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Iwasawa’s Theorem

We recall a classical result from Iwasawa Theory.

Let F be a number field. For a prime p, let F∞/F be the cyclo-

tomic Zp-extension and let Fn be the unique intermediate field

for F∞/F such that [Fn : F ] = pn, n ≥ 0. Let pen be the exact

power of p diving the class number of Fn.



Iwasawa’s Theorem. There exist integers λ ≥ 0, µ ≥ 0 and ν,

all independent of n, and an integer n0 such that, for all n ≥ n0,

en = λn+ µpn + ν.



Iwasawa’s Theorem for K2nOF

Let F be a number field.

Assume that µp ⊂ F if p > 2 and µ4 ⊂ F if p = 2.

Let M be the maximal abelian p-extension of F∞ unramified

outsider p.



Theorem. For any i ≥ 1, there exist integers ni and νi such

that, for all n ≥ ni,

e(i)n = λn+ µpn + νi,

where pe(i)n = ]K2i(OFn){p}, λ and µ are the classical Iwasawa

invariants of the Λ-module Gal(M/F∞) independent of i and n,

and νi is a constant independent of n.

Remark. J. Coates, On K2 and classical conjectures in algebraic

number theory, Ann. Math., 95(1972), pp.99-116, proves the

same assertion for i = 1.



Some Lemmas on Λ-modules

Let F be a number field with degree d.

Assume that

µp ⊂ F if p > 2 and µ4 ⊂ F if p = 2.

Let q0 be the largest power of p such that µq0 ⊂ F.

Put qn = q0p
n.

Write Fn = F (µqn) and F∞ =
∞⋃
n≥0

Fn.



Then F∞/F is a Zp-extension, and as usual, we write Γ =

Gal(F∞/F ), Γn = Gal(F∞/Fn). Let

κ : Γ −→ 1 + q0Zp

be the isomorphism determined by

γ(ζ) = ζκ(γ), for all ζ ∈W =
⋃
n≥0

µpn, γ ∈ Γ.

Let Λ = Zp[[T ]] be the ring of formal power series in an inde-

terminate T with coefficients in Zp. Choose, once and for all, a

topological generator γ0 of Γ. Then each compact Γ-module X

admits a unique structure of compact Λ-module such that

(1 + T )x = γ0x

for every x in X.



Let ι : Λ −→ Λ be the automorphism given by

ι(
∞∑

m=0

cmT
m) =

∞∑
m=0

cm(κ(γ0)/(1 + T )− 1)m.

Given any Λ-module Y, denote by Y • the Λ-module with the same

underlying group as Y but with Λ-module structure obtained from

that of Y by composition with ι.



Let M be a Γ-module.

Lichtenbaum, On the values of zeta and L-functions: I, Ann.,
Math., 96(1972), pp.338-360, defines M [n] :

As Zp-moduleM [n] is M ;

γ action on M [n] is given by the following:

For any γ ∈ Γ and x ∈M, γ ∗ x = κ(γ)nγ(x).

Thus M [n] is isomorphic to M(n) as Γ-modules.

For any n ∈ Z, we put

T ∗(n) = κ(γ0)
n(1 + T )− 1.



Lemma 3.1. Let ωn(T ) = (1 + T )p
n − 1. For any non-zero

element g(T ) ∈ Λ, let M denote the Λ-module Λ/(g(T )). And let

h : M −→M be the Λ-homomorphism given by multiplication by

ωn(T ).

(1) (Lichtenbaum) M [m] is isomorphic to Λ/(g(T ∗(−m))) as Λ-

module.

(2) h has a finite cokernel if and only if
n
Π
i=0

g(ζpi− 1) 6= 0, and, if
n
Π
i=0

g(ζpi − 1) 6= 0, the order of the cokernel is
n
Π
i=0

|g(ζpi − 1)|−1
vi
,



where the valuation | · |vi is the standard valuation of the field

Qp(ζpi) such that |ζpi − 1|vi = 1/p for all i ≥ 1, and | · |v0 = | · |p
on Qp such that |p|p = 1/p.

(3) h is injective if
n
Π
i=0

g(ζpi − 1) 6= 0 or its kernel is infinite if
n
Π
i=0

g(ζpi − 1) = 0.



Lemma 3.2. For all h(T ) ∈ Λ such that h(T ) and ωn(T ) are

relatively prime, we have

]
Λ

(ωn(T ), h(T ))
=

n
Π
i=0

|h(ζpi − 1)|−1
vi
.



Let M be a discrete Λ-module.

M̂ = HomZp(M,Qp/Zp) with Λ-action given by the following for-

mula:

For λ ∈ Λ, y ∈M, ϕ ∈ HomZp(M,Qp/Zp),

(λϕ)(y) = ϕ(λy).



Lemma 3.3. Let M be a discrete Λ-module and assume that its

Pontryagin dual M̂ is a finitely generated torsion Λ-module with

no non-trivial finite Λ-submodule, and the following sequence is

exact:

0 −→ M̂ −→ ⊕rj=1Λ/(fj(T )) −→ D −→ 0

where D is a finite Λ-module. Put f(T ) = Πrj=1fj(T ). Then the

following assertions are equivalent for all integers m and n ≥ 0 :

(i) M(m)Γn is finite, (ii) M(m)Γn = 0,

(iii)
n
Π
i=0

f(κ(γ0)
−mζpi − 1) 6= 0.

If these assertions are valid, then the order of M(m)Γn is

n
Π
i=0

|f(κ(γ0)
−mζpi − 1)|−1

vi
.



The order of the p-primary part of K2i(OFn)

In (resp. I): the free abelian group generated by the primes of

Fn (resp. F∞) which do not lie above p.

Pn (resp. P ): the subgroup of principal p-ideals in In (resp. I).

Cn = In/Pn (resp. C = I/P ).

Cn (resp. C): the p-primary component of Cn (resp. C).

OF : the ring of integers in F.

O0 = OF [1p] and On (resp. O) is the algebraic closure of O0 in

Fn (resp. F∞).



Un (resp. U): the group of all p-units in Fn (resp. F∞), i.e., the

multiplicative group of the ring On (resp. O).

Then we have

I = lim−→In, C = lim−→Cn, C = lim−→Cn, U = lim−→Un.

There is a well defined surjective homomorphism

ψ : (Qp/Zp)⊗Z F
×
∞ −→ (Qp/Zp)⊗Z I.

We define M to be its kernel.

Thus we have the exact sequence

0 −→ M −→ (Qp/Zp)⊗Z F
×
∞ −→ (Qp/Zp)⊗Z I −→ 0.



Lemma 4.1. (Soule) For any integer i ≥ 2, one has

M(i− 1)Γn = 0;

M(i− 1)Γn = H1(O,W (i))Γn

= H1(On,W
(i)) = (Qp/Zp)p

nd/2 ⊕Gn,i,

where Gn,i is a finite group.



Lemma 4.2. For any integers n ≥ 0 and i ≥ 1, we have

K2i(OFn){p}
∼= Gn,i+1.

This follows from

(1)

M(i− 1)Γn = (Qp/Zp)p
nd/2 ⊕Gn,i (Soule).

(2) Let OS be the ring of S-integers in a number field F with

some set S of finite places of F. If p is a prime, then

K2i(OS){p} ∼= H2(OS[
1

p
],Zp(i+ 1))



( Voevodsky, Rost, Suslin,..., See for example, C. Weibel’s paper

in Handkook of K-Theory, editors: E.M.Friedlander and

D.R.Grayson, Springer 2005.)

(3) For all integers n ≥ 0 and i ≥ 2,

H2(On,Zp(i)) ∼= H1(On,W
(i))/H1(On,W

(i))div.

(4)

H2(On,Zp(i+ 1)) ∼= K2i(On){p}

and

K2i(OFn){p}
∼= K2i(On){p}.



Let f(T ) be the characteristic polynomial of the Λ-module Gal(M/F∞)•.

Theorem 4.3. For any n ≥ 0 and i ≥ 1, we have

]K2i(OFn){p} = ]H(i)Γn ·
n
Π
j=0

|f(κ(γ0)
−iζpj − 1)|−1

vj
,

where

H =
Λd/2

Gal(M/F∞)•/t(Gal(M/F∞)•)

is a finite Λ-module.



Corollary 4.4. If S(F∞/F ) = 1, i.e., F∞ has only one prime

divisor which is ramified for extension F∞/F. Then for all integers

n ≥ 0 and i ≥ 1, we have

]K2i(OFn){p} = ]H(i)Γn ·
n
Π
j=0

|h(κ(γ0)
−iζpj − 1)|−1

vj
,

where h(T ) is the characteristic polynomial of the Pontryagin

dual of C.



Note that H finite implies, for sufficiently large n, H(i)Γn = H(i).

So we have the following.

Corollary 4.5. Let i ≥ 1. Then for sufficiently large n, we have

]K2i(OFn){p} = ]H ·
n
Π
j=0

|f(κ(γ0)
−iζpj − 1)|−1

vj
.

Corollary 4.6. The finite group H is trivial if and only if there

exists integer i ≥ 1 such that

]K2i(OF ){p} = |f(κ(γ0)
−i − 1)|−1

p .



Theorem 4.7. (1) For any i ≥ 1, if K2i(OF ){p} = 0, then

K2i(OFn){p} = 0, for all n ≥ 0.

(2) For any i ≥ 1, there exist integers ni and νi such that, for all

n ≥ ni,

e(i)n = λn+ µpn + νi,

where pe(i)n = ]K2i(OFn){p}, λ and µ are the classical Iwasawa

invariants of the Λ-module Gal(M/F∞) independent of i and n,

and νi is a constant independent of n.



K-groups and ideal class groups

In this section,

p : an odd prime number;

F = Q(ζp) the p-th cyclotomic field;

Fn = Q(ζpn+1);

F∞ =
⋃
n≥0 Fn;

F+ = Q(ζp)+;

∆ = Gal(F/Q) ∼= (Z/pZ)×;



ω: the Teichmuller character;

∆̂ = {ωi|0 ≤ i ≤ p− 2};

εi =
1
p−1

∑p−1
a=1 ω

i(a)σ−1
a , 0 ≤ i ≤ p− 2;

ε− =
1−σ−1

2 =
∑
i odd εi;

ε+ =
1+σ−1

2 =
∑
i even εi;

For an Zp[∆]-module A,

A(i) = εiA;

A− = ε−A;

A+ = ε+A.



Recall that M is the maximal abelian p-extension of F∞ unram-
ified outsider p. Let L denote the maximal unramified abelian
p-extension over F∞ in M. Let N ′ be the field generated over F∞
by the pa-th roots of all elements ε in U for all integers a ≥ 0.

K. Iwasawa, On Zl-extensions of algebraic number fields, Ann.
Math. 98(1973), 246-326, shows the following:

(1) Gal(M/N ′)• is isomorphic to the Pontryagin dual of C and
it is a Noetherian torsion Λ-module with no non-trivial finite Λ-
submodule.

(2) Gal(N ′/F∞)• is isomorphic to the Pontryagin dual of E, which
is a torsion free Zp-module and is contained as a Λ-submodule
of finite index in an elementary Λ-module of the form

Λd/2 ⊕M



where M = ⊕tj=1Λ/(gj(T )).

(3) Then the Galois group Gal(M/F∞) is a Noetherian Λ-module

and has no non-trivial finite Λ-submodule. We have

0 −→ Gal(M/F∞)•/t(Gal(M/F∞)•) −→ Λd/2 −→ H −→ 0.



Now assume that F = Q(ζp).

Let Kn be the maximal unramified abelian p-extension over Fn
and Ln be the maximal ablian extension over Fn in M. Write

ωn = ωn(T ) = (1 + T )p
n
− 1.

Then we have the following:

(i) S(F∞/F ) = 1.

(ii) Cn is also the ideal class group of Fn. And Cn is also the

p-primary subgroup of the ideal class group of Fn.



(iii)

Ln = F∞Kn,

ωnGal(L/F∞) = Gal(L/Ln)

(Gal(L/F∞))Γn = Gal(L/F∞)/ωnGal(L/F∞)

∼= Gal(Ln/F∞) ∼= Gal(Kn/Fn) ∼= Cn.

(iv)

Gal(M/N ′)• ∼= Hom(C,Qp/Zp) ∼= α(Gal(L/F∞)) ∼ Gal(L/F∞),

where α(Gal(L/F∞)) is the adjoint of Gal(L/F∞) and ∼ means

pseudo-isomorphism.



(v) Let Y be the Pontryagin dual of E. Then

Y ∼= Gal(N ′/F∞)•

and there is an exact sequence:

0 −→ Y −→ Λ
p−1
2 −→ H −→ 0,

where

H =
Λ
p−1
2

Gal(M/F∞)•/t(Gal(M/F∞)•)

is finite.

(vi) Let f(T ) be the characteristic polynomial of Gal(L/F∞).

Then f(T ) is also the characteristic polynomial of the Λ-module

Gal(M/N ′)• and Gal(M/F∞)•.



(vii) Let X = Gal(L/F∞). Then X− has no non-trivial finite Λ-

submodule and there are exact sequences:

0 −→ Ai −→ X(i) −→ ⊕tij=1Λ/(fi,j(T )) −→ Bi −→ 0

where Ai and Bi are finite Λ-submodules and Ai = 0 if i is odd.

Now set

A = ⊕
i is even

Ai

B+ = ⊕
i is even

Bi, B
− = ⊕

i is odd
Bi,

B = B+ ⊕B−,

fi(T ) =
ti
Π
j=1

fi,j(T ),



f+ = Π
i is even

fi(T ),

f− = Π
i is odd

fi(T ),

λ = λ(X) = degf(T )

λi = λ(X(i)) = degfi(T ),

λ+ = λ(X+) = degf+(T ),

λ− = λ(X−) = degf−(T ),

Then

fi(T ), f+(T ), f−(T )



are the characteristic polynomials of the Λ-modules X(i), X+

and X−, respectively. So

f(T ) = Π
2≤i≤p−2

fi(T ) = f+(T )f−(T )

and there are exact sequences:

0 −→ A −→ X+ −→ ⊕
i is even

ti
⊕
j=1

Λ/(fi,j(T )) −→ B+ −→ 0,

0 −→ X− −→ ⊕
i is odd

ti
⊕
j=1

Λ/(fi,j(T )) −→ B− −→ 0,

0 −→ A −→ X −→ ⊕
2≤i≤p−2

ti
⊕
j=1

Λ/(fi,j(T )) −→ B −→ 0.



(vi) If Vandiver’s conjecture holds for p, then

X(i) = εiX
∼= Λ/(f(T, ω1−i))

for i = 3,5, · · · , p− 2, where

f((1 + p)s − 1, ω1−i) = Lp(s, ω
1−i).

Factor f(T, ω1−i) = pµigi(T )Ui(T ) with gi distinguished if gi 6= 1
and Ui ∈ Λ×. We know that µi = 0. Therefore

X(i) ∼= Λ/(gi(T ))

and

X = X− ∼= ⊕{i6=1 odd}Λ/(gi(T )).

(viii) The finite Λ-module H is trivial if and only if H1(Γ,U) = 1
if and only if Vandiver’s conjecture holds for p which implies A
and B are trivial and



Gal(M/N ′)• ∼= Hom(C,Qp/Zp) ∼= α(X) ∼= X ∼= ⊕{i6=1 odd}Λ/(gi(T )).

We can prove that the following exact sequence of Λ-modules :

1 −→ G(M/N ′)• −→ G(M/F∞)• −→ G(N ′/F∞)• −→ 1

is split. So, we have

Lemma 5.1. The following sequence of Λ-modules is split:

0 −→ E −→ M −→ C −→ 0,

where E = U⊗Qp/Zp.



Lemma 5.2. Let r ≥ 1 and n ≥ 0. Then there are the following

isomorphism

K2r(OFn){p}
(i) ∼= C(r)Γn

(i)
, i = 3,5, · · · , p− 2,

and exact sequence of abelian groups

0 −→ H(r)Γn −→ K2r(OFn){p}
+ −→ C(r)Γn

+ −→ 0.



Theorem 5.3. (1) The odd prime number p is regular if and

only if there exist integers i ≥ 1 and n ≥ 0 such that K2i(OFn){p}
is trivial, if and only if for all integers i ≥ 1 and n ≥ 0 such that

K2i(OFn){p} is trivial.

(2) C0
(i) = 0 if and only if

Cn
(i) = 0 for some n ≥ 0 if and only if

Cn
(i) = 0 for all n ≥ 0,

in the case, λi = 0.

Further more, if i is odd, then λi = 0 implies C0
(i) = 0.



(3) Let i = 3,5, · · · , p− 2. Then

K2r(OF0
){p}(i) = 0 if and only if

K2r(OFn){p}(i) = 0 for some n ≥ 0 if and only if

K2r(OFn){p}(i) = 0 for all n ≥ 0 if and only if

λi = 0.

K2r(OF0
){p}+ = 0 if and only if

K2r(OFn){p}+ = 0 for some n ≥ 0 if and only if

K2r(OFn){p}+ = 0 for all n ≥ 0, and in this case, λ+ = 0.



Lemma 5.4. (a) Let M = Λ/(g(T )) with g(T ) a distinguished
polynomial and g(T ) and ωn(T ) relatively prime. For all integers
i ≥ 1 and n ≥ 0, we have

p-rk(M(i)Γn) = p-rk(MΓn)

= min{pn,deg(g(T ))}.
Moreover, let n0 be the smallest integer such that pn0 ≥ deg(g(T )).
Then there exist integers n1, n2, · · · , nd, where d = deg(g(T )),
such that for all n ≥ n0 + 1, we have

Λ

(wn, g)
∼=

d
⊕
i=1

p−n−niZp/Zp.

(b) Let X be a Noetherian torsion Λ-module such that µ(X) = 0
and XΓn is finite for all n ≥ 0. Then

p-rk(XΓn) ≥ λ(X),



p-rk(X(i)Γn) ≥ λ(X), n� 0.

Further more, if X has no finite Λ-submodule, then for any inte-

gers i, there exist integers n0, n1, n2, · · · , nλ(X), ν1, ν2, · · · , νλ(X),

such that for all n ≥ n0, we have

p-rk(XΓn) = p-rk(X(i)Γn) = λ(X),

and

XΓn
∼=

λ(X)
⊕
j=1

p−n−njZp/Zp,

X(i)Γn
∼=

λ(X)
⊕
j=1

p−n−νjZp/Zp.



Corollary 5.5. (1) Let i = 3,5, · · · , p − 2 be odd. Then there

exist integers n0, ni1, · · · , niλi such that for all n ≥ n0 we have

p-rk(Cn
(i)) = λi, Cn

(i) ∼=
λi
⊕
j=1

p−n−nijZp/Zp,

hence

p-rk(Cn
−) = λ−,

Cn
− ∼= ⊕

3≤i is odd

λi
⊕
j=1

p−n−nijZp/Zp, n� 0.

(2) Let i = 2,4, · · · , p− 3 be even. Then there exists integer n0

such that for all n ≥ n0 we have

p-rk(Cn
(i)) ≥ λi, p-rk(Cn

+) ≥ λ+.



(3) Let r ≥ 1 and i = 3,5, · · · , p−2. There exist integers n0, n1, · · · , nλ
such that for all n ≥ n0, we have the following isomorphisms of
abelian groups:

K2r(OFn){p}
(i) ∼=

λi
⊕
j=1

p−n−njZp/Zp,

and

K2r(OFn){p}
+ ∼= H ⊕

λ+

⊕
j=1

p−n−mjZp/Zp, n� 0,

for some integers m1, · · · ,mλ+ independent of n.

(4)

p-rk(XΓn) = p-rk(H) + p-rk(α(X)Γn),

hence

p-rk(Cn
+) = p-rk(H) + λ+.



Corollary 5.6. Let i = 3,5, · · · , p − 2 be odd. Then λi = 1 if

and only if Cn
(i) is a cyclic group if and only if K2r(OFn){p}(i) is

a cyclic group, and in this case,

Cn
(i) ∼=

Zp
(wn(ai))

,

K2r(OFn){p}
(i) ∼=

Zp
(wn((1 + p)r(1 + ai)− 1))

,

where ai is the root of the characteristic polynomial of X(i), i.e.,

f(T,w1−i) = (T − ai)Ui(T ), Ui(T ) ∈ Λ∗,

where f((1 + p)s − 1, ω1−i) = Lp(s, ω1−i).



Corollary 5.7. Let λ denote the Iwasawa λ-invariant of the

Λ-module Gal(L/F∞). Then the following statements are equiv-

alent:

(a) Vandiver conjecture holds for p;

(b) The finite Λ-module H in is trivial;

(c) The finite Λ-modules A and B are trivial;

(d) X is an elementary Λ-module;

(e) α(X) ∼= X;

(f) p-rk(XΓn) = p-rk(α(X)Γn) for some n� 0;



(g) p-rk(XΓn) = λ for some n� 0;

(g’) p-rk(X+
Γn) = λ+ for some n� 0;

(h) p-rk(Cl(OFn)) = λ for some n� 0;

(h’) p-rk(Cl(OFn)
+) = λ+ for some n� 0;

(j) for any i ≥ 1, p-rk(K2i(OFn)) = λ for some n� 0;

(j’) for any i ≥ 1, p-rk(K2i(OF+
n

)) = λ+ for some n� 0.

If these statements hold, then λ+ = 0, i.e., λ = λ−.



Remarks. (1) (Kurihara) C0
(p−3) always vanishes.

(2) (Soule) C0
(p−n) is trivial if logp > n224n4

odd.



Theorem 5.8. Let p be an odd prime and assume Vandiver
conjecture holds for p. Let i1, · · · , is be the even indices i such
that 2 ≤ i ≤ p− 3 and p|Bi. If

B1,ωi−1 6≡ 0 mod p2

and

Bi
i
6≡

Bi+p−1

i+ p− 1
mod p2 for all i ∈ {i1, · · · , is},

then

(1)

X ∼= ⊕i∈{i1,··· ,is}Λ/(T − αi),

Cn
∼= (Z/pn+1Z)s, for all n ≥ 0,

where αi ∈ pZp and vp(αi) = 1 for all i ∈ {i1, · · · , is}.



(2) For all integers m ≥ 1 and n ≥ 0, we have

K2m(OFn){p}
∼= ⊕i∈{i1,··· ,is}Z/p

n+1+ciZ

where ci = νp((1 + p)m(1 + αi)− 1)− 1 for all i ∈ {i1, · · · , is}. In

particular, if m+ αi
p 6≡ 0 mod p for all i ∈ {i1, · · · , is}, then

K2m(OFn){p}
∼= Cl(OFn){p}

∼= (Z/pn+1Z)s.

Here Bi and B1,ωi−1 are respectively the ordinary Bernoulli num-

bers and the generalized Bernoulli numbers.



Corollary 5.9. Let p be an odd prime and assume Vandiver

conjecture holds for p. Let i1, · · · , is be the even indices which

satisfy conditions of Theorem 5.8. Then for all integers n ≥ 0

and m ≥ 1 such that m 6≡ −
B1,ωi−1

B2,ωi−2/2−B1,ωi−1
(mod p) for all

i ∈ {i1, · · · , is}, we have

K2m(OFn){p}
∼= Cl(OFn){p}

∼= (Z/pn+1Z)s.


