$K_{2 i} O_{F}$ for \mathbb{Z}_{p}-extension

Hourong Qin

Joint work with
Qingzhong Ji

Department of Mathematics Nanjing University, Nanjing, P.R.China

Outline:

- Iwasawa's Theorem
- Iwasawa's Theorem for $K_{2 n} O_{F}$
- Some Lemmas on \wedge-modules
- The order of the p-primary part of $K_{2 i}\left(O_{F_{n}}\right)$
- K-groups and ideal class groups

Iwasawa's Theorem

We recall a classical result from Iwasawa Theory.

Let F be a number field. For a prime p, let F_{∞} / F be the cyclotomic \mathbb{Z}_{p}-extension and let F_{n} be the unique intermediate field for F_{∞} / F such that $\left[F_{n}: F\right]=p^{n}, n \geq 0$. Let $p^{e_{n}}$ be the exact power of p diving the class number of F_{n}.

Iwasawa's Theorem. There exist integers $\lambda \geq 0, \mu \geq 0$ and ν, all independent of n, and an integer n_{0} such that, for all $n \geq n_{0}$,

$$
e_{n}=\lambda n+\mu p^{n}+\nu
$$

Iwasawa's Theorem for $K_{2 n} O_{F}$
Let F be a number field.

Assume that $\mu_{p} \subset F$ if $p>2$ and $\mu_{4} \subset F$ if $p=2$.
Let M be the maximal abelian p-extension of F_{∞} unramified outsider p.

Theorem. For any $i \geq 1$, there exist integers n_{i} and ν_{i} such that, for all $n \geq n_{i}$,

$$
e(i)_{n}=\lambda n+\mu p^{n}+\nu_{i}
$$

where $p^{e(i)_{n}}=\sharp K_{2 i}\left(O_{F_{n}}\right)\{p\}, \lambda$ and μ are the classical Iwasawa invariants of the Λ-module $\operatorname{Gal}\left(M / F_{\infty}\right)$ independent of i and n, and ν_{i} is a constant independent of n.

Remark. J. Coates, On K_{2} and classical conjectures in algebraic number theory, Ann. Math., 95(1972), pp.99-116, proves the same assertion for $i=1$.

Some Lemmas on \wedge-modules

Let F be a number field with degree d.

Assume that
$\mu_{p} \subset F$ if $p>2$ and $\mu_{4} \subset F$ if $p=2$.

Let q_{0} be the largest power of p such that $\mu_{q_{0}} \subset F$.
Put $q_{n}=q_{0} p^{n}$.
Write $F_{n}=F\left(\mu_{q_{n}}\right)$ and $F_{\infty}=\bigcup_{n \geq 0}^{\infty} F_{n}$.

Then F_{∞} / F is a \mathbb{Z}_{p}-extension, and as usual, we write $\Gamma=$ $\operatorname{Gal}\left(F_{\infty} / F\right), \Gamma_{n}=\operatorname{Gal}\left(F_{\infty} / F_{n}\right)$. Let

$$
\kappa:\left\ulcorner\longrightarrow 1+q_{0} \mathbb{Z}_{p}\right.
$$

be the isomorphism determined by

$$
\gamma(\zeta)=\zeta^{\kappa(\gamma)}, \quad \text { for all } \zeta \in W=\bigcup_{n \geq 0} \mu_{p^{n}}, \quad \gamma \in \Gamma
$$

Let $\wedge=\mathbb{Z}_{p}[[T]]$ be the ring of formal power series in an indeterminate T with coefficients in \mathbb{Z}_{p}. Choose, once and for all, a topological generator γ_{0} of Γ. Then each compact Γ-module X admits a unique structure of compact \wedge-module such that

$$
(1+T) x=\gamma_{0} x
$$

for every x in X.

Let $\iota: \wedge \longrightarrow \wedge$ be the automorphism given by

$$
\iota\left(\sum_{m=0}^{\infty} c_{m} T^{m}\right)=\sum_{m=0}^{\infty} c_{m}\left(\kappa\left(\gamma_{0}\right) /(1+T)-1\right)^{m}
$$

Given any \wedge-module Y, denote by Y^{\bullet} the Λ-module with the same underlying group as Y but with Λ-module structure obtained from that of Y by composition with ι.

Let M be a Г-module.

Lichtenbaum, On the values of zeta and L-functions: I, Ann., Math., 96(1972), pp.338-360, defines $M[n]$:

As \mathbb{Z}_{p}-module $M[n]$ is M;
γ action on $M[n]$ is given by the following:

For any $\gamma \in \Gamma$ and $x \in M, \gamma * x=\kappa(\gamma)^{n} \gamma(x)$.
Thus $M[n]$ is isomorphic to $M(n)$ as Γ-modules.

For any $n \in \mathbb{Z}$, we put

$$
T_{(n)}^{*}=\kappa\left(\gamma_{0}\right)^{n}(1+T)-1
$$

Lemma 3.1. Let $\omega_{n}(T)=(1+T)^{p^{n}}-1$. For any non-zero element $g(T) \in \Lambda$, let M denote the \wedge-module $\wedge /(g(T))$. And let $h: M \longrightarrow M$ be the \wedge-homomorphism given by multiplication by $\omega_{n}(T)$.
(1) (Lichtenbaum) $M[m]$ is isomorphic to $\wedge /\left(g\left(T_{(-m)}^{*}\right)\right)$ as \wedge module.
(2) h has a finite cokernel if and only if $\prod_{i=0}^{n} g\left(\zeta_{p^{i}}-1\right) \neq 0$, and, if $\prod_{i=0}^{n} g\left(\zeta_{p^{i}}-1\right) \neq 0$, the order of the cokernel is $\prod_{i=0}^{n}\left|g\left(\zeta_{p^{i}}-1\right)\right| \bar{v}_{i}^{1}$,
where the valuation $|\cdot| v_{i}$ is the standard valuation of the field $\mathbb{Q}_{p}\left(\zeta_{p^{i}}\right)$ such that $\left|\zeta_{p^{i}}-1\right|_{v_{i}}=1 / p$ for all $i \geq 1$, and $|\cdot|_{v_{0}}=|\cdot|_{p}$ on \mathbb{Q}_{p} such that $|p|_{p}=1 / p$.
(3) h is injective if $\prod_{i=0}^{n} g\left(\zeta_{p^{i}}-1\right) \neq 0$ or its kernel is infinite if $\prod_{i=0}^{n} g\left(\zeta_{p^{i}}-1\right)=0$.

Lemma 3.2. For all $h(T) \in \wedge$ such that $h(T)$ and $\omega_{n}(T)$ are relatively prime, we have

$$
\sharp \frac{\wedge}{\left(\omega_{n}(T), h(T)\right)}=\prod_{i=0}^{n}\left|h\left(\zeta_{p^{i}}-1\right)\right|_{v_{i}}^{-1} .
$$

Let M be a discrete \wedge-module.
$\widehat{M}=\operatorname{Hom}_{\mathbb{Z}_{p}}\left(M, \mathbb{Q}_{p} / \mathbb{Z}_{p}\right)$ with \wedge-action given by the following formula:

For $\lambda \in \wedge, y \in M, \quad \varphi \in \operatorname{Hom}_{\mathbb{Z}_{p}}\left(M, \mathbb{Q}_{p} / \mathbb{Z}_{p}\right)$,

$$
(\lambda \varphi)(y)=\varphi(\lambda y) .
$$

Lemma 3.3. Let M be a discrete \wedge-module and assume that its Pontryagin dual \widehat{M} is a finitely generated torsion Λ-module with no non-trivial finite Λ-submodule, and the following sequence is exact:

$$
0 \longrightarrow \widehat{M} \longrightarrow \oplus_{j=1}^{r} \wedge /\left(f_{j}(T)\right) \longrightarrow D \longrightarrow 0
$$

where D is a finite \wedge-module. Put $f(T)=\Pi_{j=1}^{r} f_{j}(T)$. Then the following assertions are equivalent for all integers m and $n \geq 0$:

$$
\begin{gathered}
\text { (i) } M(m)^{\Gamma_{n}} \text { is finite, (ii) } M(m)_{\Gamma_{n}}=0, \\
\text { (iii) } \prod_{i=0}^{n} f\left(\kappa\left(\gamma_{0}\right)^{-m} \zeta_{p^{i}}-1\right) \neq 0 .
\end{gathered}
$$

If these assertions are valid, then the order of $M(m)^{\Gamma_{n}}$ is

$$
\prod_{i=0}^{n}\left|f\left(\kappa\left(\gamma_{0}\right)^{-m} \zeta_{p^{i}}-1\right)\right|_{v_{i}}^{-1} .
$$

The order of the p-primary part of $K_{2 i}\left(O_{F_{n}}\right)$
I_{n} (resp. I): the free abelian group generated by the primes of F_{n} (resp. F_{∞}) which do not lie above p.
$P_{n}($ resp. $P)$: the subgroup of principal p-ideals in $I_{n}($ resp. $I)$.
$C_{n}=I_{n} / P_{n}($ resp. $C=I / P)$.
\mathfrak{C}_{n} (resp. $\left.\mathfrak{C}\right)$: the p-primary component of C_{n} (resp. C).
O_{F} : the ring of integers in F.
$\mathfrak{O}_{0}=O_{F}\left[\frac{1}{p}\right]$ and $\mathfrak{O}_{n}($ resp. $\mathfrak{O})$ is the algebraic closure of \mathfrak{O}_{0} in F_{n} (resp. F_{∞}).
\mathcal{U}_{n} (resp. \mathcal{U}): the group of all p-units in F_{n} (resp. F_{∞}), i.e., the multiplicative group of the ring \mathfrak{O}_{n} (resp. \mathfrak{D}).

Then we have

$$
I=\underline{\lim } I_{n}, \quad C=\underline{\underline{\lim }} C_{n}, \quad \mathfrak{C}=\underline{\lim _{n}}, \quad \mathcal{U}=\underline{\lim } \mathcal{U}_{n} .
$$

There is a well defined surjective homomorphism

$$
\psi:\left(\mathbb{Q}_{p} / \mathbb{Z}_{p}\right) \otimes_{\mathbb{Z}} F_{\infty}^{\times} \longrightarrow\left(\mathbb{Q}_{p} / \mathbb{Z}_{p}\right) \otimes_{\mathbb{Z}} I .
$$

We define \mathfrak{M} to be its kernel.

Thus we have the exact sequence

$$
0 \longrightarrow \mathfrak{M} \longrightarrow\left(\mathbb{Q}_{p} / \mathbb{Z}_{p}\right) \otimes_{\mathbb{Z}} F_{\infty}^{\times} \longrightarrow\left(\mathbb{Q}_{p} / \mathbb{Z}_{p}\right) \otimes_{\mathbb{Z}} I \longrightarrow 0
$$

Lemma 4.1. (Soule) For any integer $i \geq 2$, one has

$$
\begin{gathered}
\mathfrak{M}(i-1)_{\Gamma_{n}}=0 ; \\
\mathfrak{M}(i-1)^{\Gamma_{n}}=H^{1}\left(\mathfrak{O}, W^{(i)}\right)^{\Gamma_{n}} \\
=H^{1}\left(\mathfrak{O}_{n}, W^{(i)}\right)=\left(\mathbb{Q}_{p} / \mathbb{Z}_{p}\right)^{p^{n} d / 2} \oplus G_{n, i},
\end{gathered}
$$

where $G_{n, i}$ is a finite group.

Lemma 4.2. For any integers $n \geq 0$ and $i \geq 1$, we have

$$
K_{2 i}\left(O_{F_{n}}\right)\{p\} \cong G_{n, i+1}
$$

This follows from
(1)

$$
\mathfrak{M}(i-1)^{\Gamma_{n}}=\left(\mathbb{Q}_{p} / \mathbb{Z}_{p}\right)^{p^{n} d / 2} \oplus G_{n, i} \quad \text { (Soule). }
$$

(2) Let O_{S} be the ring of S-integers in a number field F with some set S of finite places of F. If p is a prime, then

$$
K_{2 i}\left(O_{S}\right)\{p\} \cong H^{2}\left(O_{S}\left[\frac{1}{p}\right], \mathbb{Z}_{p}(i+1)\right)
$$

(Voevodsky, Rost, Suslin,..., See for example, C. Weibel's paper in Handkook of K-Theory, editors: E.M.Friedlander and D.R.Grayson, Springer 2005.)
(3) For all integers $n \geq 0$ and $i \geq 2$,

$$
H^{2}\left(\mathfrak{O}_{n}, \mathbb{Z}_{p}(i)\right) \cong H^{1}\left(\mathfrak{O}_{n}, W^{(i)}\right) / H^{1}\left(\mathfrak{O}_{n}, W^{(i)}\right)_{\text {div }} .
$$

(4)

$$
H^{2}\left(\mathfrak{O}_{n}, \mathbb{Z}_{p}(i+1)\right) \cong K_{2 i}\left(\mathfrak{O}_{n}\right)\{p\}
$$

and

$$
K_{2 i}\left(O_{F_{n}}\right)\{p\} \cong K_{2 i}\left(\mathfrak{O}_{n}\right)\{p\} .
$$

Let $f(T)$ be the characteristic polynomial of the Λ-module $\operatorname{GaI}\left(M / F_{\infty}\right)^{\bullet}$.

Theorem 4.3. For any $n \geq 0$ and $i \geq 1$, we have

$$
\sharp K_{2 i}\left(O_{F_{n}}\right)\{p\}=\sharp H(i)^{\ulcorner n} \cdot \prod_{j=0}^{n}\left|f\left(\kappa\left(\gamma_{0}\right)^{-i} \zeta_{p^{j}}-1\right)\right|_{v_{j}}^{-1},
$$

where

$$
H=\frac{\Lambda^{d / 2}}{\operatorname{Gal}\left(M / F_{\infty}\right)^{\bullet} / t\left(\operatorname{Gal}\left(M / F_{\infty}\right)^{\bullet}\right)}
$$

is a finite Λ-module.

Corollary 4.4. If $S\left(F_{\infty} / F\right)=1$, i.e., F_{∞} has only one prime divisor which is ramified for extension F_{∞} / F. Then for all integers $n \geq 0$ and $i \geq 1$, we have

$$
\sharp K_{2 i}\left(O_{F_{n}}\right)\{p\}=\sharp H(i)^{\Gamma_{n}} \cdot \prod_{j=0}^{n}\left|h\left(\kappa\left(\gamma_{0}\right)^{-i} \zeta_{p^{j}}-1\right)\right|_{v_{j}}^{-1},
$$

where $h(T)$ is the characteristic polynomial of the Pontryagin dual of \mathfrak{C}.

Note that H finite implies, for sufficiently large $n, H(i) \Gamma^{\ulcorner }=H(i)$. So we have the following.

Corollary 4.5. Let $i \geq 1$. Then for sufficiently large n, we have

$$
\sharp K_{2 i}\left(O_{F_{n}}\right)\{p\}=\sharp H \cdot \prod_{j=0}^{n}\left|f\left(\kappa\left(\gamma_{0}\right)^{-i} \zeta_{p^{j}}-1\right)\right|_{v_{j}}^{-1} .
$$

Corollary 4.6. The finite group H is trivial if and only if there exists integer $i \geq 1$ such that

$$
\sharp K_{2 i}\left(O_{F}\right)\{p\}=\left|f\left(\kappa\left(\gamma_{0}\right)^{-i}-1\right)\right|_{p}^{-1} .
$$

Theorem 4.7. (1) For any $i \geq 1$, if $K_{2 i}\left(O_{F}\right)\{p\}=0$, then $K_{2 i}\left(O_{F_{n}}\right)\{p\}=0$, for all $n \geq 0$.
(2) For any $i \geq 1$, there exist integers n_{i} and ν_{i} such that, for all $n \geq n_{i}$,

$$
e(i)_{n}=\lambda n+\mu p^{n}+\nu_{i},
$$

where $p^{e(i)_{n}}=\sharp K_{2 i}\left(O_{F_{n}}\right)\{p\}, \lambda$ and μ are the classical Iwasawa invariants of the \wedge-module $\operatorname{Gal}\left(M / F_{\infty}\right)$ independent of i and n, and ν_{i} is a constant independent of n.
K-groups and ideal class groups
In this section,
p : an odd prime number;
$F=\mathbb{Q}\left(\zeta_{p}\right)$ the p-th cyclotomic field;
$F_{n}=\mathbb{Q}\left(\zeta_{p^{n+1}}\right) ;$
$F_{\infty}=\cup_{n \geq 0} F_{n} ;$
$F^{+}=\mathbb{Q}\left(\zeta_{p}\right)^{+} ;$
$\Delta=\operatorname{Gal}(F / \mathbb{Q}) \cong(\mathbb{Z} / p \mathbb{Z})^{\times} ;$
ω : the Teichmuller character;

$$
\begin{aligned}
& \widehat{\triangle}=\left\{\omega^{i} \mid 0 \leq i \leq p-2\right\} \\
& \varepsilon_{i}=\frac{1}{p-1} \sum_{a=1}^{p-1} \omega^{i}(a) \sigma_{a}^{-1}, \quad 0 \leq i \leq p-2 \\
& \varepsilon_{-}=\frac{1-\sigma_{-1}}{2}=\sum_{i \text { odd }} \varepsilon_{i} \\
& \varepsilon_{+}=\frac{1+\sigma_{-1}}{2}=\sum_{i \text { even }} \varepsilon_{i}
\end{aligned}
$$

For an $\mathbb{Z}_{p}[\Delta]$-module A,
$A^{(i)}=\varepsilon_{i} A ;$
$A^{-}=\varepsilon_{-} A ;$
$A^{+}=\varepsilon_{+} A$.

Recall that M is the maximal abelian p-extension of F_{∞} unramified outsider p. Let L denote the maximal unramified abelian p-extension over F_{∞} in M. Let N^{\prime} be the field generated over F_{∞} by the p^{a}-th roots of all elements ε in \mathcal{U} for all integers $a \geq 0$.
K. Iwasawa, On \mathbb{Z}_{l}-extensions of algebraic number fields, Ann. Math. 98(1973), 246-326, shows the following:
(1) $\operatorname{Gal}\left(M / N^{\prime}\right)^{\bullet}$ is isomorphic to the Pontryagin dual of \mathfrak{C} and it is a Noetherian torsion Λ-module with no non-trivial finite \wedge submodule.
(2) $\operatorname{Gal}\left(N^{\prime} / F_{\infty}\right)^{\bullet}$ is isomorphic to the Pontryagin dual of \mathcal{E}, which is a torsion free \mathbb{Z}_{p}-module and is contained as a Λ-submodule of finite index in an elementary Λ-module of the form

$$
\wedge^{d / 2} \oplus M
$$

where $M=\oplus_{j=1}^{t} \wedge /\left(g_{j}(T)\right)$.
(3) Then the Galois group $\operatorname{GaI}\left(M / F_{\infty}\right)$ is a Noetherian Λ-module and has no non-trivial finite \wedge-submodule. We have

$$
0 \longrightarrow \operatorname{Gal}\left(M / F_{\infty}\right)^{\bullet} / t\left(\operatorname{GaI}\left(M / F_{\infty}\right)^{\bullet}\right) \longrightarrow \wedge^{d / 2} \longrightarrow H \longrightarrow 0
$$

Now assume that $F=\mathbb{Q}\left(\zeta_{p}\right)$.
Let K_{n} be the maximal unramified abelian p-extension over F_{n} and L_{n} be the maximal ablian extension over F_{n} in M. Write

$$
\omega_{n}=\omega_{n}(T)=(1+T)^{p^{n}}-1
$$

Then we have the following:
(i) $S\left(F_{\infty} / F\right)=1$.
(ii) C_{n} is also the ideal class group of F_{n}. And \mathfrak{C}_{n} is also the p-primary subgroup of the ideal class group of F_{n}.
(iii)

$$
\begin{gathered}
L_{n}=F_{\infty} K_{n} \\
\omega_{n} \operatorname{Gal}\left(L / F_{\infty}\right)=\operatorname{Gal}\left(L / L_{n}\right) \\
\left(\operatorname{Gal}\left(L / F_{\infty}\right)\right)_{\Gamma_{n}}=\operatorname{Gal}\left(L / F_{\infty}\right) / \omega_{n} \operatorname{Gal}\left(L / F_{\infty}\right) \\
\cong \operatorname{Gal}\left(L_{n} / F_{\infty}\right) \cong \operatorname{Gal}\left(K_{n} / F_{n}\right) \cong \mathfrak{C}_{n}
\end{gathered}
$$

(iv)

$$
\operatorname{Gal}\left(M / N^{\prime}\right)^{\bullet} \cong \operatorname{Hom}\left(\mathfrak{C}, \mathbb{Q}_{p} / \mathbb{Z}_{p}\right) \cong \alpha\left(\operatorname{Gal}\left(L / F_{\infty}\right)\right) \sim \operatorname{Gal}\left(L / F_{\infty}\right)
$$

where $\alpha\left(\operatorname{Gal}\left(L / F_{\infty}\right)\right)$ is the adjoint of $\operatorname{Gal}\left(L / F_{\infty}\right)$ and \sim means pseudo-isomorphism.
(v) Let Y be the Pontryagin dual of \mathcal{E}. Then

$$
Y \cong \operatorname{Gal}\left(N^{\prime} / F_{\infty}\right)^{\bullet}
$$

and there is an exact sequence:

$$
0 \longrightarrow Y \longrightarrow \Lambda^{\frac{p-1}{2}} \longrightarrow H \longrightarrow 0
$$

where

$$
H=\frac{\Lambda^{\frac{p-1}{2}}}{\operatorname{Gal}\left(M / F_{\infty}\right)^{\bullet} / t\left(\operatorname{Gal}\left(M / F_{\infty}\right)^{\bullet}\right)}
$$

is finite.
(vi) Let $f(T)$ be the characteristic polynomial of $\operatorname{Gal}\left(L / F_{\infty}\right)$. Then $f(T)$ is also the characteristic polynomial of the Λ-module $\operatorname{Gal}\left(M / N^{\prime}\right)^{\bullet}$ and $\operatorname{Gal}\left(M / F_{\infty}\right)^{\bullet}$.
(vii) Let $X=\operatorname{Gal}\left(L / F_{\infty}\right)$. Then X^{-}has no non-trivial finite \wedge submodule and there are exact sequences:

$$
0 \longrightarrow A_{i} \longrightarrow X^{(i)} \longrightarrow \oplus_{j=1}^{t_{i}} \wedge /\left(f_{i, j}(T)\right) \longrightarrow B_{i} \longrightarrow 0
$$

where A_{i} and B_{i} are finite Λ-submodules and $A_{i}=0$ if i is odd.

Now set

$$
\begin{gathered}
A=\underset{i \text { is even }}{\oplus} A_{i} \\
B^{+}=\underset{i \text { is even }}{\oplus} B_{i}, B^{-}=\underset{i \text { is odd }}{\oplus} B_{i} \\
B=B^{+} \oplus B^{-} \\
f_{i}(T)=\prod_{j=1}^{t_{i}} f_{i, j}(T)
\end{gathered}
$$

$$
\begin{gathered}
f^{+}=\prod_{i \text { is even }}^{\Pi} f_{i}(T) \\
f^{-}=\prod_{i \text { is odd }}^{\Pi} f_{i}(T) \\
\lambda=\lambda(X)=\operatorname{deg} f(T) \\
\lambda_{i}=\lambda\left(X^{(i)}\right)=\operatorname{deg} f_{i}(T) \\
\lambda^{+}=\lambda\left(X^{+}\right)=\operatorname{deg} f^{+}(T) \\
\lambda^{-}=\lambda\left(X^{-}\right)=\operatorname{deg} f^{-}(T)
\end{gathered}
$$

Then

$$
f_{i}(T), f^{+}(T), f^{-}(T)
$$

are the characteristic polynomials of the Λ-modules $X^{(i)}, X^{+}$ and X^{-}, respectively. So

$$
f(T)=\prod_{2 \leq i \leq p-2} f_{i}(T)=f^{+}(T) f^{-}(T)
$$

and there are exact sequences:

$$
\begin{gathered}
0 \longrightarrow A \longrightarrow X^{+} \longrightarrow \underset{i \text { is even } j \stackrel{\oplus}{\oplus}}{\stackrel{t_{i}}{\oplus}} \wedge /\left(f_{i, j}(T)\right) \longrightarrow B^{+} \longrightarrow 0 \\
0 \longrightarrow X^{-} \longrightarrow \underset{i \text { is odd } j=1}{\oplus} \stackrel{t_{i}}{\oplus} \wedge /\left(f_{i, j}(T)\right) \longrightarrow B^{-} \longrightarrow 0 \\
0 \longrightarrow A \longrightarrow X \longrightarrow \underset{2 \leq i \leq p-2}{\oplus}{\underset{j}{\oplus}=1}_{t_{i}}^{(} \wedge /\left(f_{i, j}(T)\right) \longrightarrow B \longrightarrow 0
\end{gathered}
$$

(vi) If Vandiver's conjecture holds for p, then

$$
X^{(i)}=\varepsilon_{i} X \cong \wedge /\left(f\left(T, \omega^{1-i}\right)\right)
$$

for $i=3,5, \cdots, p-2$, where

$$
f\left((1+p)^{s}-1, \omega^{1-i}\right)=L_{p}\left(s, \omega^{1-i}\right)
$$

Factor $f\left(T, \omega^{1-i}\right)=p^{\mu_{i}} g_{i}(T) U_{i}(T)$ with g_{i} distinguished if $g_{i} \neq 1$ and $U_{i} \in \Lambda^{\times}$. We know that $\mu_{i}=0$. Therefore

$$
X^{(i)} \cong \wedge /\left(g_{i}(T)\right)
$$

and

$$
X=X^{-} \cong \oplus_{\{i \neq 1 \text { odd }\}} \wedge /\left(g_{i}(T)\right)
$$

(viii) The finite \wedge-module H is trivial if and only if $H^{1}(\Gamma, \mathfrak{U})=1$ if and only if Vandiver's conjecture holds for p which implies A and B are trivial and
$\operatorname{Gal}\left(M / N^{\prime}\right)^{\bullet} \cong \operatorname{Hom}\left(\mathfrak{C}, \mathbb{Q}_{p} / \mathbb{Z}_{p}\right) \cong \alpha(X) \cong X \cong \oplus_{\{i \neq 1 \text { odd }\}} \wedge /\left(g_{i}(T)\right)$.
We can prove that the following exact sequence of Λ-modules :

$$
1 \longrightarrow G\left(M / N^{\prime}\right)^{\bullet} \longrightarrow G\left(M / F_{\infty}\right)^{\bullet} \longrightarrow G\left(N^{\prime} / F_{\infty}\right)^{\bullet} \longrightarrow 1
$$

is split. So, we have
Lemma 5.1. The following sequence of \wedge-modules is split:

$$
0 \longrightarrow \mathcal{E} \longrightarrow \mathfrak{M} \longrightarrow \mathfrak{C} \longrightarrow 0,
$$

where $\mathcal{E}=\mathcal{U} \otimes \mathbb{Q}_{p} / \mathbb{Z}_{p}$.

Lemma 5.2. Let $r \geq 1$ and $n \geq 0$. Then there are the following isomorphism

$$
K_{2 r}\left(O_{F_{n}}\right)\{p\}^{(i)} \cong \mathfrak{C}(r)^{\Gamma_{n}^{(i)}}, \quad i=3,5, \cdots, p-2,
$$

and exact sequence of abelian groups

$$
0 \longrightarrow H(r)^{\Gamma_{n}} \longrightarrow K_{2 r}\left(O_{F_{n}}\right)\{p\}^{+} \longrightarrow \mathfrak{C}(r)^{\Gamma_{n}+} \longrightarrow 0 .
$$

Theorem 5.3. (1) The odd prime number p is regular if and only if there exist integers $i \geq 1$ and $n \geq 0$ such that $K_{2 i}\left(O_{F_{n}}\right)\{p\}$ is trivial, if and only if for all integers $i \geq 1$ and $n \geq 0$ such that $K_{2 i}\left(O_{F_{n}}\right)\{p\}$ is trivial.
(2) $\mathfrak{C}_{0}{ }^{(i)}=0$ if and only if
$\mathfrak{C}_{n}{ }^{(i)}=0$ for some $n \geq 0$ if and only if
$\mathfrak{C}_{n}{ }^{(i)}=0$ for all $n \geq 0$,
in the case, $\lambda_{i}=0$.
Further more, if i is odd, then $\lambda_{i}=0$ implies $\mathfrak{C}_{0}{ }^{(i)}=0$.
(3) Let $i=3,5, \cdots, p-2$. Then
$K_{2 r}\left(O_{F_{0}}\right)\{p\}^{(i)}=0$ if and only if
$K_{2 r}\left(O_{F_{n}}\right)\{p\}^{(i)}=0$ for some $n \geq 0$ if and only if
$K_{2 r}\left(O_{F_{n}}\right)\{p\}^{(i)}=0$ for all $n \geq 0$ if and only if
$\lambda_{i}=0$.
$K_{2 r}\left(O_{F_{0}}\right)\{p\}^{+}=0$ if and only if
$K_{2 r}\left(O_{F_{n}}\right)\{p\}^{+}=0$ for some $n \geq 0$ if and only if
$K_{2 r}\left(O_{F_{n}}\right)\{p\}^{+}=0$ for all $n \geq 0$, and in this case, $\lambda^{+}=0$.

Lemma 5.4. (a) Let $M=\Lambda /(g(T))$ with $g(T)$ a distinguished polynomial and $g(T)$ and $\omega_{n}(T)$ relatively prime. For all integers $i \geq 1$ and $n \geq 0$, we have

$$
\begin{aligned}
& p-\operatorname{rk}\left(M(i)_{\Gamma_{n}}\right)=p-\operatorname{rk}\left(M_{\Gamma_{n}}\right) \\
& \quad=\min \left\{p^{n}, \operatorname{deg}(g(T))\right\} .
\end{aligned}
$$

Moreover, let n_{0} be the smallest integer such that $p^{n_{0}} \geq \operatorname{deg}(g(T))$. Then there exist integers $n_{1}, n_{2}, \cdots, n_{d}$, where $d=\operatorname{deg}(g(T))$, such that for all $n \geq n_{0}+1$, we have

$$
\frac{\wedge}{\left(w_{n}, g\right)} \cong \stackrel{d}{i=1} p^{-n-n_{i}} \mathbb{Z}_{p} / \mathbb{Z}_{p} .
$$

(b) Let X be a Noetherian torsion \wedge-module such that $\mu(X)=0$ and $X_{\Gamma_{n}}$ is finite for all $n \geq 0$. Then

$$
p-\operatorname{rk}\left(X_{\Gamma_{n}}\right) \geq \lambda(X),
$$

$$
p-\operatorname{rk}\left(X(i)_{\Gamma_{n}}\right) \geq \lambda(X), \quad n \gg 0
$$

Further more, if X has no finite Λ-submodule, then for any integers i, there exist integers $n_{0}, n_{1}, n_{2}, \cdots, n_{\lambda(X)}, \nu_{1}, \nu_{2}, \cdots, \nu_{\lambda(X)}$, such that for all $n \geq n_{0}$, we have

$$
p-\operatorname{rk}\left(X_{\Gamma_{n}}\right)=p-\operatorname{rk}\left(X(i)_{\Gamma_{n}}\right)=\lambda(X)
$$

and

$$
\begin{gathered}
X_{\Gamma_{n}} \cong \stackrel{\lambda(X)}{\oplus_{j=1}} p^{-n-n_{j}} \mathbb{Z}_{p} / \mathbb{Z}_{p} \\
X(i)_{\Gamma_{n}} \cong{ }_{j=1}^{\lambda(X)} p^{-n-\nu_{j}} \mathbb{Z}_{p} / \mathbb{Z}_{p}
\end{gathered}
$$

Corollary 5.5. (1) Let $i=3,5, \cdots, p-2$ be odd. Then there exist integers $n_{0}, n_{i 1}, \cdots, n_{i \lambda_{i}}$ such that for all $n \geq n_{0}$ we have

$$
p-\operatorname{rk}\left(\mathfrak{C}_{n}{ }^{(i)}\right)=\lambda_{i}, \mathfrak{C}_{n}{ }^{(i)} \cong \underset{j=1}{\lambda_{i}} p^{-n-n_{i j}} \mathbb{Z}_{p} / \mathbb{Z}_{p},
$$

hence

$$
\begin{gathered}
p-\mathrm{rk}\left(\mathfrak{C}_{n}^{-}\right)=\lambda^{-}, \\
\mathfrak{C}_{n}^{-} \cong \underset{3 \leq i}{\oplus} \underset{\text { is odd } j \stackrel{\lambda_{i}}{\oplus}}{\stackrel{\lambda_{i}}{\oplus}} p^{-n-n_{i j} \mathbb{Z}_{p} / \mathbb{Z}_{p}, n \gg 0 .} .
\end{gathered}
$$

(2) Let $i=2,4, \cdots, p-3$ be even. Then there exists integer n_{0} such that for all $n \geq n_{0}$ we have

$$
p-\operatorname{rk}\left(\mathfrak{C}_{n}{ }^{(i)}\right) \geq \lambda_{i}, \quad p-\operatorname{rk}\left(\mathfrak{C}_{n}{ }^{+}\right) \geq \lambda^{+} .
$$

(3) Let $r \geq 1$ and $i=3,5, \cdots, p-2$. There exist integers $n_{0}, n_{1}, \cdots, n_{\lambda}$ such that for all $n \geq n_{0}$, we have the following isomorphisms of abelian groups:

$$
K_{2 r}\left(O_{F_{n}}\right)\{p\}^{(i)} \cong \underset{j=1}{\lambda_{i}} p^{-n-n_{j}} \mathbb{Z}_{p} / \mathbb{Z}_{p}
$$

and

$$
K_{2 r}\left(O_{F_{n}}\right)\{p\}^{+} \cong H \oplus \underset{j=1}{\stackrel{\lambda+}{\oplus}} p^{-n-m_{j}} \mathbb{Z}_{p} / \mathbb{Z}_{p}, \quad n \gg 0
$$

for some integers $m_{1}, \cdots, m_{\lambda+}$ independent of n.
(4)

$$
p-\operatorname{rk}\left(X_{\Gamma_{n}}\right)=p-\mathrm{rk}(H)+p-\operatorname{rk}\left(\alpha(X)_{\Gamma_{n}}\right),
$$

hence

$$
p-\operatorname{rk}\left(\mathfrak{C}_{n}{ }^{+}\right)=p-\operatorname{rk}(H)+\lambda^{+} .
$$

Corollary 5.6. Let $i=3,5, \cdots, p-2$ be odd. Then $\lambda_{i}=1$ if and only if $\mathfrak{C}_{n}{ }^{(i)}$ is a cyclic group if and only if $K_{2 r}\left(O_{F_{n}}\right)\{p\}^{(i)}$ is a cyclic group, and in this case,

$$
\mathfrak{C}_{n}^{(i)} \cong \frac{\mathbb{Z}_{p}}{\left(w_{n}\left(a_{i}\right)\right)}
$$

$$
K_{2 r}\left(O_{F_{n}}\right)\{p\}^{(i)} \cong \frac{\mathbb{Z}_{p}}{\left(w_{n}\left((1+p)^{r}\left(1+a_{i}\right)-1\right)\right)}
$$

where a_{i} is the root of the characteristic polynomial of $X^{(i)}$, i.e.,

$$
f\left(T, w^{1-i}\right)=\left(T-a_{i}\right) U_{i}(T), U_{i}(T) \in \wedge^{*}
$$

where $f\left((1+p)^{s}-1, \omega^{1-i}\right)=L_{p}\left(s, \omega^{1-i}\right)$.

Corollary 5.7. Let λ denote the Iwasawa λ-invariant of the Λ-module $\operatorname{GaI}\left(L / F_{\infty}\right)$. Then the following statements are equivalent:
(a) Vandiver conjecture holds for p;
(b) The finite Λ-module H in is trivial;
(c) The finite \wedge-modules A and B are trivial;
(d) X is an elementary \wedge-module;
(e) $\alpha(X) \cong X$;
(f) $p-\operatorname{rk}\left(X_{\Gamma_{n}}\right)=p-\mathrm{rk}\left(\alpha(X)_{\Gamma_{n}}\right)$ for some $n \gg 0$;
(g) $p-\mathrm{rk}\left(X_{\Gamma_{n}}\right)=\lambda$ for some $n \gg 0$;
(g^{\prime}) $p-\mathrm{rk}\left(X^{+} \Gamma_{n}\right)=\lambda^{+}$for some $n \gg 0$;
(h) $p-\operatorname{rk}\left(\mathrm{Cl}\left(O_{F_{n}}\right)\right)=\lambda$ for some $n \gg 0$;
(h^{\prime}) $p-r k\left(C l\left(O_{F_{n}}\right)^{+}\right)=\lambda^{+}$for some $n \gg 0$;
(j) for any $i \geq 1, p-r k\left(K_{2 i}\left(O_{F_{n}}\right)\right)=\lambda$ for some $n \gg 0$;
(j^{\prime}) for any $i \geq 1$, $p-\mathrm{rk}\left(K_{2 i}\left(O_{F_{n}^{+}}\right)\right)=\lambda^{+}$for some $n \gg 0$.
If these statements hold, then $\lambda^{+}=0$, i.e., $\lambda=\lambda^{-}$.

Remarks. (1) (Kurihara) $\mathfrak{C}_{0}{ }^{(p-3)}$ always vanishes.
(2) (Soule) $\mathfrak{C}_{0}^{(p-n)}$ is trivial if $\log p>n^{224 n^{4}}$ odd.

Theorem 5.8. Let p be an odd prime and assume Vandiver conjecture holds for p. Let i_{1}, \cdots, i_{s} be the even indices i such that $2 \leq i \leq p-3$ and $p \mid B_{i}$. If

$$
B_{1, \omega^{i-1}} \not \equiv 0 \bmod p^{2}
$$

and

$$
\frac{B_{i}}{i} \not \equiv \frac{B_{i+p-1}}{i+p-1} \bmod p^{2} \quad \text { for all } i \in\left\{i_{1}, \cdots, i_{s}\right\}
$$

then
(1)

$$
\begin{gathered}
X \cong \oplus_{i \in\left\{i_{1}, \cdots, i_{s}\right\}} \wedge /\left(T-\alpha_{i}\right) \\
\mathfrak{C}_{n} \cong\left(\mathbb{Z} / p^{n+1} \mathbb{Z}\right)^{s}, \quad \text { for all } n \geq 0,
\end{gathered}
$$

where $\alpha_{i} \in p \mathbb{Z}_{p}$ and $v_{p}\left(\alpha_{i}\right)=1$ for all $i \in\left\{i_{1}, \cdots, i_{s}\right\}$.
(2) For all integers $m \geq 1$ and $n \geq 0$, we have

$$
K_{2 m}\left(O_{F_{n}}\right)\{p\} \cong \oplus_{i \in\left\{i_{1}, \cdots, i_{s}\right\}} \mathbb{Z} / p^{n+1+c_{i} \mathbb{Z}}
$$

where $c_{i}=\nu_{p}\left((1+p)^{m}\left(1+\alpha_{i}\right)-1\right)-1$ for all $i \in\left\{i_{1}, \cdots, i_{s}\right\}$. In particular, if $m+\frac{\alpha_{i}}{p} \not \equiv 0 \bmod p$ for all $i \in\left\{i_{1}, \cdots, i_{s}\right\}$, then

$$
K_{2 m}\left(O_{F_{n}}\right)\{p\} \cong \mathrm{Cl}\left(O_{F_{n}}\right)\{p\} \cong\left(\mathbb{Z} / p^{n+1} \mathbb{Z}\right)^{s} .
$$

Here B_{i} and $B_{1, \omega^{i-1}}$ are respectively the ordinary Bernoulli numbers and the generalized Bernoulli numbers.

Corollary 5.9. Let p be an odd prime and assume Vandiver conjecture holds for p. Let i_{1}, \cdots, i_{s} be the even indices which satisfy conditions of Theorem 5.8. Then for all integers $n \geq 0$ and $m \geq 1$ such that $m \not \equiv-\frac{B_{1, \omega^{i-1}}}{B_{2, \omega^{i-2}} / 2-B_{1, \omega^{i-1}}}(\bmod p)$ for all $i \in\left\{i_{1}, \cdots, i_{s}\right\}$, we have

$$
K_{2 m}\left(O_{F_{n}}\right)\{p\} \cong \mathrm{CI}\left(O_{F_{n}}\right)\{p\} \cong\left(\mathbb{Z} / p^{n+1} \mathbb{Z}\right)^{s} .
$$

