, L$ is regular. The converse is not true in general. For example,

$$
\operatorname{gen}\left(h=2 x^{2}+2 x y+2 y^{2}+18 z^{2}\right)=\left\{h, 2 x^{2}+6 y^{2}+6 z^{2}+6 y z\right\}
$$

Both are regular forms (Hsia).

[3] Brief History

(3.1) (Kitaoka) If L is a binary \mathbb{Z}-lattice, then
L is regular if and only if $h(L)=1$.
(3.2) (Earnest) There are infinitely many quaternary regular \mathbb{Z} lattices.
(3.3) (Kim) classified all diagonal quaternary regular \mathbb{Z}-lattices:

$$
\begin{array}{ll}
x^{2}+y^{2}+z^{2}+d t^{2}: & \text { for } d=1,3,5,7 \text { or } d=2^{2 r+1} x \quad(x=1,2,3) \\
3 x^{2}+16 y^{2}+48 z^{2}+d t^{2}: & \text { for } d=16 \cdot 3^{2 r+1} x(x=1,2) \\
3 x^{2}+4 y^{2}+8 z^{2}+d t^{2}: & \text { for } d=8,12,16,20
\end{array}
$$

(3.4) There is no known example of a ternary \mathbb{Z}-lattice L such that $Q(L)$ is completely determined and

$$
|Q(\operatorname{gen}(L))-Q(L)| \geq 2,
$$

except the following result:
(3.5) (Ono-Soundararajan) (Assuming that GRH is true)

For the Ramanujan form $f_{L}=x^{2}+y^{2}+10 z^{2}$,

$$
Q(\operatorname{gen}(L))-Q(L)=3,7,21,31,33,43,67,
$$ 79, 87, 133, 217, 219, 223, 253, 307, 391, 679(Jones and Pall), 2719(Gupta).

(3.4) (Legendre, Gauss and Dirichlet)
$x^{2}+y^{2}+z^{2}=n$ has a solution if and only if $n \neq 4^{k}(8 s+7)$.
(3.5) (Lebesque, Dirichlet, Liouville)
$x^{2}+y^{2}+a z^{2}$ is regular for $a=2,3,5$.
(3.6) (\sim Jones-Pall)

There are exactly 102 diagonal regular ternary \mathbb{Z}-lattices (up to equivalence). Among them, 20 lattices have class number bigger than 1 , for example, $h\left(x^{2}+48 y^{2}+144 z^{2}\right)=4$.
(3.7) (Watson)

There are only finitely many regular ternary \mathbb{Z}-lattices.
(3.8) (~ Hsia, Kaplansky, Jagy, Jagy-Kaplansky-Schiemann)

There are at most 913 regular ternary \mathbb{Z}-lattices.

- They remained the following 22 ternary \mathbb{Z}-lattices as candidates:

$$
\begin{aligned}
& L(1)=\left(\begin{array}{ccc}
2 & 1 & 1 \\
1 & 10 & 2 \\
1 & 2 & 26
\end{array}\right), \quad L(2)=\left(\begin{array}{ccc}
2 & 0 & 1 \\
0 & 12 & 3 \\
1 & 3 & 26
\end{array}\right), \quad L(3)=\left(\begin{array}{ccc}
4 & 1 & 2 \\
1 & 10 & 2 \\
2 & 2 & 22
\end{array}\right), \\
& L(4)=\left(\begin{array}{ccc}
6 & 3 & 3 \\
3 & 10 & 3 \\
3 & 3 & 30
\end{array}\right), \quad L(5)=\left(\begin{array}{ccc}
2 & 0 & 1 \\
0 & 20 & 5 \\
1 & 5 & 58
\end{array}\right), \quad \mathbf{L}(6)=\left(\begin{array}{ccc}
4 & 1 & 1 \\
1 & 14 & -6 \\
1 & -6 & 44
\end{array}\right), \\
& L(7)=\left(\begin{array}{ccc}
10 & 2 & 1 \\
2 & 16 & -4 \\
1 & -4 & 22
\end{array}\right), \quad L(8)=\left(\begin{array}{ccc}
10 & 3 & 3 \\
3 & 18 & 9 \\
3 & 9 & 30
\end{array}\right), \quad L(9)=\left(\begin{array}{ccc}
10 & 3 & 5 \\
3 & 18 & 6 \\
5 & 6 & 34
\end{array}\right), \\
& L(10)=\left(\begin{array}{ccc}
4 & 0 & 1 \\
0 & 30 & 15 \\
1 & 15 & 64
\end{array}\right), \quad \mathbf{L}(11)=\left(\begin{array}{ccc}
14 & 2 & 7 \\
2 & 16 & 6 \\
7 & 6 & 46
\end{array}\right), \quad L(12)=\left(\begin{array}{ccc}
10 & 3 & 3 \\
3 & 18 & 0 \\
3 & 0 & 54
\end{array}\right), \\
& L(13)=\left(\begin{array}{ccc}
10 & 1 & 3 \\
1 & 26 & -6 \\
3 & -6 & 66
\end{array}\right), \quad L(14)=\left(\begin{array}{ccc}
18 & 6 & 3 \\
6 & 22 & -4 \\
3 & -4 & 58
\end{array}\right), \quad L(15)=\left(\begin{array}{ccc}
22 & 3 & 6 \\
3 & 30 & -3 \\
6 & -3 & 78
\end{array}\right), \\
& L(16)=\left(\begin{array}{ccc}
3 & 1 & 1 \\
1 & 6 & 2 \\
1 & 2 & 14
\end{array}\right), \quad \mathrm{L}(\mathbf{1 7})=\left(\begin{array}{ccc}
7 & 2 & 2 \\
2 & 8 & 0 \\
2 & 0 & 20
\end{array}\right), \quad \mathrm{L}(18)=\left(\begin{array}{ccc}
7 & 3 & 1 \\
3 & 15 & -3 \\
1 & -3 & 23
\end{array}\right), \\
& \mathbf{L}(\mathbf{1 9})=\left(\begin{array}{ccc}
11 & 4 & 1 \\
4 & 16 & 4 \\
1 & 4 & 19
\end{array}\right), \quad \mathbf{L}(\mathbf{2 0})=\left(\begin{array}{ccc}
5 & 2 & 2 \\
2 & 20 & -4 \\
2 & -4 & 68
\end{array}\right), \quad \mathbf{L}(21)=\left(\begin{array}{ccc}
11 & 4 & 1 \\
4 & 16 & 4 \\
1 & 4 & 51
\end{array}\right), \\
& \mathbf{L}(\mathbf{2 2})=\left(\begin{array}{ccc}
7 & 1 & 2 \\
1 & 23 & 6 \\
2 & 6 & 92
\end{array}\right) \text {. }
\end{aligned}
$$

- Exactly 794 lattices have class number 1 among 913.
(3.9) (O) The following $8 \mathbb{Z}$-lattices among 22 candidates are, in fact, regular:

$$
\begin{array}{lll}
\mathbf{L}(6)=\left(\begin{array}{ccc}
4 & 1 & 1 \\
1 & 14 & -6 \\
1 & -6 & 44
\end{array}\right), & \mathbf{L}(11)=\left(\begin{array}{ccc}
14 & 2 & 7 \\
2 & 16 & 6 \\
7 & 6 & 46
\end{array}\right), & \mathbf{L}(\mathbf{1 7})=\left(\begin{array}{ccc}
7 & 2 & 2 \\
2 & 8 & 0 \\
2 & 0 & 20
\end{array}\right), \\
\mathbf{L}(\mathbf{1 8})=\left(\begin{array}{ccc}
7 & 3 & 1 \\
3 & 15 & -3 \\
1 & -3 & 23
\end{array}\right), & \mathbf{L}(\mathbf{1 9})=\left(\begin{array}{ccc}
11 & 4 & 1 \\
4 & 16 & 4 \\
1 & 4 & 19
\end{array}\right), & \mathbf{L}(\mathbf{2 0})=\left(\begin{array}{ccc}
5 & 2 & 2 \\
2 & 20 & -4 \\
2 & -4 & 68
\end{array}\right), \\
\mathbf{L (2 1)}=\left(\begin{array}{ccc}
11 & 4 & 1 \\
4 & 16 & 4 \\
1 & 4 & 51
\end{array}\right), & \mathbf{L}(\mathbf{2 2})=\left(\begin{array}{ccc}
7 & 1 & 2 \\
1 & 23 & 6 \\
2 & 6 & 92
\end{array}\right) .
\end{array}
$$

[4] Watson Transformation

Let L be a \mathbb{Z}-lattice.
(4.1) Gamma transformation

Let $\epsilon=2$ if L is even and $p=2, \epsilon=1$ otherwise.

$$
\Gamma_{p}(L)=\{x \in L \mid Q(x+z) \equiv Q(z) \quad \bmod \epsilon p, \forall z \in L\}
$$

$\gamma_{p}(L)$: primitive \mathbb{Z}-lattice obtained from $\Gamma_{p}(L)$ by a suitable scaling.
(4.2) $\mathrm{A} \mathbb{Z}_{p}$-lattice L_{p} is called isotropic if $\exists x \in L-\{0\}$ such that $Q(x)=0$, otherwise L is called anisotropic.

- $L_{p}=\mathfrak{L}_{p, 0} \perp \cdots \perp \mathfrak{L}_{p, t}$: Jordan decomposition such that

$$
\mathfrak{s}\left(\mathfrak{L}_{p, i}\right)=p^{i} \mathbb{Z}_{p} \quad \text { or } \quad \mathfrak{L}_{p, i}=0
$$

(4.3) Lemma

Assume that $\mathfrak{L}_{p, 0}$ is anisotropic and additionally, $\mathfrak{L}_{2,1}=0$ only when $p=2$ and L_{2} is even. Then
$Q(L) \cap \epsilon p \mathbb{Z}=Q\left(\Gamma_{p}(L)\right)$ and $Q(\operatorname{gen}(L)) \cap \epsilon p \mathbb{Z}=Q\left(\operatorname{gen}\left(\Gamma_{p}(L)\right)\right)$. Hence if L is regular, then so is $\gamma_{p}(L)$. Conversely, if $\gamma_{p}(L)$ is regular (that is, $\Gamma_{p}(L)$ is regular), then

$$
(Q(\operatorname{gen}(L))-Q(L)) \cap \epsilon p \mathbb{Z}=\emptyset
$$

- If $\mathfrak{L}_{p, 0}$ is isotropic, γ_{p}-transformation does not preserve the regularity in general. For example $f_{L}=x^{2}+y^{2}+z^{2}+7 t^{2}$ is regular, but $f_{\gamma_{7}(L)}=x^{2}+7 y^{2}+7 z^{2}+7 t^{2}$ is not regular.
(4.4) Note that

$$
\gamma_{3}(L(18))=L(20), \quad \gamma_{5}(L(19))=L(22) .
$$

(4.5) Sketch of proof

Let $L=L(17)$ with $f_{L}=7 x^{2}+8 y^{2}+20 z^{2}+4 x y+4 x z$.
(i) $\ell=\gamma_{3}(L)$ with $f_{\ell}=3 x^{2}+7 y^{2}+7 z^{2}+2 x y+2 x z+6 y z$ is regular. Hence

$$
(Q(\operatorname{gen}(L))-Q(L)) \cap 3 \mathbb{Z}=\emptyset
$$

(ii) Since $3 \ell \longrightarrow L \longrightarrow \ell$,

$$
Q(\operatorname{gen}(L)) \subset Q(\operatorname{gen}(\ell))=Q(\ell)
$$

Assume that $a \in Q(\operatorname{gen}(L))$ and $3 \nmid a$. Then there is an $x \in \ell$ such that $Q(x)=a$. Define

$$
S^{ \pm}=\{y \in \ell / 3 \ell \mid Q(y) \equiv \pm 1 \quad(\bmod 3)\}
$$

Assume that $a \equiv 1(\bmod 3)$. Then $x(\bmod 3) \in S^{+}$.
(iii) Show that there is an isometry $\sigma_{y} \in R(3 \ell, L)$ such that

$$
\sigma_{y}(3 y) \in 3 L, \quad \text { for every } y \in S^{+}
$$

Hence $a \in Q(L)$ for every $a \equiv 1(\bmod 3)$.

If $a \equiv-1(\bmod 3)$, there are some vectors $y \in S^{-}$such that $\sigma(3 y) \notin 3 L$ for every $\sigma \in R(3 \ell, L)$. Let S_{1}^{-}be the set of such vectors and $S_{2}^{-}=S^{-}-S_{1}^{-}$. Assume that $x(\bmod 3) \in S_{1}^{-}$.
(iv) Find isometries $\tau_{1}, \tau_{2} \in R(3 \ell, \ell)$ such that $\frac{1}{3} \tau_{i}(3 x) \in \ell$ for $i=1,2$ and $\tau_{1} \circ \tau_{2} \in O(\mathbb{Q} \ell)$ has an infinite order. Note that $Q\left(\frac{1}{3} \tau_{i}(3 x)\right)=a$. We may assume that $\frac{1}{3} \tau_{i}(3 x) \in S_{1}^{-}$.
(v) Define $x_{0}=\frac{1}{3} \tau_{2}(3 x)$ and $x_{n}=\frac{1}{9}\left(\tau_{1} \circ \tau_{2}\right)^{n}(9 x)$. Show that if $x_{n} \in S_{1}^{-}$, then $x_{n+1} \in \ell$.
(vi) Show that $x_{n} \neq x_{m}$ for every $n \neq m$. If $x_{n} \in S_{1}^{-}$for every n, then there are infinitely many vectors $x_{n} \in \ell$ such that $Q\left(x_{n}\right)=a$. This is a contradiction to the fact that $R(a, \ell)<\infty$. Therefore there is an integer m such that $x_{m}(\bmod 3) \in S_{2}^{-}$and hence $a \in Q(L)$. This completes the proof.

- We may replace 3 and ℓ in the above with other integers and \mathbb{Z}-lattices, respectively, to prove the regularity for some other \mathbb{Z}-lattices.
(4.6) Numerical data for $L=L$ (17)

$$
\begin{gathered}
R(3 \ell, L)=\left\{\left(\begin{array}{ccc}
-1 & -3 & -1 \\
1 & 0 & -2 \\
1 & 0 & 1
\end{array}\right),\left(\begin{array}{ccc}
-1 & -1 & -3 \\
1 & -2 & 0 \\
1 & 1 & 0
\end{array}\right),\left(\begin{array}{ccc}
1 & 1 & 3 \\
-1 & 2 & 0 \\
-1 & -1 & 0
\end{array}\right),\left(\begin{array}{ccc}
1 & 3 & 1 \\
-1 & 0 & 2 \\
-1 & 0 & -1
\end{array}\right)\right\}, \\
S^{+}=\left\{\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
2
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
2 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
2 \\
2
\end{array}\right],\left[\begin{array}{l}
2 \\
1 \\
1
\end{array}\right]\right\}
\end{gathered}
$$

$$
S^{-}=\left\{\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right],\left[\begin{array}{l}
0 \\
2 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
2 \\
2
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right],\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right],\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
2 \\
1 \\
2
\end{array}\right],\left[\begin{array}{l}
2 \\
2 \\
1
\end{array}\right]\right\} .
$$

$$
S_{1}^{-}=\{(0, \pm 1, \pm 1),(0, \pm 1, \mp 1)\}
$$

$$
\text { If } x \equiv(0, \pm 1, \pm 1)(\bmod 3)
$$

$$
\tau_{1}=\left(\begin{array}{ccc}
1 & -4 & -2 \\
-2 & -1 & -2 \\
0 & 0 & 3
\end{array}\right), \quad \tau_{2}=\left(\begin{array}{ccc}
1 & -2 & -4 \\
0 & 3 & 0 \\
-2 & -2 & -1
\end{array}\right) \in R(3 \ell, \ell)
$$

and if $x \equiv(0, \pm 1, \mp 1)(\bmod 3)$,

$$
\tau_{1}=\left(\begin{array}{ccc}
3 & 2 & 2 \\
0 & 0 & -3 \\
0 & -3 & 0
\end{array}\right), \quad \tau_{2}=\left(\begin{array}{ccc}
1 & 4 & 4 \\
1 & 1 & -2 \\
1 & -2 & 1
\end{array}\right) \in R(3 \ell, \ell) .
$$

(4.7) Remaining candidates

- $\gamma_{3}(L(8))=L(4)$ and $\gamma_{3}(L(4))=L(1), \gamma_{3}(L(1))=L(4)$.
- $\gamma_{3}(L(13))=L(15), \gamma_{3}(L(15))=L(13)$.
- There are exactly 14 candidates of regular ternary \mathbb{Z}-lattices:

Candidates of regular ternary \mathbb{Z}-lattices

$$
\begin{aligned}
& L(2)=\left(\begin{array}{ccc}
2 & 0 & 1 \\
0 & 12 & 3 \\
1 & 3 & 26
\end{array}\right), \quad L(3)=\left(\begin{array}{ccc}
4 & 1 & 2 \\
1 & 10 & 2 \\
2 & 2 & 22
\end{array}\right), \quad L(5)=\left(\begin{array}{ccc}
2 & 0 & 1 \\
0 & 20 & 5 \\
1 & 5 & 58
\end{array}\right), \\
& L(7)=\left(\begin{array}{ccc}
10 & 2 & 1 \\
2 & 16 & -4 \\
1 & -4 & 22
\end{array}\right), \quad L(8)=\left(\begin{array}{ccc}
10 & 3 & 3 \\
3 & 18 & 9 \\
3 & 9 & 30
\end{array}\right), \quad L(9)=\left(\begin{array}{ccc}
10 & 3 & 5 \\
3 & 18 & 6 \\
5 & 6 & 34
\end{array}\right), \\
& L(10)=\left(\begin{array}{ccc}
4 & 0 & 1 \\
0 & 30 & 15 \\
1 & 15 & 64
\end{array}\right), \quad L(12)=\left(\begin{array}{ccc}
10 & 3 & 3 \\
3 & 18 & 0 \\
3 & 0 & 54
\end{array}\right), \quad L(13)=\left(\begin{array}{ccc}
10 & 1 & 3 \\
1 & 26 & -6 \\
3 & -6 & 66
\end{array}\right), \\
& L(14)=\left(\begin{array}{ccc}
18 & 6 & 3 \\
6 & 22 & -4 \\
3 & -4 & 58
\end{array}\right), \quad L(16)=\left(\begin{array}{ccc}
3 & 1 & 1 \\
1 & 6 & 2 \\
1 & 2 & 14
\end{array}\right) .
\end{aligned}
$$

$$
L(1)=\left(\begin{array}{ccc}
2 & 1 & 1 \\
1 & 10 & 2 \\
1 & 2 & 26
\end{array}\right), \quad L(4)=\left(\begin{array}{ccc}
6 & 3 & 3 \\
3 & 10 & 3 \\
3 & 3 & 30
\end{array}\right), \quad L(15)=\left(\begin{array}{ccc}
22 & 3 & 6 \\
3 & 30 & -3 \\
6 & -3 & 78
\end{array}\right) .
$$

[5] Representations of an Arithmetic Progression

$$
S_{d, a}=\{d n+a \mid n=0,1, \ldots\}\left(d \in \mathbb{Z}^{+}, a \in \mathbb{Z}^{+} \cup\{0\}\right)
$$

(5.1) Definitions
(i) A \mathbb{Z}-lattice L is called $S_{d, a}$-universal if $S_{d, a} \subset Q(L)$.
(ii) A \mathbb{Z}-lattice L is called $S_{d, a}$-regular if

$$
S_{d, a} \cap Q(L)=S_{d, a} \cap Q(\operatorname{gen}(L)) \neq \emptyset
$$

- If L is $S_{d, a}$-universal, then L is $S_{d, a}$-regular.

Assume that $\operatorname{rank}(L) \geq 3$.

- If L is $S_{d, a}$-regular, then for any m dividing $8 \prod_{p \mid d L, \text { odd }} p^{2}$, there is an integer a_{0} such that L is $S_{m d, a_{0}}$-universal.
(5.2) $S_{d, a}$-universal \mathbb{Z}-lattices
- Unary case (Fermat's four squares theorem)

There are no four distinct squares in arithmetic progression.

- Binary case (Alaca-Alaca-Williams)

There is no binary $S_{d, a}$-universal \mathbb{Z}-lattice for any d, a.

- Ternary case

There is no $S_{d, 0}$-universal ternary \mathbb{Z}-lattice for every positive integer d.
(i) (Kaplansky)

- There are exactly 5 ternary $S_{2,1}$-universal \mathbb{Z}-lattices.
- There are at most 18 ternary even $S_{4,2}$-universal \mathbb{Z}-lattices including 4 as candidates (one was confirmed by Jagy).
(ii) (Lemma) If L is an $S_{d, a}$-universal ternary \mathbb{Z}-lattice, then

$$
d L \leq 16 d^{3}(3 d+a)^{2}
$$

Hence there are only finitely many ternary $S_{d, a}$-universal \mathbb{Z}-lattices for any d, a.
(5.3) Ternary $S_{d, a}$-regular \mathbb{Z}-lattices

- The Ramanujan form $x^{2}+y^{2}+10 z^{2}$ is $S_{3,2^{-}}$regular and $S_{10,5^{-}}$ regular though it is not regular.
- $L(1)$ is $S_{4,0}, S_{16,6}$ and $S_{16,10-r e g u l a r . ~}^{\text {- }}$
- (Main Theorem) For any d, a, there is a polynomial $f(d, a)$ satisfying the following: For any $S_{d, a}$-regular ternary \mathbb{Z}-lattice L,

$$
\operatorname{det}(L) \leq f(d, a)
$$

Therefore there are only finitely many $S_{d, a^{-}}$-regular \mathbb{Z}-lattices.
(5.4) Sketch of proof
$L: S_{d, a^{-}}$regular Iattice.
(i) Find d_{1}, a_{1} with $d_{1} \equiv 0(\bmod 2)$ such that L is $S_{d_{1}, a_{1}}$-regular and for any $p \mid d_{1}, S_{d_{1}, a_{1}} \subset Q\left(L_{p}\right)$.
(ii) Show that for any prime $p\left(\operatorname{gcd}\left(p, d_{1}\right)=1\right)$ such that the unimodular component of L_{p} is anisotropic, $\gamma_{p}(L)$ is also $S_{d_{1}, a_{2}}-$ regular for some integer a_{2}.
(iii) By using (ii), show that L_{p} is isotropic for every large prime p.
(iv) If p is large enough, show that $\operatorname{det}(L)$ is not divisible by p.
(v) For any $p \mid \operatorname{det}(L)$, by taking γ_{q}-transformation to L, if necessary repeatedly, for any prime $q \neq p$, show that $\operatorname{ord}_{p}(\operatorname{det}(L))$ is bounded.
(vi) In each step, show that every constant has a polynomial growth to d, a.

- (Duke and Schulze-Pillot) For any ternary \mathbb{Z}-lattice L, there is a constant C satisfying the following property: If an integer a satisfies
(i) a is primitively represented by the genus of L;
(ii) a is represented by the spinor genus of L;
(iii) $a>C$;
then a is represented by L.
- (Corollary) For any integers S and d, a with $\operatorname{gcd}(d, a)=1$, there is a constant C satisfying the following property: For any \mathbb{Z}-lattice L with $\operatorname{det}(L)>C$,

$$
\left|\left(Q^{*}(\operatorname{gen}(L))-Q(L)\right) \cap\{m \mid m \equiv a \quad(\bmod d)\}\right| \geq S
$$

