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Notation

Fp = Z/p.
q: a power of p.
Fqk : Finite field with qk elements.

ψ : Fp → Q
∗
l : Nontrivial additive character. (ψ(x) = e2πix/p).

ψk : Fqk → Q
∗
l : ψk(x) = ψ(TrF

qk /Fp
(x)).

[r ] : A1 − {0} → A1 − {0}, x 7→ x r .
D(X ,Ql): Derived category of Ql -sheaves on a scheme X .

A Ql -representation of the galois group of the function field of X
unramified on X gives rise to a Ql -sheaf on X . A complex of such
galois representations gives an object in D(X ,Ql).
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Fourier Transformations

Let K ∈ D(A1
Fq
,Ql). We have F(K ) ∈ D(A1

Fq
,Ql).

For any t, t ′ ∈ A1(Fqk ), set

f (t) = Tr(Ft ,Kt̄),

f̂ (t ′) = Tr(Ft′ , (F(K ))t̄′),

where Ft and Ft′ are (geometric) Frobenius elements.
Then we have

f̂ (t ′) =
∑

t∈A1(F
qk )

f (t)ψk(tt ′)

=
∑

t∈F
qk

f (t)e
2πi
p

TrF
qk /Fp (tt′)

.

Analogue: f̂ (t ′) =
∫∞
−∞ f (t)e itt′dt.
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Example

Let f : X → A1 be an Fq-morphism.

Consider F(Rf!Ql).
We have

Tr(Ft′ , (F(Rf!Ql))t̄′) =
∑

t∈A1(F
qk )

ψk(tt ′)Tr(Ft , (Rf!Ql)t̄)

=
∑

t∈A1(F
qk )

ψk(tt ′)#(f −1(t)(Fqk ))

=
∑

x∈X (F
qk )

ψk(f (x)t ′)

=
∑

x∈X (F
qk )

e
2πi
p

TrF
qk /Fp (f (x)t′)

.

Analogue:
∫∞
−∞ g(x)e if (x)t′dx , where g(x) is supported in [a, b].
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Suppose f ′(x) 6= 0 in [a, b].

∫ ∞

−∞
g(x)e if (x)t′dx

x=f −1(y)
=

∫ f (b)

f (a)

g(f −1(y))

f ′(f −1(y))
e iyt′dy

=
1

it ′

∫ f (b)

f (a)

g(f −1(y))

f ′(f −1(y))
d(e iyt′)

= − 1

it ′

∫ f (b)

f (a)
e iyt′ d

dy

(
g(f −1(y))

f ′(f −1(y))

)
dy

y=f (x)
= − 1

it ′

∫ ∞

−∞
e if (x)t′ d

dy

(
g(f −1(y))

f ′(f −1(y))

)
f ′(x)dx

= · · ·
= O(

1

t ′n
) for all n
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f (x) near the critical points of f (x) in supp(g).

We would like to have an l-adic analogue of the stationary phase
principle.



The Stationary Phase Principle

limt′→∞
∫∞
−∞ g(x)e if (x)t′dx depends only on the local behavior of

f (x) near the critical points of f (x) in supp(g).

We would like to have an l-adic analogue of the stationary phase
principle.



The Stationary Phase Principle

limt′→∞
∫∞
−∞ g(x)e if (x)t′dx depends only on the local behavior of

f (x) near the critical points of f (x) in supp(g).

We would like to have an l-adic analogue of the stationary phase
principle.



Examples of Perverse sheaves

X : a smooth curve

x : a closed point of X
i : {x} → X : the closed immersion
F : a Ql -sheaf on {x}
Then i∗F is perverse.

j : U → X : an open immersion
G: a lisse Ql -sheaf on U (corresponding to a galois representation
of the function field of X unramified on points in U)
Then j!G[1], j∗G[1],Rj∗G[1] are perverse.

Extensions of perverse sheaves are perverse.

A perverse sheaf K on X is called unramified at a closed point x
of X if there exists an étale neighborhood U of x and a lisse
Ql -sheaf G on U such that K |U ∼= G[1].
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The Stationary Phase Principle

K : a perverse sheaf on A1

U: open subset of A1 where K is unramified.
ηx : the spectrum of the local field at a closed point x .
We work over an algebraically closed field k of characteristic p.
We have

F(K )|η∞′ =
⊕

x∈A1−U

F (x ,∞′)(K |ηx )
⊕
F (∞,∞′)(K |η∞),

where F (x ,∞′) (resp. F (∞,∞′)) are local Fourier transformations.
They transform representations of Gal(ηx/ηx) (resp.
Gal(η∞/η∞)) to representations of Gal(η∞′/η∞′).

F(K )|η∞′ only depends on K |ηx (x ∈ A1 − U) and K |η∞ .
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Some l -adic Sheaves

Lψ: lisse sheaf on A1 corresponding to the galois representation

Gal(k(t)/k(t))→ Gal
((

k(t)[x ]/(xp−x−t)

)
/k(t)

)
∼= Fp

ψ−1

→ Q
∗
l .

Suppose (m, p) = 1. Let µm = {ζ ∈ k|ζm = 1}, and let
χ : µm → Q

∗
l be a homomorphism.

Kχ: lisse sheaf on A1 − {0} corresponding to the galois
representation

Gal(k(t)/k(t))→ Gal
((

k(t)[y ]/(ym − t)

)
/k(t)

)
∼= µm

χ−1

→ Q
∗
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+ · · ·
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On η0, let

L(α( r
√

t)) = [r ]∗α
∗Lψ.

η0 = Speck((t))
α→ A1, k((t)) ← k[t], tr α(t) ← t

[r ] ↓ ↑ ↑
η0 = Speck((t)) k((t)) t
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The Laumon-Malgrange Conjecture

Solve the system of equations{
α( r
√

t) + tt ′ = β( 1
r+s√

t′
),

d
dt (α( r

√
t)) + t ′ = 0.

Then β( 1
r+s√

t′
) is a formal Laurent series

β(
1

r+s
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t ′
) = b−s(

r+s
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t ′)s + b−(s−1)(
r+s
√

t ′)s−1 + · · ·

in the variable 1
r+s√

t′
. On η∞′ , let L(β( 1

r+s√
t′

)) = [r + s]∗β
∗Lψ.

Laumon-Malgrange Conjecture. If p � r , s, then we have

F (0,∞′)(L(α( r
√

t))) ∼= L(β(
1

r+s
√

t ′
)).
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I proved the following.

The conjecture is wrong.

Correct result: If (p, r) = (p, s) = (p, r + s) = (p, 2) = 1 and
p > s, then

F (0,∞′)([r ]∗α
∗Lψ) ∼= [r + s]∗(β

∗Lψ ⊗ [s]∗Kχ2),

where χ2 is the unique multiplicative character of order 2.

More generally, we have

F (0,∞′)([r ]∗(α
∗Lψ ⊗Kχ)) ∼= [r + s]∗(β

∗Lψ ⊗Kχ−1 ⊗ [s]∗Kχ2)

for any multiplicative character χ.

Laumon-Malgrange also made conjectures for the local Fourier
transformations F (∞,0′) and F (∞,∞′). Similar results hold for these
transformations.
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The case α( r
√

t) = 1
( r
√

t)s

The above system of equations becomes{
t−

s
r + tt ′ = β( 1

r+s√
t′

),

− s
r t
− s

r
−1 + t ′ = 0.

From the second equation, we get

t =

(
rt ′

s

)− r
r+s

.

Substituting into the first equation, we get

β(
1

r+s
√

t ′
) =

1 + s
r(

s
r

) s
r+s

(
r+s
√

t ′)s .

Let’s prove

[r + s]∗F (0,∞′)([r ]∗α
∗Lψ) = [r + s]∗[r + s]∗(β

∗Lψ ⊗ [s]∗Kχ2).
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Method

A1 − {0} α→ A1

↓ [r ]
A1 − {0}
↓ j
A1
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Study of F(Rf!Ql)

f : A1 − {0} → A1, f (x) = x r + 1
xs is a finite morphism.

∂f
∂x = 0 only at x = ζ( s

r )
1

r+s , where ζr+s = 1.

At x = ζ( s
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1
r+s , we have

f (x) =
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,
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ζs( s
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s
r+s
, we have

(Rf!Ql)|ηy
∼= (Ql ⊕Kχ2)

⊕d ⊕Q
r+s−2d
l ,

where d = (r , s).

Rf!Ql is lisse outside the points y =
1+ s

r

ζs( s
r )

s
r+s
.

(Rf!Ql)|η∞ is tamely ramified.
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