Calculation of I-adic Local Fourier Transformations

Lei Fu

Notation

Notation
$\mathbf{F}_{p}=\mathbf{Z} / p$.

Notation

$\mathbf{F}_{p}=\mathbf{Z} / p$.
q : a power of p.

Notation

$\mathbf{F}_{p}=\mathbf{Z} / p$.
q : a power of p.
$\mathbf{F}_{q^{k}}$: Finite field with q^{k} elements.

Notation

$\mathbf{F}_{p}=\mathbf{Z} / p$.
q : a power of p.
$\mathbf{F}_{q^{k}}$: Finite field with q^{k} elements.
$\psi: \mathbf{F}_{p} \rightarrow \overline{\mathbf{Q}}_{l}^{*}:$ Nontrivial additive character.

Notation

$\mathbf{F}_{p}=\mathbf{Z} / p$.
q : a power of p.
$\mathbf{F}_{q^{k}}$: Finite field with q^{k} elements.
$\psi: \mathbf{F}_{p} \rightarrow \overline{\mathbf{Q}}_{l}^{*}:$ Nontrivial additive character. $\left(\psi(x)=e^{2 \pi i x / p}\right)$.

Notation

$\mathbf{F}_{p}=\mathbf{Z} / p$.
q : a power of p.
$\mathbf{F}_{q^{k}}$: Finite field with q^{k} elements.
$\psi: \mathbf{F}_{p} \rightarrow \overline{\mathbf{Q}}_{l}^{*}:$ Nontrivial additive character. $\left(\psi(x)=e^{2 \pi i x / p}\right)$.
$\psi_{k}: \mathbf{F}_{q^{k}} \rightarrow \overline{\mathbf{Q}}_{l}^{*}: \psi_{k}(x)=\psi\left(\operatorname{Tr}_{\mathbf{F}^{k} / \mathbf{F}_{p}}(x)\right)$.

Notation

$\mathbf{F}_{p}=\mathbf{Z} / p$.
q : a power of p.
$\mathbf{F}_{q^{k}}$: Finite field with q^{k} elements.
$\psi: \mathbf{F}_{p} \rightarrow \overline{\mathbf{Q}}_{l}^{*}:$ Nontrivial additive character. $\left(\psi(x)=e^{2 \pi i x / p}\right)$.
$\psi_{k}: \mathbf{F}_{q^{k}} \rightarrow \overline{\mathbf{Q}}_{l}^{*}: \psi_{k}(x)=\psi\left(\operatorname{Tr}_{\boldsymbol{F}_{q^{k}} / \mathbf{F}_{p}}(x)\right)$.
$[r]: \mathbf{A}^{1}-\{0\} \rightarrow \mathbf{A}^{1}-\{0\}, x \mapsto x^{r}$.

Notation

$\mathbf{F}_{p}=\mathbf{Z} / p$.
q : a power of p.
$\mathbf{F}_{q^{k}}$: Finite field with q^{k} elements.
$\psi: \mathbf{F}_{p} \rightarrow \overline{\mathbf{Q}}_{l}^{*}:$ Nontrivial additive character. $\left(\psi(x)=e^{2 \pi i x / p}\right)$.
$\psi_{k}: \mathbf{F}_{q^{k}} \rightarrow \overline{\mathbf{Q}}_{l}^{*}: \psi_{k}(x)=\psi\left(\operatorname{Tr}_{\mathbf{F}_{q^{k}} / \mathbf{F}_{p}}(x)\right)$.
$[r]: \mathbf{A}^{1}-\{0\} \rightarrow \mathbf{A}^{1}-\{0\}, x \mapsto x^{r}$.
$D\left(X, \overline{\mathbf{Q}}_{l}\right)$: Derived category of $\overline{\mathbf{Q}}_{l}$-sheaves on a scheme X.

Notation

$\mathbf{F}_{p}=\mathbf{Z} / p$.
q : a power of p.
$\mathbf{F}_{q^{k}}$: Finite field with q^{k} elements.
$\psi: \mathbf{F}_{p} \rightarrow \overline{\mathbf{Q}}_{l}^{*}:$ Nontrivial additive character. $\left(\psi(x)=e^{2 \pi i x / p}\right)$.
$\psi_{k}: \mathbf{F}_{q^{k}} \rightarrow \overline{\mathbf{Q}}_{l}^{*}: \psi_{k}(x)=\psi\left(\operatorname{Tr}_{\mathbf{F}_{q^{k}} / \mathbf{F}_{p}}(x)\right)$.
$[r]: \mathbf{A}^{1}-\{0\} \rightarrow \mathbf{A}^{1}-\{0\}, x \mapsto x^{r}$.
$D\left(X, \overline{\mathbf{Q}}_{1}\right)$: Derived category of $\overline{\mathbf{Q}}_{1}$-sheaves on a scheme X.
A $\overline{\mathbf{Q}}_{/}$-representation of the galois group of the function field of X

Notation

$\mathbf{F}_{p}=\mathbf{Z} / p$.
q : a power of p.
$\mathbf{F}_{q^{k}}$: Finite field with q^{k} elements.
$\psi: \mathbf{F}_{p} \rightarrow \overline{\mathbf{Q}}_{l}^{*}:$ Nontrivial additive character. $\left(\psi(x)=e^{2 \pi i x / p}\right)$.
$\psi_{k}: \mathbf{F}_{q^{k}} \rightarrow \overline{\mathbf{Q}}_{l}^{*}: \psi_{k}(x)=\psi\left(\operatorname{Tr}_{\mathbf{F}_{q^{k}} / \mathbf{F}_{p}}(x)\right)$.
$[r]: \mathbf{A}^{1}-\{0\} \rightarrow \mathbf{A}^{1}-\{0\}, x \mapsto x^{r}$.
$D\left(X, \overline{\mathbf{Q}}_{1}\right)$: Derived category of $\overline{\mathbf{Q}}_{1}$-sheaves on a scheme X.
A $\overline{\mathbf{Q}}_{l}$-representation of the galois group of the function field of X unramified on X

Notation

$\mathbf{F}_{p}=\mathbf{Z} / p$.
q : a power of p.
$\mathbf{F}_{q^{k}}$: Finite field with q^{k} elements.
$\psi: \mathbf{F}_{p} \rightarrow \overline{\mathbf{Q}}_{l}^{*}:$ Nontrivial additive character. $\left(\psi(x)=e^{2 \pi i x / p}\right)$.
$\psi_{k}: \mathbf{F}_{q^{k}} \rightarrow \overline{\mathbf{Q}}_{l}^{*}: \psi_{k}(x)=\psi\left(\operatorname{Tr}_{\mathbf{F}_{q^{k}} / \mathbf{F}_{p}}(x)\right)$.
$[r]: \mathbf{A}^{1}-\{0\} \rightarrow \mathbf{A}^{1}-\{0\}, x \mapsto x^{r}$.
$D\left(X, \overline{\mathbf{Q}}_{1}\right)$: Derived category of $\overline{\mathbf{Q}}_{1}$-sheaves on a scheme X.
A $\overline{\mathbf{Q}}_{l}$-representation of the galois group of the function field of X unramified on X gives rise to a $\overline{\mathbf{Q}}_{l}$-sheaf on X.

Notation

$\mathbf{F}_{p}=\mathbf{Z} / p$.
q : a power of p.
$\mathbf{F}_{q^{k}}$: Finite field with q^{k} elements.
$\psi: \mathbf{F}_{p} \rightarrow \overline{\mathbf{Q}}_{l}^{*}:$ Nontrivial additive character. $\left(\psi(x)=e^{2 \pi i x / p}\right)$.
$\psi_{k}: \mathbf{F}_{q^{k}} \rightarrow \overline{\mathbf{Q}}_{l}^{*}: \psi_{k}(x)=\psi\left(\operatorname{Tr}_{\mathbf{F}_{q^{k}} / \mathbf{F}_{p}}(x)\right)$.
$[r]: \mathbf{A}^{1}-\{0\} \rightarrow \mathbf{A}^{1}-\{0\}, x \mapsto x^{r}$.
$D\left(X, \overline{\mathbf{Q}}_{1}\right)$: Derived category of $\overline{\mathbf{Q}}_{1}$-sheaves on a scheme X.
A $\overline{\mathbf{Q}}_{l}$-representation of the galois group of the function field of X unramified on X gives rise to a $\overline{\mathbf{Q}}_{1}$-sheaf on X. A complex of such galois representations gives an object in $D\left(X, \overline{\mathbf{Q}}_{l}\right)$.

Fourier Transformations

Fourier Transformations

$$
\text { Let } K \in D\left(\mathbf{A}_{\mathbf{F}_{q}}^{1}, \overline{\mathbf{Q}}_{l}\right) .
$$

Fourier Transformations

Let $K \in D\left(\mathbf{A}_{\mathbf{F}_{q}}^{1}, \overline{\mathbf{Q}}_{l}\right)$. We have $\mathcal{F}(K) \in D\left(\mathbf{A}_{\mathbf{F}_{q}}^{1}, \overline{\mathbf{Q}}_{l}\right)$.

Fourier Transformations

Let $K \in D\left(\mathbf{A}_{\mathbf{F}_{q}}^{1}, \overline{\mathbf{Q}}_{l}\right)$. We have $\mathcal{F}(K) \in D\left(\mathbf{A}_{\mathbf{F}_{q}}^{1}, \overline{\mathbf{Q}}_{l}\right)$.
For any $t, t^{\prime} \in \mathbf{A}^{1}\left(\mathbf{F}_{q^{k}}\right)$,

Fourier Transformations

Let $K \in D\left(\mathbf{A}_{\mathbf{F}_{q}}^{1}, \overline{\mathbf{Q}}_{l}\right)$. We have $\mathcal{F}(K) \in D\left(\mathbf{A}_{\mathbf{F}_{q}}^{1}, \overline{\mathbf{Q}}_{l}\right)$.
For any $t, t^{\prime} \in \mathbf{A}^{1}\left(\mathbf{F}_{q^{k}}\right)$, set

$$
\begin{aligned}
f(t) & =\operatorname{Tr}\left(F_{t}, K_{\bar{t}}\right), \\
\hat{f}\left(t^{\prime}\right) & =\operatorname{Tr}\left(F_{t^{\prime}},(\mathcal{F}(K))_{\bar{t}^{\prime}}\right),
\end{aligned}
$$

where F_{t} and $F_{t^{\prime}}$ are (geometric) Frobenius elements.

Fourier Transformations

Let $K \in D\left(\mathbf{A}_{\mathbf{F}_{q}}^{1}, \overline{\mathbf{Q}}_{l}\right)$. We have $\mathcal{F}(K) \in D\left(\mathbf{A}_{\mathbf{F}_{q}}^{1}, \overline{\mathbf{Q}}_{l}\right)$.
For any $t, t^{\prime} \in \mathbf{A}^{1}\left(\mathbf{F}_{q^{k}}\right)$, set

$$
\begin{aligned}
f(t) & =\operatorname{Tr}\left(F_{t}, K_{\bar{t}}\right), \\
\hat{f}\left(t^{\prime}\right) & =\operatorname{Tr}\left(F_{t^{\prime}},(\mathcal{F}(K))_{\bar{t}^{\prime}}\right),
\end{aligned}
$$

where F_{t} and $F_{t^{\prime}}$ are (geometric) Frobenius elements.
Then we have

$$
\hat{f}\left(t^{\prime}\right)=\sum_{t \in \mathbf{A}^{1}\left(F_{q^{k}}\right)} f(t) \psi_{k}\left(t t^{\prime}\right)
$$

Fourier Transformations

Let $K \in D\left(\mathbf{A}_{\mathbf{F}_{q}}^{1}, \overline{\mathbf{Q}}_{l}\right)$. We have $\mathcal{F}(K) \in D\left(\mathbf{A}_{\mathbf{F}_{q}}^{1}, \overline{\mathbf{Q}}_{l}\right)$.
For any $t, t^{\prime} \in \mathbf{A}^{1}\left(\mathbf{F}_{q^{k}}\right)$, set

$$
\begin{aligned}
f(t) & =\operatorname{Tr}\left(F_{t}, K_{\bar{t}}\right), \\
\hat{f}\left(t^{\prime}\right) & =\operatorname{Tr}\left(F_{t^{\prime}},(\mathcal{F}(K))_{\bar{t}^{\prime}}\right),
\end{aligned}
$$

where F_{t} and $F_{t^{\prime}}$ are (geometric) Frobenius elements. Then we have

$$
\begin{aligned}
\hat{f}\left(t^{\prime}\right) & =\sum_{t \in \mathbf{A}^{1}\left(\boldsymbol{F}_{q^{k}}\right)} f(t) \psi_{k}\left(t t^{\prime}\right) \\
& =\sum_{t \in \mathbf{F}_{q^{k}}} f(t) e^{\frac{2 \pi i}{p} \mathrm{Tr}_{q^{k}} / \boldsymbol{F}_{p}\left(t t^{\prime}\right)} .
\end{aligned}
$$

Fourier Transformations

Let $K \in D\left(\mathbf{A}_{\mathbf{F}_{q}}^{1}, \overline{\mathbf{Q}}_{l}\right)$. We have $\mathcal{F}(K) \in D\left(\mathbf{A}_{\mathbf{F}_{q}}^{1}, \overline{\mathbf{Q}}_{l}\right)$.
For any $t, t^{\prime} \in \mathbf{A}^{1}\left(\mathbf{F}_{q^{k}}\right)$, set

$$
\begin{aligned}
f(t) & =\operatorname{Tr}\left(F_{t}, K_{\bar{t}}\right), \\
\hat{f}\left(t^{\prime}\right) & =\operatorname{Tr}\left(F_{t^{\prime}},(\mathcal{F}(K))_{\bar{t}^{\prime}}\right),
\end{aligned}
$$

where F_{t} and $F_{t^{\prime}}$ are (geometric) Frobenius elements.
Then we have

$$
\begin{aligned}
\hat{f}\left(t^{\prime}\right) & =\sum_{t \in \mathbf{A}^{1}\left(\boldsymbol{F}_{q^{k}}\right)} f(t) \psi_{k}\left(t t^{\prime}\right) \\
& =\sum_{t \in \mathcal{F}_{q^{k}}} f(t) e^{\frac{2 \pi i}{p} \operatorname{Tr}_{q^{k}} / F_{p}\left(t t^{\prime}\right)} .
\end{aligned}
$$

Analogue: $\hat{f}\left(t^{\prime}\right)=\int_{-\infty}^{\infty} f(t) e^{i t t^{\prime}} d t$.

Example

Let $f: X \rightarrow \mathbf{A}^{1}$ be an \mathbf{F}_{q}-morphism.

Example

Let $f: X \rightarrow \mathbf{A}^{1}$ be an \mathbf{F}_{q}-morphism. Consider $\mathcal{F}\left(R f \overline{\mathbf{Q}}_{I}\right)$.

Example

Let $f: X \rightarrow \mathbf{A}^{1}$ be an \mathbf{F}_{q}-morphism. Consider $\mathcal{F}\left(R f_{!} \overline{\mathbf{Q}}_{l}\right)$.
We have

$$
\operatorname{Tr}\left(F_{t^{\prime}},\left(\mathcal{F}\left(R f_{!} \overline{\mathbf{Q}}_{l}\right)\right)_{\bar{t}^{\prime}}\right)=\sum_{t \in \mathbf{A}^{1}\left(\mathbf{F}_{q^{k}}\right)} \psi_{k}\left(t t^{\prime}\right) \operatorname{Tr}\left(F_{t},\left(R f_{!} \overline{\mathbf{Q}}_{l}\right)_{\bar{t}}\right)
$$

Example

Let $f: X \rightarrow \mathbf{A}^{1}$ be an \mathbf{F}_{q}-morphism. Consider $\mathcal{F}\left(R f_{!} \overline{\mathbf{Q}}_{l}\right)$.
We have

$$
\begin{aligned}
\operatorname{Tr}\left(F_{t^{\prime}},\left(\mathcal{F}\left(R f_{!} \overline{\mathbf{Q}}_{l}\right)\right)_{\bar{t}^{\prime}}\right) & =\sum_{t \in \mathbf{A}^{1}\left(\mathbf{F}_{q^{k}}\right)} \psi_{k}\left(t t^{\prime}\right) \operatorname{Tr}\left(F_{t},\left(R f_{!} \overline{\mathbf{Q}}_{l}\right) \bar{t}\right) \\
& =\sum_{t \in \mathbf{A}^{1}\left(\mathbf{F}_{q^{k}}\right)} \psi_{k}\left(t t^{\prime}\right) \#\left(f^{-1}(t)\left(\mathbf{F}_{q^{k}}\right)\right)
\end{aligned}
$$

Example

Let $f: X \rightarrow \mathbf{A}^{1}$ be an \mathbf{F}_{q}-morphism. Consider $\mathcal{F}\left(R f_{!} \overline{\mathbf{Q}}_{l}\right)$.
We have

$$
\begin{aligned}
\operatorname{Tr}\left(F_{t^{\prime}},\left(\mathcal{F}\left(R f_{!} \overline{\mathbf{Q}}_{l}\right)\right)_{\bar{t}^{\prime}}\right) & =\sum_{t \in \mathbf{A}^{1}\left(\mathbf{F}_{q^{k}}\right)} \psi_{k}\left(t t^{\prime}\right) \operatorname{Tr}\left(F_{t},\left(R f_{!} \overline{\mathbf{Q}}_{l}\right) \bar{t}\right) \\
& =\sum_{t \in \mathbf{A}^{1}\left(\mathbf{F}_{q^{k}}\right)} \psi_{k}\left(t t^{\prime}\right) \#\left(f^{-1}(t)\left(\mathbf{F}_{q^{k}}\right)\right) \\
& =\sum_{x \in X\left(\mathbf{F}_{q^{k}}\right)} \psi_{k}\left(f(x) t^{\prime}\right)
\end{aligned}
$$

Example

Let $f: X \rightarrow \mathbf{A}^{1}$ be an \mathbf{F}_{q}-morphism. Consider $\mathcal{F}\left(R f_{!} \overline{\mathbf{Q}}_{I}\right)$.
We have

$$
\begin{aligned}
\operatorname{Tr}\left(F_{t^{\prime}},\left(\mathcal{F}\left(R f_{!} \overline{\mathbf{Q}}_{l}\right)\right)_{\bar{t}^{\prime}}\right) & =\sum_{t \in \mathbf{A}^{1}\left(\mathbf{F}_{q^{k}}\right)} \psi_{k}\left(t t^{\prime}\right) \operatorname{Tr}\left(F_{t},\left(R f_{!} \overline{\mathbf{Q}}_{l}\right) \bar{t}\right) \\
& =\sum_{t \in \mathbf{A}^{1}\left(\mathbf{F}_{q^{k}}\right)} \psi_{k}\left(t t^{\prime}\right) \#\left(f^{-1}(t)\left(\mathbf{F}_{q^{k}}\right)\right) \\
& =\sum_{x \in X\left(\mathbf{F}_{q^{k}}\right)} \psi_{k}\left(f(x) t^{\prime}\right) \\
& =\sum_{x \in X\left(\mathbf{F}_{q^{k}}\right)} e^{\frac{2 \pi i}{p} \operatorname{Tr}_{\mathbf{F}_{q^{k}} / \mathbf{F}_{p}}\left(f(x) t^{\prime}\right)} .
\end{aligned}
$$

Example

Let $f: X \rightarrow \mathbf{A}^{1}$ be an \mathbf{F}_{q}-morphism. Consider $\mathcal{F}\left(R f_{!} \overline{\mathbf{Q}}_{I}\right)$.
We have

$$
\begin{aligned}
\operatorname{Tr}\left(F_{t^{\prime}},\left(\mathcal{F}\left(R f_{!} \overline{\mathbf{Q}}_{l}\right)\right)_{\bar{t}^{\prime}}\right) & =\sum_{t \in \mathbf{A}^{1}\left(\mathbf{F}_{q^{k}}\right)} \psi_{k}\left(t t^{\prime}\right) \operatorname{Tr}\left(F_{t},\left(R f_{!} \overline{\mathbf{Q}}_{l}\right) \bar{t}\right) \\
& =\sum_{t \in \mathbf{A}^{1}\left(\mathbf{F}_{q^{k}}\right)} \psi_{k}\left(t t^{\prime}\right) \#\left(f^{-1}(t)\left(\mathbf{F}_{q^{k}}\right)\right) \\
& =\sum_{x \in X\left(\mathbf{F}_{q^{k}}\right)} \psi_{k}\left(f(x) t^{\prime}\right) \\
& =\sum_{x \in X\left(\mathbf{F}_{q^{k}}\right)} e^{\frac{2 \pi i}{p} \operatorname{Tr}_{\mathbf{F}_{q^{k}} / \mathbf{F}_{p}}\left(f(x) t^{\prime}\right)} .
\end{aligned}
$$

Analogue: $\int_{-\infty}^{\infty} g(x) e^{i f(x) t^{\prime}} d x$, where $g(x)$ is supported in $[a, b]$.

Suppose $f^{\prime}(x) \neq 0$ in $[a, b]$.

Suppose $f^{\prime}(x) \neq 0$ in $[a, b]$.

$$
\int_{-\infty}^{\infty} g(x) e^{i f(x) t^{\prime}} d x
$$

Suppose $f^{\prime}(x) \neq 0$ in $[a, b]$.

$$
\begin{gathered}
\int_{-\infty}^{\infty} g(x) e^{i f(x) t^{\prime}} d x \\
\stackrel{x=f^{-1}(y)}{=} \int_{f(a)}^{f(b)} \frac{g\left(f^{-1}(y)\right)}{f^{\prime}\left(f^{-1}(y)\right)} e^{i y t^{\prime}} d y
\end{gathered}
$$

Suppose $f^{\prime}(x) \neq 0$ in $[a, b]$.

$$
\begin{aligned}
& \int_{-\infty}^{\infty} g(x) e^{i f(x) t^{\prime}} d x \\
x=f^{-1}(y) & \int_{f(a)}^{f(b)} \frac{g\left(f^{-1}(y)\right)}{f^{\prime}\left(f^{-1}(y)\right)} e^{i y t^{\prime}} d y \\
= & \frac{1}{i t^{\prime}} \int_{f(a)}^{f(b)} \frac{g\left(f^{-1}(y)\right)}{f^{\prime}\left(f^{-1}(y)\right)} d\left(e^{i y t^{\prime}}\right)
\end{aligned}
$$

Suppose $f^{\prime}(x) \neq 0$ in $[a, b]$.

$$
\begin{aligned}
& \int_{-\infty}^{\infty} g(x) e^{i f(x) t^{\prime}} d x \\
x=f^{-1}(y) & \int_{f(a)}^{f(b)} \frac{g\left(f^{-1}(y)\right)}{f^{\prime}\left(f^{-1}(y)\right)} e^{i y t^{\prime}} d y \\
& =\quad \frac{1}{i t^{\prime}} \int_{f(a)}^{f(b)} \frac{g\left(f^{-1}(y)\right)}{f^{\prime}\left(f^{-1}(y)\right)} d\left(e^{i y t^{\prime}}\right) \\
& =\quad-\frac{1}{i t^{\prime}} \int_{f(a)}^{f(b)} e^{i y t^{\prime}} \frac{d}{d y}\left(\frac{g\left(f^{-1}(y)\right)}{f^{\prime}\left(f^{-1}(y)\right)}\right) d y
\end{aligned}
$$

Suppose $f^{\prime}(x) \neq 0$ in $[a, b]$.

$$
\begin{aligned}
& \int_{-\infty}^{\infty} g(x) e^{i f(x) t^{\prime}} d x \\
x=f^{-1}(y) & \int_{f(a)}^{f(b)} \frac{g\left(f^{-1}(y)\right)}{f^{\prime}\left(f^{-1}(y)\right)} e^{i y t^{\prime}} d y \\
& =\quad \frac{1}{i t^{\prime}} \int_{f(a)}^{f(b)} \frac{g\left(f^{-1}(y)\right)}{f^{\prime}\left(f^{-1}(y)\right)} d\left(e^{i y t^{\prime}}\right) \\
& =\quad-\frac{1}{i t^{\prime}} \int_{f(a)}^{f(b)} e^{i y t^{\prime}} \frac{d}{d y}\left(\frac{g\left(f^{-1}(y)\right)}{f^{\prime}\left(f^{-1}(y)\right)}\right) d y \\
& \stackrel{y}{=f(x)} \quad-\frac{1}{i t^{\prime}} \int_{-\infty}^{\infty} e^{i f(x) t^{\prime}} \frac{d}{d y}\left(\frac{g\left(f^{-1}(y)\right)}{f^{\prime}\left(f^{-1}(y)\right)}\right) f^{\prime}(x) d x
\end{aligned}
$$

Suppose $f^{\prime}(x) \neq 0$ in $[a, b]$.

$$
\begin{aligned}
& \quad \int_{-\infty}^{\infty} g(x) e^{i f(x) t^{\prime}} d x \\
x=f^{-1}(y) & \quad \int_{f(a)}^{f(b)} \frac{g\left(f^{-1}(y)\right)}{f^{\prime}\left(f^{-1}(y)\right)} e^{i y t^{\prime}} d y \\
& =\quad \frac{1}{i t^{\prime}} \int_{f(a)}^{f(b)} \frac{g\left(f^{-1}(y)\right)}{f^{\prime}\left(f^{-1}(y)\right)} d\left(e^{i y t^{\prime}}\right) \\
& =\quad-\frac{1}{i t^{\prime}} \int_{f(a)}^{f(b)} e^{i y t^{\prime}} \frac{d}{d y}\left(\frac{g\left(f^{-1}(y)\right)}{f^{\prime}\left(f^{-1}(y)\right)}\right) d y \\
& =f(x) \quad-\frac{1}{i t^{\prime}} \int_{-\infty}^{\infty} e^{i f(x) t^{\prime}} \frac{d}{d y}\left(\frac{g\left(f^{-1}(y)\right)}{f^{\prime}\left(f^{-1}(y)\right)}\right) f^{\prime}(x) d x \\
& =\quad \cdots
\end{aligned}
$$

Suppose $f^{\prime}(x) \neq 0$ in $[a, b]$.

$$
\begin{aligned}
& \quad \int_{-\infty}^{\infty} g(x) e^{i f(x) t^{\prime}} d x \\
x=f^{-1}(y) & \quad \int_{f(a)}^{f(b)} \frac{g\left(f^{-1}(y)\right)}{f^{\prime}\left(f^{-1}(y)\right)} e^{i y t^{\prime}} d y \\
& =\quad \frac{1}{i t^{\prime}} \int_{f(a)}^{f(b)} \frac{g\left(f^{-1}(y)\right)}{f^{\prime}\left(f^{-1}(y)\right)} d\left(e^{i y t^{\prime}}\right) \\
& =\quad-\frac{1}{i t^{\prime}} \int_{f(a)}^{f(b)} e^{i y t^{\prime}} \frac{d}{d y}\left(\frac{g\left(f^{-1}(y)\right)}{f^{\prime}\left(f^{-1}(y)\right)}\right) d y \\
& \stackrel{y}{y}=f(x) \quad-\frac{1}{i t^{\prime}} \int_{-\infty}^{\infty} e^{i f(x) t^{\prime}} \frac{d}{d y}\left(\frac{g\left(f^{-1}(y)\right)}{f^{\prime}\left(f^{-1}(y)\right)}\right) f^{\prime}(x) d x \\
& =\quad \cdots \\
& =\quad O\left(\frac{1}{t^{\prime n}}\right) \text { for all } n
\end{aligned}
$$

The Stationary Phase Principle

The Stationary Phase Principle

$\lim _{t^{\prime} \rightarrow \infty} \int_{-\infty}^{\infty} g(x) e^{i f(x) t^{\prime}} d x$ depends only on the local behavior of $f(x)$ near the critical points of $f(x)$ in $\operatorname{supp}(g)$.

The Stationary Phase Principle

$\lim _{t^{\prime} \rightarrow \infty} \int_{-\infty}^{\infty} g(x) e^{i f(x) t^{\prime}} d x$ depends only on the local behavior of $f(x)$ near the critical points of $f(x)$ in $\operatorname{supp}(g)$.

We would like to have an I-adic analogue of the stationary phase principle.

Examples of Perverse sheaves

X : a smooth curve

Examples of Perverse sheaves

X : a smooth curve
x : a closed point of X

Examples of Perverse sheaves

X : a smooth curve
x : a closed point of X
$i:\{x\} \rightarrow X:$ the closed immersion

Examples of Perverse sheaves

X : a smooth curve
x : a closed point of X
$i:\{x\} \rightarrow X:$ the closed immersion
\mathcal{F} : a $\overline{\mathbf{Q}}_{l}$-sheaf on $\{x\}$

Examples of Perverse sheaves

X : a smooth curve
x : a closed point of X
$i:\{x\} \rightarrow X:$ the closed immersion
\mathcal{F} : a $\overline{\mathbf{Q}}_{1}$-sheaf on $\{x\}$
Then $i_{*} \mathcal{F}$ is perverse.

Examples of Perverse sheaves

X : a smooth curve
x : a closed point of X
$i:\{x\} \rightarrow X:$ the closed immersion
\mathcal{F} : a $\overline{\mathbf{Q}}_{l}$-sheaf on $\{x\}$
Then $i_{*} \mathcal{F}$ is perverse.
$j: U \rightarrow X$: an open immersion

Examples of Perverse sheaves

X : a smooth curve
x : a closed point of X
$i:\{x\} \rightarrow X:$ the closed immersion
\mathcal{F} : a $\overline{\mathbf{Q}}_{l}$-sheaf on $\{x\}$
Then $i_{*} \mathcal{F}$ is perverse.
$j: U \rightarrow X$: an open immersion
\mathcal{G} : a lisse $\overline{\mathbf{Q}}_{l}$-sheaf on U

Examples of Perverse sheaves

X : a smooth curve
x : a closed point of X
$i:\{x\} \rightarrow X:$ the closed immersion
\mathcal{F} : a $\overline{\mathbf{Q}}_{l}$-sheaf on $\{x\}$
Then $i_{*} \mathcal{F}$ is perverse.
$j: U \rightarrow X$: an open immersion
\mathcal{G} : a lisse $\overline{\mathbf{Q}}_{\text {I }}$-sheaf on U (corresponding to a galois representation

Examples of Perverse sheaves

X : a smooth curve
x : a closed point of X
$i:\{x\} \rightarrow X$: the closed immersion
\mathcal{F} : a $\overline{\mathbf{Q}}_{l}$-sheaf on $\{x\}$
Then $i_{*} \mathcal{F}$ is perverse.
$j: U \rightarrow X$: an open immersion
\mathcal{G} : a lisse $\overline{\mathbf{Q}}_{l}$-sheaf on U (corresponding to a galois representation of the function field of X

Examples of Perverse sheaves

X : a smooth curve
x : a closed point of X
$i:\{x\} \rightarrow X$: the closed immersion
\mathcal{F} : a $\overline{\mathbf{Q}}_{l}$-sheaf on $\{x\}$
Then $i_{*} \mathcal{F}$ is perverse.
$j: U \rightarrow X$: an open immersion
\mathcal{G} : a lisse $\overline{\mathbf{Q}}_{l}$-sheaf on U (corresponding to a galois representation of the function field of X unramified on points in U)

Examples of Perverse sheaves

X : a smooth curve
x : a closed point of X
$i:\{x\} \rightarrow X:$ the closed immersion
\mathcal{F} : a $\overline{\mathbf{Q}}_{l}$-sheaf on $\{x\}$
Then $i_{*} \mathcal{F}$ is perverse.
$j: U \rightarrow X$: an open immersion
\mathcal{G} : a lisse $\overline{\mathbf{Q}}_{/ \text {-sheaf on } U} U$ (corresponding to a galois representation of the function field of X unramified on points in U)
Then $j_{!} \mathcal{G}[1], j_{*} \mathcal{G}[1], R j_{*} \mathcal{G}[1]$ are perverse.

Examples of Perverse sheaves

X : a smooth curve
x : a closed point of X
$i:\{x\} \rightarrow X:$ the closed immersion
\mathcal{F} : a $\overline{\mathbf{Q}}_{l}$-sheaf on $\{x\}$
Then $i_{*} \mathcal{F}$ is perverse.
$j: U \rightarrow X$: an open immersion
\mathcal{G} : a lisse $\overline{\mathbf{Q}}_{/ \text {-sheaf on } U} U$ (corresponding to a galois representation of the function field of X unramified on points in U)
Then $j_{!} \mathcal{G}[1], j_{*} \mathcal{G}[1], R j_{*} \mathcal{G}[1]$ are perverse.
Extensions of perverse sheaves are perverse.

Examples of Perverse sheaves

X : a smooth curve
x : a closed point of X
$i:\{x\} \rightarrow X$: the closed immersion
\mathcal{F} : a $\overline{\mathbf{Q}}_{l}$-sheaf on $\{x\}$
Then $i_{*} \mathcal{F}$ is perverse.
$j: U \rightarrow X$: an open immersion
\mathcal{G} : a lisse $\overline{\mathbf{Q}}_{/ \text {-sheaf on } U} U$ (corresponding to a galois representation of the function field of X unramified on points in U)
Then $j_{!} \mathcal{G}[1], j_{*} \mathcal{G}[1], R j_{*} \mathcal{G}[1]$ are perverse.
Extensions of perverse sheaves are perverse.
A perverse sheaf K on X is called unramified at a closed point x of X

Examples of Perverse sheaves

X : a smooth curve
x : a closed point of X
$i:\{x\} \rightarrow X$: the closed immersion
\mathcal{F} : a $\overline{\mathbf{Q}}_{l}$-sheaf on $\{x\}$
Then $i_{*} \mathcal{F}$ is perverse.
$j: U \rightarrow X$: an open immersion
\mathcal{G} : a lisse $\overline{\mathbf{Q}}_{/}$-sheaf on U (corresponding to a galois representation of the function field of X unramified on points in U)
Then $j_{!} \mathcal{G}[1], j_{*} \mathcal{G}[1], R j_{*} \mathcal{G}[1]$ are perverse.
Extensions of perverse sheaves are perverse.
A perverse sheaf K on X is called unramified at a closed point x of X if there exists an étale neighborhood U of x

Examples of Perverse sheaves

X : a smooth curve
x : a closed point of X
$i:\{x\} \rightarrow X$: the closed immersion
\mathcal{F} : a $\overline{\mathbf{Q}}_{l}$-sheaf on $\{x\}$
Then $i_{*} \mathcal{F}$ is perverse.
$j: U \rightarrow X$: an open immersion
\mathcal{G} : a lisse $\overline{\mathbf{Q}}_{/}$-sheaf on U (corresponding to a galois representation of the function field of X unramified on points in U)
Then $j_{!} \mathcal{G}[1], j_{*} \mathcal{G}[1], R j_{*} \mathcal{G}[1]$ are perverse.
Extensions of perverse sheaves are perverse.
A perverse sheaf K on X is called unramified at a closed point x of X if there exists an étale neighborhood U of x and a lisse
$\overline{\mathbf{Q}}_{1}$-sheaf \mathcal{G} on U

Examples of Perverse sheaves

X : a smooth curve
x : a closed point of X
$i:\{x\} \rightarrow X$: the closed immersion
\mathcal{F} : a $\overline{\mathbf{Q}}_{l}$-sheaf on $\{x\}$
Then $i_{*} \mathcal{F}$ is perverse.
$j: U \rightarrow X$: an open immersion
\mathcal{G} : a lisse $\overline{\mathbf{Q}}_{/}$-sheaf on U (corresponding to a galois representation of the function field of X unramified on points in U)
Then $j_{!} \mathcal{G}[1], j_{*} \mathcal{G}[1], R j_{*} \mathcal{G}[1]$ are perverse.
Extensions of perverse sheaves are perverse.
A perverse sheaf K on X is called unramified at a closed point x of X if there exists an étale neighborhood U of x and a lisse $\overline{\mathbf{Q}}_{1}$-sheaf \mathcal{G} on U such that $\left.K\right|_{U} \cong \mathcal{G}[1]$.

The Stationary Phase Principle

The Stationary Phase Principle

K : a perverse sheaf on \mathbf{A}^{1}

The Stationary Phase Principle

K : a perverse sheaf on \mathbf{A}^{1}
U : open subset of \mathbf{A}^{1} where K is unramified.

The Stationary Phase Principle

K : a perverse sheaf on \mathbf{A}^{1}
U : open subset of \mathbf{A}^{1} where K is unramified.
η_{x} : the spectrum of the local field at a closed point x.

The Stationary Phase Principle

K : a perverse sheaf on \mathbf{A}^{1}
U : open subset of \mathbf{A}^{1} where K is unramified.
η_{x} : the spectrum of the local field at a closed point x.
We work over an algebraically closed field k of characteristic p.

The Stationary Phase Principle

K : a perverse sheaf on \mathbf{A}^{1}
U : open subset of \mathbf{A}^{1} where K is unramified.
η_{x} : the spectrum of the local field at a closed point x.
We work over an algebraically closed field k of characteristic p.
We have

$$
\left.\mathcal{F}(K)\right|_{\eta_{\infty^{\prime}}}=\bigoplus_{x \in \mathbf{A}^{1}-U} \mathcal{F}^{\left(x, \infty^{\prime}\right)}\left(\left.K\right|_{\eta_{x}}\right) \bigoplus \mathcal{F}^{\left(\infty, \infty^{\prime}\right)}\left(\left.K\right|_{\eta_{\infty}}\right)
$$

The Stationary Phase Principle

K: a perverse sheaf on \mathbf{A}^{1}
U : open subset of \mathbf{A}^{1} where K is unramified.
η_{x} : the spectrum of the local field at a closed point x.
We work over an algebraically closed field k of characteristic p.
We have

$$
\left.\mathcal{F}(K)\right|_{\eta_{\infty^{\prime}}}=\bigoplus_{x \in \mathbf{A}^{1}-U} \mathcal{F}^{\left(x, \infty^{\prime}\right)}\left(\left.K\right|_{\eta_{x}}\right) \bigoplus \mathcal{F}^{\left(\infty, \infty^{\prime}\right)}\left(\left.K\right|_{\eta_{\infty}}\right)
$$

where $\mathcal{F}^{\left(x, \infty^{\prime}\right)}$ (resp. $\mathcal{F}^{\left(\infty, \infty^{\prime}\right)}$) are local Fourier transformations.

The Stationary Phase Principle

K : a perverse sheaf on \mathbf{A}^{1}
U : open subset of \mathbf{A}^{1} where K is unramified.
η_{x} : the spectrum of the local field at a closed point x.
We work over an algebraically closed field k of characteristic p.
We have

$$
\left.\mathcal{F}(K)\right|_{\eta_{\infty^{\prime}}}=\bigoplus_{x \in \mathbf{A}^{1}-U} \mathcal{F}^{\left(x, \infty^{\prime}\right)}\left(\left.K\right|_{\eta_{x}}\right) \bigoplus \mathcal{F}^{\left(\infty, \infty^{\prime}\right)}\left(\left.K\right|_{\eta_{\infty}}\right)
$$

where $\mathcal{F}^{\left(x, \infty^{\prime}\right)}$ (resp. $\mathcal{F}^{\left(\infty, \infty^{\prime}\right)}$) are local Fourier transformations.
They transform representations of $\operatorname{Gal}\left(\bar{\eta}_{x} / \eta_{x}\right)$ (resp.
$\left.\operatorname{Gal}\left(\bar{\eta}_{\infty} / \eta_{\infty}\right)\right)$ to representations of $\operatorname{Gal}\left(\bar{\eta}_{\infty^{\prime}} / \eta_{\infty^{\prime}}\right)$.

The Stationary Phase Principle

K : a perverse sheaf on \mathbf{A}^{1}
U : open subset of \mathbf{A}^{1} where K is unramified.
η_{x} : the spectrum of the local field at a closed point x.
We work over an algebraically closed field k of characteristic p.
We have

$$
\left.\mathcal{F}(K)\right|_{\eta_{\infty^{\prime}}}=\bigoplus_{x \in \mathbf{A}^{1}-U} \mathcal{F}^{\left(x, \infty^{\prime}\right)}\left(\left.K\right|_{\eta_{x}}\right) \bigoplus \mathcal{F}^{\left(\infty, \infty^{\prime}\right)}\left(\left.K\right|_{\eta_{\infty}}\right)
$$

where $\mathcal{F}^{\left(x, \infty^{\prime}\right)}$ (resp. $\mathcal{F}^{\left(\infty, \infty^{\prime}\right)}$) are local Fourier transformations.
They transform representations of $\operatorname{Gal}\left(\bar{\eta}_{x} / \eta_{x}\right)$ (resp.
$\left.\operatorname{Gal}\left(\bar{\eta}_{\infty} / \eta_{\infty}\right)\right)$ to representations of $\operatorname{Gal}\left(\bar{\eta}_{\infty^{\prime}} / \eta_{\infty^{\prime}}\right)$.
$\left.\mathcal{F}(K)\right|_{\eta_{\infty}}$ only depends on $\left.K\right|_{\eta_{x}}\left(x \in \mathbf{A}^{1}-U\right)$ and $\left.K\right|_{\eta_{\infty}}$.

Some I-adic Sheaves

Some I-adic Sheaves

$$
\mathcal{L}_{\psi}:
$$

Some I-adic Sheaves

\mathcal{L}_{ψ} : lisse sheaf on \mathbf{A}^{1}

Some I-adic Sheaves

\mathcal{L}_{ψ} : lisse sheaf on \mathbf{A}^{1} corresponding to the galois representation

Some I-adic Sheaves

\mathcal{L}_{ψ} : lisse sheaf on \mathbf{A}^{1} corresponding to the galois representation
$\operatorname{Gal}(\overline{k(t)} / k(t))$

Some I-adic Sheaves

\mathcal{L}_{ψ} : lisse sheaf on \mathbf{A}^{1} corresponding to the galois representation
$\operatorname{Gal}(\overline{k(t)} / k(t)) \rightarrow \operatorname{Gal}\left(\left(k(t)[x] /\left(x^{p}-x-t\right)\right) / k(t)\right)$

Some I-adic Sheaves

\mathcal{L}_{ψ} : lisse sheaf on \mathbf{A}^{1} corresponding to the galois representation
$\operatorname{Gal}(\overline{k(t)} / k(t)) \rightarrow \operatorname{Gal}\left(\left(k(t)[x] /\left(x^{p}-x-t\right)\right) / k(t)\right) \cong \mathbf{F}_{p}$

Some I-adic Sheaves

\mathcal{L}_{ψ} : lisse sheaf on \mathbf{A}^{1} corresponding to the galois representation
$\operatorname{Gal}(\overline{k(t)} / k(t)) \rightarrow \operatorname{Gal}\left(\left(k(t)[x] /\left(x^{p}-x-t\right)\right) / k(t)\right) \cong \mathbf{F}_{p} \xrightarrow{\psi^{-1}} \overline{\mathbf{Q}}_{l}^{*}$.

Some I-adic Sheaves

\mathcal{L}_{ψ} : lisse sheaf on \mathbf{A}^{1} corresponding to the galois representation
$\operatorname{Gal}(\overline{k(t)} / k(t)) \rightarrow \operatorname{Gal}\left(\left(k(t)[x] /\left(x^{p}-x-t\right)\right) / k(t)\right) \cong \mathbf{F}_{p} \xrightarrow{\psi^{-1}} \overline{\mathbf{Q}}_{l}^{*}$.

Suppose $(m, p)=1$.

Some I-adic Sheaves

\mathcal{L}_{ψ} : lisse sheaf on \mathbf{A}^{1} corresponding to the galois representation
$\operatorname{Gal}(\overline{k(t)} / k(t)) \rightarrow \operatorname{Gal}\left(\left(k(t)[x] /\left(x^{p}-x-t\right)\right) / k(t)\right) \cong \mathbf{F}_{p} \xrightarrow{\psi^{-1}} \overline{\mathbf{Q}}_{l}^{*}$.

Suppose $(m, p)=1$. Let $\mu_{m}=\left\{\zeta \in k \mid \zeta^{m}=1\right\}$,

Some I-adic Sheaves

\mathcal{L}_{ψ} : lisse sheaf on \mathbf{A}^{1} corresponding to the galois representation
$\operatorname{Gal}(\overline{k(t)} / k(t)) \rightarrow \operatorname{Gal}\left(\left(k(t)[x] /\left(x^{p}-x-t\right)\right) / k(t)\right) \cong \mathbf{F}_{p} \xrightarrow{\psi^{-1}} \overline{\mathbf{Q}}_{l}^{*}$.

Suppose $(\underline{m}, p)=1$. Let $\mu_{m}=\left\{\zeta \in k \mid \zeta^{m}=1\right\}$, and let
$\chi: \mu_{m} \rightarrow \overline{\mathbf{Q}}_{l}^{*}$ be a homomorphism.

Some I-adic Sheaves

\mathcal{L}_{ψ} : lisse sheaf on \mathbf{A}^{1} corresponding to the galois representation
$\operatorname{Gal}(\overline{k(t)} / k(t)) \rightarrow \operatorname{Gal}\left(\left(k(t)[x] /\left(x^{p}-x-t\right)\right) / k(t)\right) \cong \mathbf{F}_{p} \xrightarrow{\psi^{-1}} \overline{\mathbf{Q}}_{l}^{*}$.

Suppose $(m, p)=1$. Let $\mu_{m}=\left\{\zeta \in k \mid \zeta^{m}=1\right\}$, and let
$\chi: \mu_{m} \rightarrow \overline{\mathbf{Q}}_{l}^{*}$ be a homomorphism.
\mathcal{K}_{χ} :

Some I-adic Sheaves

\mathcal{L}_{ψ} : lisse sheaf on \mathbf{A}^{1} corresponding to the galois representation
$\operatorname{Gal}(\overline{k(t)} / k(t)) \rightarrow \operatorname{Gal}\left(\left(k(t)[x] /\left(x^{p}-x-t\right)\right) / k(t)\right) \cong \mathbf{F}_{p} \xrightarrow{\psi^{-1}} \overline{\mathbf{Q}}_{l}^{*}$.

Suppose $(m, p)=1$. Let $\mu_{m}=\left\{\zeta \in k \mid \zeta^{m}=1\right\}$, and let
$\chi: \mu_{m} \rightarrow \overline{\mathbf{Q}}_{l}^{*}$ be a homomorphism.
\mathcal{K}_{χ} : lisse sheaf on $\mathbf{A}^{1}-\{0\}$

Some I-adic Sheaves

\mathcal{L}_{ψ} : lisse sheaf on \mathbf{A}^{1} corresponding to the galois representation
$\operatorname{Gal}(\overline{k(t)} / k(t)) \rightarrow \operatorname{Gal}\left(\left(k(t)[x] /\left(x^{p}-x-t\right)\right) / k(t)\right) \cong \mathbf{F}_{p} \xrightarrow{\psi^{-1}} \overline{\mathbf{Q}}_{l}^{*}$.

Suppose $(m, p)=1$. Let $\mu_{m}=\left\{\zeta \in k \mid \zeta^{m}=1\right\}$, and let $\chi: \mu_{m} \rightarrow \overline{\mathbf{Q}}_{l}^{*}$ be a homomorphism.
\mathcal{K}_{χ} : lisse sheaf on $\mathbf{A}^{1}-\{0\}$ corresponding to the galois representation

Some I-adic Sheaves

\mathcal{L}_{ψ} : lisse sheaf on \mathbf{A}^{1} corresponding to the galois representation
$\operatorname{Gal}(\overline{k(t)} / k(t)) \rightarrow \operatorname{Gal}\left(\left(k(t)[x] /\left(x^{p}-x-t\right)\right) / k(t)\right) \cong \mathbf{F}_{p} \xrightarrow{\psi^{-1}} \overline{\mathbf{Q}}_{l}^{*}$.

Suppose $(m, p)=1$. Let $\mu_{m}=\left\{\zeta \in k \mid \zeta^{m}=1\right\}$, and let $\chi: \mu_{m} \rightarrow \overline{\mathbf{Q}}_{l}^{*}$ be a homomorphism.
\mathcal{K}_{χ} : lisse sheaf on $\mathbf{A}^{1}-\{0\}$ corresponding to the galois representation
$\operatorname{Gal}(\overline{k(t)} / k(t))$

Some I-adic Sheaves

\mathcal{L}_{ψ} : lisse sheaf on \mathbf{A}^{1} corresponding to the galois representation
$\operatorname{Gal}(\overline{k(t)} / k(t)) \rightarrow \operatorname{Gal}\left(\left(k(t)[x] /\left(x^{p}-x-t\right)\right) / k(t)\right) \cong \mathbf{F}_{p} \xrightarrow{\psi^{-1}} \overline{\mathbf{Q}}_{l}^{*}$.

Suppose $(m, p)=1$. Let $\mu_{m}=\left\{\zeta \in k \mid \zeta^{m}=1\right\}$, and let $\chi: \mu_{m} \rightarrow \overline{\mathbf{Q}}_{l}^{*}$ be a homomorphism.
\mathcal{K}_{χ} : lisse sheaf on $\mathbf{A}^{1}-\{0\}$ corresponding to the galois representation

$$
\operatorname{Gal}(\overline{k(t)} / k(t)) \rightarrow \operatorname{Gal}\left(\left(k(t)[y] /\left(y^{m}-t\right)\right) / k(t)\right)
$$

Some I-adic Sheaves

\mathcal{L}_{ψ} : lisse sheaf on \mathbf{A}^{1} corresponding to the galois representation
$\operatorname{Gal}(\overline{k(t)} / k(t)) \rightarrow \operatorname{Gal}\left(\left(k(t)[x] /\left(x^{p}-x-t\right)\right) / k(t)\right) \cong \mathbf{F}_{p} \xrightarrow{\psi^{-1}} \overline{\mathbf{Q}}_{l}^{*}$.

Suppose $(m, p)=1$. Let $\mu_{m}=\left\{\zeta \in k \mid \zeta^{m}=1\right\}$, and let $\chi: \mu_{m} \rightarrow \overline{\mathbf{Q}}_{l}^{*}$ be a homomorphism.
\mathcal{K}_{χ} : lisse sheaf on $\mathbf{A}^{1}-\{0\}$ corresponding to the galois representation

$$
\operatorname{Gal}(\overline{k(t)} / k(t)) \rightarrow \operatorname{Gal}\left(\left(k(t)[y] /\left(y^{m}-t\right)\right) / k(t)\right) \cong \mu_{m}
$$

Some I-adic Sheaves

\mathcal{L}_{ψ} : lisse sheaf on \mathbf{A}^{1} corresponding to the galois representation
$\operatorname{Gal}(\overline{k(t)} / k(t)) \rightarrow \operatorname{Gal}\left(\left(k(t)[x] /\left(x^{p}-x-t\right)\right) / k(t)\right) \cong \mathbf{F}_{p} \xrightarrow{\psi^{-1}} \overline{\mathbf{Q}}_{l}^{*}$.

Suppose $(m, p)=1$. Let $\mu_{m}=\left\{\zeta \in k \mid \zeta^{m}=1\right\}$, and let $\chi: \mu_{m} \rightarrow \overline{\mathbf{Q}}_{l}^{*}$ be a homomorphism.
\mathcal{K}_{χ} : lisse sheaf on $\mathbf{A}^{1}-\{0\}$ corresponding to the galois representation
$\operatorname{Gal}(\overline{k(t)} / k(t)) \rightarrow \operatorname{Gal}\left(\left(k(t)[y] /\left(y^{m}-t\right)\right) / k(t)\right) \cong \mu_{m} \xrightarrow{\chi^{-1}} \overline{\mathbf{Q}}_{l}^{*}$.

Consider a formal Laurent series

$$
\alpha(\sqrt[r]{t})=\frac{a_{-s}}{(\sqrt[r]{t})^{s}}+\frac{a_{-(s-1)}}{(\sqrt[r]{t})^{s-1}}+\cdots
$$

in the variable $\sqrt[r]{t}$.

Consider a formal Laurent series

$$
\alpha(\sqrt[r]{t})=\frac{a_{-s}}{(\sqrt[r]{t})^{s}}+\frac{a_{-(s-1)}}{(\sqrt[r]{t})^{s-1}}+\cdots
$$

in the variable $\sqrt[r]{t}$. On η_{0}, let

$$
\mathcal{L}(\alpha(\sqrt[r]{t}))=[r]_{*} \alpha^{*} \mathcal{L}_{\psi} .
$$

Consider a formal Laurent series

$$
\alpha(\sqrt[r]{t})=\frac{a_{-s}}{(\sqrt[r]{t})^{s}}+\frac{a_{-(s-1)}}{(\sqrt[r]{t})^{s-1}}+\cdots
$$

in the variable $\sqrt[r]{t}$. On η_{0}, let

$$
\mathcal{L}(\alpha(\sqrt[r]{t}))=[r]_{*} \alpha^{*} \mathcal{L}_{\psi}
$$

$$
\begin{array}{lccccccc}
\eta_{0}=\operatorname{Speck}((t)) & \xrightarrow{\alpha} \quad \mathbf{A}^{1}, & k((t)) & \leftarrow & k[t], & t^{r} & \alpha(t) & \leftarrow \\
{[r] \downarrow} & & \uparrow & t \\
\eta_{0}=\operatorname{Speck}((t)) & & k((t)) & & t
\end{array}
$$

The Laumon-Malgrange Conjecture

The Laumon-Malgrange Conjecture

Solve the system of equations

$$
\left\{\alpha(\sqrt[r]{t})+t t^{\prime}=\beta\left(\frac{1}{\sqrt[r+s]{t^{\prime}}}\right)\right.
$$

The Laumon-Malgrange Conjecture

Solve the system of equations

$$
\left\{\begin{array}{c}
\alpha(\sqrt[r]{t})+t t^{\prime}=\beta\left(\frac{1}{\sqrt[r+5]{t^{\prime}}}\right) \\
\frac{d}{d t}(\alpha(\sqrt[r]{t}))+t^{\prime}=0 .
\end{array}\right.
$$

The Laumon-Malgrange Conjecture

Solve the system of equations

$$
\left\{\begin{array}{c}
\alpha(\sqrt[r]{t})+t t^{\prime}=\beta\left(\frac{1}{r+5 / t^{\prime}}\right) \\
\frac{d}{d t}(\alpha(\sqrt[r]{t}))+t^{\prime}=0 .
\end{array}\right.
$$

Then $\beta\left(\frac{1}{r+\sqrt[5]{t^{\prime}}}\right)$ is a formal Laurent series

$$
\beta\left(\frac{1}{\sqrt[r+s]{t^{\prime}}}\right)=b_{-s}\left(\sqrt[r+s]{t^{\prime}}\right)^{s}+b_{-(s-1)}\left(\sqrt[r+s]{t^{\prime}}\right)^{s-1}+\cdots
$$

in the variable $\frac{1}{\sqrt[r+5]{t^{\prime}}}$.

The Laumon-Malgrange Conjecture

Solve the system of equations

$$
\left\{\begin{array}{c}
\alpha(\sqrt[r]{t})+t t^{\prime}=\beta\left(\frac{1}{r+\sqrt{t^{\prime}}}\right) \\
\frac{d}{d t}(\alpha(\sqrt[r]{t}))+t^{\prime}=0
\end{array}\right.
$$

Then $\beta\left(\frac{1}{r+5 / t^{\prime}}\right)$ is a formal Laurent series

$$
\beta\left(\frac{1}{\sqrt[r+s]{t^{\prime}}}\right)=b_{-s}\left(\sqrt[r+s]{t^{\prime}}\right)^{s}+b_{-(s-1)}\left(\sqrt[r+s]{t^{\prime}}\right)^{s-1}+\cdots
$$

in the variable $\frac{1}{\sqrt[r+5]{t^{\prime}}}$. On $\eta_{\infty^{\prime}}$, let $\mathcal{L}\left(\beta\left(\frac{1}{\sqrt[r+s]{t^{\prime}}}\right)\right)=[r+s]_{*} \beta^{*} \mathcal{L}_{\psi}$.

The Laumon-Malgrange Conjecture

Solve the system of equations

$$
\left\{\begin{array}{c}
\alpha(\sqrt[r]{t})+t t^{\prime}=\beta\left(\frac{1}{\sqrt[r+5]{t^{\prime}}}\right) \\
\frac{d}{d t}(\alpha(\sqrt[r]{t}))+t^{\prime}=0
\end{array}\right.
$$

Then $\beta\left(\frac{1}{r+5 / t^{\prime}}\right)$ is a formal Laurent series

$$
\beta\left(\frac{1}{\sqrt[r+s]{t^{\prime}}}\right)=b_{-s}\left(\sqrt[r+s]{t^{\prime}}\right)^{s}+b_{-(s-1)}\left(\sqrt[r+s]{t^{\prime}}\right)^{s-1}+\cdots
$$

in the variable $\frac{1}{\sqrt[r+s]{t^{\prime}}}$. On $\eta_{\infty^{\prime}}$, let $\mathcal{L}\left(\beta\left(\frac{1}{\sqrt[r+s]{t^{\prime}}}\right)\right)=[r+s]_{*} \beta^{*} \mathcal{L}_{\psi}$.
Laumon-Malgrange Conjecture. If $p \gg r, s$, then we have

$$
\mathcal{F}^{\left(0, \infty^{\prime}\right)}(\mathcal{L}(\alpha(\sqrt[r]{t}))) \cong \mathcal{L}\left(\beta\left(\frac{1}{\sqrt[r+5]{t^{\prime}}}\right)\right)
$$

I proved the following.

I proved the following.
The conjecture is wrong.

I proved the following.
The conjecture is wrong.
Correct result:

I proved the following.
The conjecture is wrong.
Correct result: If $(p, r)=(p, s)=(p, r+s)=(p, 2)=1$ and $p>s$,

I proved the following.
The conjecture is wrong.
Correct result: If $(p, r)=(p, s)=(p, r+s)=(p, 2)=1$ and $p>s$, then

$$
\mathcal{F}^{\left(0, \infty^{\prime}\right)}\left([r]_{*} \alpha^{*} \mathcal{L}_{\psi}\right) \cong[r+s]_{*}\left(\beta^{*} \mathcal{L}_{\psi} \otimes[s]^{*} \mathcal{K}_{\chi_{2}}\right)
$$

I proved the following.
The conjecture is wrong.
Correct result: If $(p, r)=(p, s)=(p, r+s)=(p, 2)=1$ and $p>s$, then

$$
\mathcal{F}^{\left(0, \infty^{\prime}\right)}\left([r]_{*} \alpha^{*} \mathcal{L}_{\psi}\right) \cong[r+s]_{*}\left(\beta^{*} \mathcal{L}_{\psi} \otimes[s]^{*} \mathcal{K}_{\chi_{2}}\right)
$$

where χ_{2} is the unique multiplicative character of order 2 .

I proved the following.
The conjecture is wrong.
Correct result: If $(p, r)=(p, s)=(p, r+s)=(p, 2)=1$ and $p>s$, then

$$
\mathcal{F}^{\left(0, \infty^{\prime}\right)}\left([r]_{*} \alpha^{*} \mathcal{L}_{\psi}\right) \cong[r+s]_{*}\left(\beta^{*} \mathcal{L}_{\psi} \otimes[s]^{*} \mathcal{K}_{\chi_{2}}\right)
$$

where χ_{2} is the unique multiplicative character of order 2 .
More generally, we have

$$
\mathcal{F}^{\left(0, \infty^{\prime}\right)}\left([r]_{*}\left(\alpha^{*} \mathcal{L}_{\psi} \otimes \mathcal{K}_{\chi}\right)\right) \cong[r+s]_{*}\left(\beta^{*} \mathcal{L}_{\psi} \otimes \mathcal{K}_{\chi^{-1}} \otimes[s]^{*} \mathcal{K}_{\chi_{2}}\right)
$$

for any multiplicative character χ.

I proved the following.
The conjecture is wrong.
Correct result: If $(p, r)=(p, s)=(p, r+s)=(p, 2)=1$ and $p>s$, then

$$
\mathcal{F}^{\left(0, \infty^{\prime}\right)}\left([r]_{*} \alpha^{*} \mathcal{L}_{\psi}\right) \cong[r+s]_{*}\left(\beta^{*} \mathcal{L}_{\psi} \otimes[s]^{*} \mathcal{K}_{\chi_{2}}\right)
$$

where χ_{2} is the unique multiplicative character of order 2 .
More generally, we have

$$
\mathcal{F}^{\left(0, \infty^{\prime}\right)}\left([r]_{*}\left(\alpha^{*} \mathcal{L}_{\psi} \otimes \mathcal{K}_{\chi}\right)\right) \cong[r+s]_{*}\left(\beta^{*} \mathcal{L}_{\psi} \otimes \mathcal{K}_{\chi^{-1}} \otimes[s]^{*} \mathcal{K}_{\chi_{2}}\right)
$$

for any multiplicative character χ.
Laumon-Malgrange also made conjectures for the local Fourier transformations $\mathcal{F}^{\left(\infty, 0^{\prime}\right)}$ and $\mathcal{F}^{\left(\infty, \infty^{\prime}\right)}$.

I proved the following.
The conjecture is wrong.
Correct result: If $(p, r)=(p, s)=(p, r+s)=(p, 2)=1$ and $p>s$, then

$$
\mathcal{F}^{\left(0, \infty^{\prime}\right)}\left([r]_{*} \alpha^{*} \mathcal{L}_{\psi}\right) \cong[r+s]_{*}\left(\beta^{*} \mathcal{L}_{\psi} \otimes[s]^{*} \mathcal{K}_{\chi_{2}}\right)
$$

where χ_{2} is the unique multiplicative character of order 2 .
More generally, we have

$$
\mathcal{F}^{\left(0, \infty^{\prime}\right)}\left([r]_{*}\left(\alpha^{*} \mathcal{L}_{\psi} \otimes \mathcal{K}_{\chi}\right)\right) \cong[r+s]_{*}\left(\beta^{*} \mathcal{L}_{\psi} \otimes \mathcal{K}_{\chi^{-1}} \otimes[s]^{*} \mathcal{K}_{\chi_{2}}\right)
$$

for any multiplicative character χ.
Laumon-Malgrange also made conjectures for the local Fourier transformations $\mathcal{F}^{\left(\infty, 0^{\prime}\right)}$ and $\mathcal{F}^{\left(\infty, \infty^{\prime}\right)}$. Similar results hold for these transformations.

The case $\alpha(\sqrt[r]{t})=\frac{1}{(\sqrt[y]{t})^{s}}$

The case $\alpha(\sqrt[r]{t})=\frac{1}{(\sqrt[r]{t})^{s}}$

The above system of equations becomes

$$
\left\{\begin{array}{c}
t^{-\frac{s}{r}}+t t^{\prime}=\beta\left(\frac{1}{r+s}\right) \\
-\frac{s}{r} t^{-\frac{s}{r}-1}+t^{\prime}=0
\end{array}\right.
$$

The case $\alpha(\sqrt[r]{t})=\frac{1}{(\sqrt[r]{t})^{s}}$
The above system of equations becomes

$$
\left\{\begin{array}{c}
t^{-\frac{s}{r}}+t t^{\prime}=\beta\left(\frac{1}{r+s}\right) \\
-\frac{s}{r} t^{-\frac{s}{r}-1}+t^{\prime}=0
\end{array}\right.
$$

From the second equation, we get

$$
t=\left(\frac{r t^{\prime}}{s}\right)^{-\frac{r}{r+s}}
$$

The case $\alpha(\sqrt[r]{t})=\frac{1}{(\sqrt[r]{t})^{s}}$
The above system of equations becomes

$$
\left\{\begin{array}{c}
t^{-\frac{s}{r}}+t t^{\prime}=\beta\left(\frac{1}{\sqrt[r+s]{t^{\prime}}}\right) \\
-\frac{s}{r} t^{-\frac{s}{r}-1}+t^{\prime}=0
\end{array}\right.
$$

From the second equation, we get

$$
t=\left(\frac{r t^{\prime}}{s}\right)^{-\frac{r}{r+s}}
$$

Substituting into the first equation, we get

$$
\beta\left(\frac{1}{\sqrt[r+s]{t^{\prime}}}\right)=\frac{1+\frac{s}{r}}{\left(\frac{s}{r}\right)^{\frac{s}{r+s}}}\left(\sqrt[r+s]{t^{\prime}}\right)^{s}
$$

The case $\alpha(\sqrt[r]{t})=\frac{1}{(\sqrt[r]{t})^{s}}$
The above system of equations becomes

$$
\left\{\begin{array}{c}
t^{-\frac{s}{r}}+t t^{\prime}=\beta\left(\frac{1}{\sqrt[r+s]{t^{\prime}}}\right) \\
-\frac{s}{r} t^{-\frac{s}{r}-1}+t^{\prime}=0
\end{array}\right.
$$

From the second equation, we get

$$
t=\left(\frac{r t^{\prime}}{s}\right)^{-\frac{r}{r+s}}
$$

Substituting into the first equation, we get

$$
\beta\left(\frac{1}{\sqrt[r+s]{t^{\prime}}}\right)=\frac{1+\frac{s}{r}}{\left(\frac{s}{r}\right)^{\frac{s}{r+s}}}\left(\sqrt[r+s]{t^{\prime}}\right)^{s}
$$

Let's prove

$$
[r+s]^{*} \mathcal{F}^{\left(0, \infty^{\prime}\right)}\left([r]_{*} \alpha^{*} \mathcal{L}_{\psi}\right)=[r+s]^{*}[r+s]_{*}\left(\beta^{*} \mathcal{L}_{\psi} \otimes[s]^{*} \mathcal{K}_{\chi_{2}}\right)
$$

Method

Method

$$
\begin{aligned}
& \mathbf{A}^{1}-\{0\} \quad \xrightarrow{\alpha} \mathbf{A}^{1} \\
& \downarrow[r] \\
& \mathbf{A}^{1}-\{0\} \\
& \downarrow j \\
& \mathbf{A}^{1}
\end{aligned}
$$

Method

$$
\begin{aligned}
& \mathbf{A}^{1}-\{0\} \quad \xrightarrow{\alpha} \mathbf{A}^{1} \\
& \downarrow[r] \\
& \mathbf{A}^{1}-\{0\} \\
& \downarrow j \\
& \mathbf{A}^{1}
\end{aligned}
$$

To study $[r+s]^{*} \mathcal{F}^{\left(0, \infty^{\prime}\right)}\left([r]_{*} \alpha^{*} \mathcal{L}_{\psi}\right)$,

Method

$$
\begin{aligned}
& \mathbf{A}^{1}-\{0\} \quad \xrightarrow{\alpha} \mathbf{A}^{1} \\
& \downarrow[r] \\
& \mathbf{A}^{1}-\{0\} \\
& \downarrow j \\
& \mathbf{A}^{1}
\end{aligned}
$$

To study $[r+s]^{*} \mathcal{F}^{\left(0, \infty^{\prime}\right)}\left([r]_{*} \alpha^{*} \mathcal{L}_{\psi}\right)$, we construct a morphism f

Method

$$
\begin{aligned}
& \mathbf{A}^{1}-\{0\} \quad \xrightarrow{\alpha} \mathbf{A}^{1} \\
& \downarrow[r] \\
& \mathbf{A}^{1}-\{0\} \\
& \downarrow j \\
& \mathbf{A}^{1}
\end{aligned}
$$

To study $[r+s]^{*} \mathcal{F}^{\left(0, \infty^{\prime}\right)}\left([r]_{*} \alpha^{*} \mathcal{L}_{\psi}\right)$, we construct a morphism f such that $[r+s]^{*} \mathcal{F}\left(j_{!}[r]_{*} \alpha^{*} \mathcal{L}_{\psi}\right)$ can be related to $\mathcal{F}\left(R f_{!} \overline{\mathbf{Q}}_{l}\right)$.

Method

$$
\begin{aligned}
& \mathbf{A}^{1}-\{0\} \quad \xrightarrow{\alpha} \mathbf{A}^{1} \\
& \downarrow[r] \\
& \mathbf{A}^{1}-\{0\} \\
& \downarrow j \\
& \mathbf{A}^{1}
\end{aligned}
$$

To study $[r+s]^{*} \mathcal{F}^{\left(0, \infty^{\prime}\right)}\left([r]_{*} \alpha^{*} \mathcal{L}_{\psi}\right)$, we construct a morphism f such that $[r+s]^{*} \mathcal{F}\left(j_{!}[r]_{*} \alpha^{*} \mathcal{L}_{\psi}\right)$ can be related to $\mathcal{F}\left(R f_{!} \overline{\mathbf{Q}}_{I}\right)$. At all ramification points, $R f_{!} \overline{\mathbf{Q}}_{l}$ is tame,

Method

$$
\begin{aligned}
& \mathbf{A}^{1}-\{0\} \quad \xrightarrow{\alpha} \mathbf{A}^{1} \\
& \downarrow[r] \\
& \mathbf{A}^{1}-\{0\} \\
& \downarrow j \\
& \mathbf{A}^{1}
\end{aligned}
$$

To study $[r+s]^{*} \mathcal{F}^{\left(0, \infty^{\prime}\right)}\left([r]_{*} \alpha^{*} \mathcal{L}_{\psi}\right)$, we construct a morphism f such that $[r+s]^{*} \mathcal{F}\left(j_{!}[r]_{*} \alpha^{*} \mathcal{L}_{\psi}\right)$ can be related to $\mathcal{F}\left(R f_{!} \overline{\mathbf{Q}}_{l}\right)$. At all ramification points, $R f_{!} \overline{\mathbf{Q}}_{l}$ is tame, and the local Fourier transformations for $R f_{!} \overline{\mathbf{Q}}_{/}$can be calculated.

Study of $[r+s]^{*} \mathcal{F}\left(j![r]_{*} \alpha^{*} \mathcal{L}_{\psi}\right)$

Study of $[r+s]^{*} \mathcal{F}\left(j_{!}[r]_{*} \alpha^{*} \mathcal{L}_{\psi}\right)$

One can check directly

$$
=\quad \begin{array}{cc}
\operatorname{Tr}\left(F_{t^{\prime}},\left([r+s]^{*} \mathcal{F}\left(j_{!}[r]_{*} \alpha^{*} \mathcal{L}_{\psi}\right)\right)_{\bar{t}^{\prime}}\right) \\
& \sum_{x \in\left(\mathbf{A}^{1}-\{0\}\right)\left(F_{q^{k}}\right)} \psi_{k}\left(x^{r} t^{\prime r+s}+1 / x^{s}\right)
\end{array}
$$

Study of $[r+s]^{*} \mathcal{F}\left(j_{!}[r]_{*} \alpha^{*} \mathcal{L}_{\psi}\right)$

One can check directly

$$
\begin{aligned}
& \operatorname{Tr}\left(F_{t^{\prime}},\left([r+s]^{*} \mathcal{F}\left(j![r]_{*} \alpha^{*} \mathcal{L}_{\psi}\right)\right)_{\bar{t}^{\prime}}\right) \\
= & \sum_{x \in\left(\mathbf{A}^{1}-\{0\}\right)\left(\mathbf{F}_{q^{k}}\right)} \psi_{k}\left(x^{r} t^{\prime r+s}+1 / x^{s}\right) \\
= & \sum_{x \in\left(\mathbf{A}^{1}-\{0\}\right)\left(\mathbf{F}_{q^{k}}\right)} \psi_{k}\left(t^{\prime s}\left(\left(x t^{\prime}\right)^{r}+1 /\left(x t^{\prime}\right)^{s}\right)\right)
\end{aligned}
$$

Study of $[r+s]^{*} \mathcal{F}\left(j_{!}[r]_{*} \alpha^{*} \mathcal{L}_{\psi}\right)$

One can check directly

$$
\begin{aligned}
& \operatorname{Tr}\left(F_{t^{\prime}},\left([r+s]^{*} \mathcal{F}\left(j_{!}[r]_{*} \alpha^{*} \mathcal{L}_{\psi}\right)\right)_{\bar{t}^{\prime}}\right) \\
= & \sum_{x \in\left(\mathbf{A}^{1}-\{0\}\right)\left(F_{q^{k}}\right)} \psi_{k}\left(x^{r} t^{\prime r+s}+1 / x^{s}\right) \\
= & \sum_{x \in\left(\mathbf{A}^{1}-\{0\}\right)\left(F_{q^{k}}\right)} \psi_{k}\left(t^{\prime s}\left(\left(x t^{\prime}\right)^{r}+1 /\left(x t^{\prime}\right)^{s}\right)\right) \\
\stackrel{x t^{\prime} \rightarrow x}{=} &
\end{aligned}
$$

Study of $[r+s]^{*} \mathcal{F}\left(j_{!}[r]_{*} \alpha^{*} \mathcal{L}_{\psi}\right)$

One can check directly

$$
\begin{aligned}
& \operatorname{Tr}\left(F_{t^{\prime}},\left([r+s]^{*} \mathcal{F}\left(j![r]_{*} \alpha^{*} \mathcal{L}_{\psi}\right)\right)_{\bar{t}^{\prime}}\right) \\
= & \sum_{x \in\left(\mathbf{A}^{1}-\{0\}\right)\left(\mathbf{F}_{q^{k}}\right)} \psi_{k}\left(x^{r} t^{\prime r+s}+1 / x^{s}\right) \\
= & \sum_{x \in\left(\mathbf{A}^{1}-\{0\}\right)\left(F_{q^{k}}\right)} \psi_{k}\left(t^{\prime s}\left(\left(x t^{\prime}\right)^{r}+1 /\left(x t^{\prime}\right)^{s}\right)\right) \\
\stackrel{x t^{\prime} \rightarrow x}{=} & \sum_{x \in\left(\mathbf{A}^{1}-\{0\}\right)\left(\mathbf{F}_{q^{k}}\right)} \psi_{k}\left(t^{\prime s}\left(x^{r}+\frac{1}{x^{s}}\right)\right)
\end{aligned}
$$

Study of $[r+s]^{*} \mathcal{F}\left(j_{!}[r]_{*} \alpha^{*} \mathcal{L}_{\psi}\right)$

One can check directly

$$
\begin{array}{cc}
& \left.\operatorname{Tr}\left(F_{t^{\prime}},\left([r+s]^{*} \mathcal{F}\left(j![r]_{*} \alpha^{*} \mathcal{L}_{\psi}\right)\right)\right)_{\bar{t}^{\prime}}\right) \\
= & \sum_{x \in\left(\mathbf{A}^{1}-\{0\}\right)\left(\mathbf{F}_{q^{k}}\right)} \psi_{k}\left(x^{r} t^{\prime r+s}+1 / x^{s}\right) \\
= & \sum_{x \in\left(\mathbf{A}^{1}-\{0\}\right)\left(\mathbf{F}_{q^{k}}\right)} \psi_{k}\left(t^{\prime s}\left(\left(x t^{\prime}\right)^{r}+1 /\left(x t^{\prime}\right)^{s}\right)\right) \\
\stackrel{x t^{\prime} \rightarrow x}{=} & \sum_{x \in\left(\mathbf{A}^{1}-\{0\}\right)\left(\mathbf{F}_{q^{k}}\right)} \psi_{k}\left(t^{\prime s}\left(x^{r}+\frac{1}{x^{s}}\right)\right) \text { if } t^{\prime} \neq 0,
\end{array}
$$

that is,

$$
\begin{aligned}
& \operatorname{Tr}\left(F_{t^{\prime}},\left([r+s]^{*} \mathcal{F}\left(j![r]_{*} \alpha^{*} \mathcal{L}_{\psi}\right)\right)_{\bar{t}^{\prime}}\right) \\
= & \sum_{x \in\left(\mathbf{A}^{1}-\{0\}\right)\left(\mathbf{F}_{q^{k}}\right)} \psi_{k}\left(t^{\prime s}\left(x^{r}+\frac{1}{x^{s}}\right)\right) .
\end{aligned}
$$

that is,

$$
\begin{aligned}
& \operatorname{Tr}\left(F_{t^{\prime}},\left([r+s]^{*} \mathcal{F}\left(j![r]_{*} \alpha^{*} \mathcal{L}_{\psi}\right)\right)_{\bar{t}^{\prime}}\right) \\
= & \sum_{x \in\left(\mathbf{A}^{1}-\{0\}\right)\left(\mathbf{F}_{q^{k}}\right)} \psi_{k}\left(t^{\prime s}\left(x^{r}+\frac{1}{x^{s}}\right)\right) .
\end{aligned}
$$

Consider the morphism

$$
f: \mathbf{A}^{1}-\{0\} \rightarrow \mathbf{A}^{1}, f(x)=x^{r}+\frac{1}{x^{s}} .
$$

that is,

$$
\begin{aligned}
& \operatorname{Tr}\left(F_{t^{\prime}},\left([r+s]^{*} \mathcal{F}\left(j![r]_{*} \alpha^{*} \mathcal{L}_{\psi}\right)\right)_{\bar{t}^{\prime}}\right) \\
= & \sum_{x \in\left(\mathbf{A}^{1}-\{0\}\right)\left(\mathbf{F}_{q^{k}}\right)} \psi_{k}\left(t^{\prime s}\left(x^{r}+\frac{1}{x^{s}}\right)\right) .
\end{aligned}
$$

Consider the morphism

$$
f: \mathbf{A}^{1}-\{0\} \rightarrow \mathbf{A}^{1}, f(x)=x^{r}+\frac{1}{x^{s}}
$$

We have

$$
\operatorname{Tr}\left(F_{t^{\prime}},\left(\mathcal{F}\left(R f_{!} \overline{\mathbf{Q}}_{l}\right)\right)_{\bar{t}^{\prime}}\right)=\sum_{x \in\left(\mathbf{A}^{1}-\{0\}\right)\left(\mathbf{F}_{q^{k}}\right)} \psi_{k}\left(t^{\prime}\left(x^{r}+\frac{1}{x^{s}}\right)\right)
$$

that is,

$$
\begin{aligned}
& \operatorname{Tr}\left(F_{t^{\prime}},\left([r+s]^{*} \mathcal{F}\left(j![r]_{*} \alpha^{*} \mathcal{L}_{\psi}\right)\right)_{\bar{t}^{\prime}}\right) \\
= & \sum_{x \in\left(\mathbf{A}^{1}-\{0\}\right)\left(\mathbf{F}_{q^{k}}\right)} \psi_{k}\left(t^{\prime s}\left(x^{r}+\frac{1}{x^{s}}\right)\right) .
\end{aligned}
$$

Consider the morphism

$$
f: \mathbf{A}^{1}-\{0\} \rightarrow \mathbf{A}^{1}, f(x)=x^{r}+\frac{1}{x^{s}} .
$$

We have

$$
\operatorname{Tr}\left(F_{t^{\prime}},\left(\mathcal{F}\left(R f_{!} \overline{\mathbf{Q}}_{l}\right)\right)_{\bar{t}^{\prime}}\right)=\sum_{x \in\left(\mathbf{A}^{1}-\{0\}\right)\left(\mathbf{F}_{q^{k}}\right)} \psi_{k}\left(t^{\prime}\left(x^{r}+\frac{1}{x^{s}}\right)\right)
$$

We have

$$
[r+s]^{*} \mathcal{F}\left(j_{!}[r]_{*} \alpha^{*} \mathcal{L}_{\psi}\right) \cong[s]^{*} \mathcal{F}\left(R f_{!} \overline{\mathbf{Q}}_{l}\right)
$$

on $\mathbf{A}^{1}-\{0\}$.

Study of $\mathcal{F}\left(R f \overline{\mathbf{Q}}_{l}\right)$

Study of $\mathcal{F}\left(R f \overline{\mathbf{Q}}_{l}\right)$
$f: \mathbf{A}^{1}-\{0\} \rightarrow \mathbf{A}^{1}, f(x)=x^{r}+\frac{1}{x^{s}}$ is a finite morphism.

Study of $\mathcal{F}\left(R f \overline{\mathbf{Q}}_{l}\right)$
$f: \mathbf{A}^{1}-\{0\} \rightarrow \mathbf{A}^{1}, f(x)=x^{r}+\frac{1}{x^{s}}$ is a finite morphism. $\frac{\partial f}{\partial x}=0$ only at $x=\zeta\left(\frac{s}{r}\right)^{\frac{1}{r+s}}$,

Study of $\mathcal{F}\left(R f \overline{\mathbf{Q}}_{l}\right)$

$f: \mathbf{A}^{1}-\{0\} \rightarrow \mathbf{A}^{1}, f(x)=x^{r}+\frac{1}{x^{s}}$ is a finite morphism.
$\frac{\partial f}{\partial x}=0$ only at $x=\zeta\left(\frac{s}{r}\right)^{\frac{1}{r+s}}$, where $\zeta^{r+s}=1$.

Study of $\mathcal{F}\left(R f \overline{\mathbf{Q}}_{l}\right)$

$f: \mathbf{A}^{1}-\{0\} \rightarrow \mathbf{A}^{1}, f(x)=x^{r}+\frac{1}{x^{s}}$ is a finite morphism.
$\frac{\partial f}{\partial x}=0$ only at $x=\zeta\left(\frac{s}{r}\right)^{\frac{1}{r+s}}$, where $\zeta^{r+s}=1$.
At $x=\zeta\left(\frac{s}{r}\right)^{\frac{1}{r+s}}$,

Study of $\mathcal{F}\left(R f \overline{\mathbf{Q}}_{l}\right)$

$f: \mathbf{A}^{1}-\{0\} \rightarrow \mathbf{A}^{1}, f(x)=x^{r}+\frac{1}{x^{s}}$ is a finite morphism.
$\frac{\partial f}{\partial x}=0$ only at $x=\zeta\left(\frac{s}{r}\right)^{\frac{1}{r+s}}$, where $\zeta^{r+s}=1$.
At $x=\zeta\left(\frac{s}{r}\right)^{\frac{1}{r+s}}$, we have

$$
f(x)=\frac{1+\frac{s}{r}}{\zeta^{s}\left(\frac{s}{r}\right)^{\frac{s}{r+s}}},
$$

Study of $\mathcal{F}\left(R f \overline{\mathbf{Q}}_{l}\right)$

$f: \mathbf{A}^{1}-\{0\} \rightarrow \mathbf{A}^{1}, f(x)=x^{r}+\frac{1}{x^{s}}$ is a finite morphism.
$\frac{\partial f}{\partial x}=0$ only at $x=\zeta\left(\frac{s}{r}\right)^{\frac{1}{r+s}}$, where $\zeta^{r+s}=1$.
At $x=\zeta\left(\frac{s}{r}\right)^{\frac{1}{r+s}}$, we have

$$
f(x)=\frac{1+\frac{s}{r}}{\zeta^{s}\left(\frac{s}{r}\right)^{\frac{s}{r+s}}}, \frac{\partial^{2} f}{\partial x^{2}} \neq 0 .
$$

Study of $\mathcal{F}\left(R f \overline{\mathbf{Q}}_{l}\right)$

$f: \mathbf{A}^{1}-\{0\} \rightarrow \mathbf{A}^{1}, f(x)=x^{r}+\frac{1}{x^{s}}$ is a finite morphism.
$\frac{\partial f}{\partial x}=0$ only at $x=\zeta\left(\frac{s}{r}\right)^{\frac{1}{r+s}}$, where $\zeta^{r+s}=1$.
At $x=\zeta\left(\frac{s}{r}\right)^{\frac{1}{r+s}}$, we have

$$
f(x)=\frac{1+\frac{s}{r}}{\zeta^{s}\left(\frac{s}{r}\right)^{\frac{s}{r+s}}}, \frac{\partial^{2} f}{\partial x^{2}} \neq 0 .
$$

So as a sheaf on the spectrum of the local field η_{y} at $y=\frac{1+\frac{s}{r}}{\zeta^{s}\left(\frac{s}{r}\right)^{\frac{s}{r+s}}}$,

Study of $\mathcal{F}\left(R f \overline{\mathbf{Q}}_{l}\right)$

$f: \mathbf{A}^{1}-\{0\} \rightarrow \mathbf{A}^{1}, f(x)=x^{r}+\frac{1}{x^{s}}$ is a finite morphism.
$\frac{\partial f}{\partial x}=0$ only at $x=\zeta\left(\frac{s}{r}\right)^{\frac{1}{r+s}}$, where $\zeta^{r+s}=1$.
At $x=\zeta\left(\frac{s}{r}\right)^{\frac{1}{r+s}}$, we have

$$
f(x)=\frac{1+\frac{s}{r}}{\zeta^{s}\left(\frac{s}{r}\right)^{\frac{s}{r+s}}}, \frac{\partial^{2} f}{\partial x^{2}} \neq 0 .
$$

So as a sheaf on the spectrum of the local field η_{y} at $y=\frac{1+\frac{s}{r}}{\zeta^{s}\left(\frac{s}{r}\right)^{\frac{s}{r+s}}}$, we have

$$
\left.\left(R f_{!} \overline{\mathbf{Q}}_{l}\right)\right|_{\eta_{y}} \cong\left(\mathbf{Q}_{l} \oplus \mathcal{K}_{\chi_{2}}\right)^{\oplus d} \oplus \overline{\mathbf{Q}}_{l}^{r+s-2 d}
$$

where $d=(r, s)$.

Study of $\mathcal{F}\left(R f \overline{\mathbf{Q}}_{l}\right)$

$f: \mathbf{A}^{1}-\{0\} \rightarrow \mathbf{A}^{1}, f(x)=x^{r}+\frac{1}{x^{s}}$ is a finite morphism.
$\frac{\partial f}{\partial x}=0$ only at $x=\zeta\left(\frac{s}{r}\right)^{\frac{1}{r+s}}$, where $\zeta^{r+s}=1$.
At $x=\zeta\left(\frac{s}{r}\right)^{\frac{1}{r+s}}$, we have

$$
f(x)=\frac{1+\frac{s}{r}}{\zeta^{s}\left(\frac{s}{r}\right)^{\frac{s}{r+s}}}, \frac{\partial^{2} f}{\partial x^{2}} \neq 0 .
$$

So as a sheaf on the spectrum of the local field η_{y} at $y=\frac{1+\frac{s}{r}}{\zeta^{s}\left(\frac{s}{r}\right)^{\frac{s}{r+s}}}$, we have

$$
\left.\left(R f_{!} \overline{\mathbf{Q}}_{l}\right)\right|_{\eta_{y}} \cong\left(\mathbf{Q}_{l} \oplus \mathcal{K}_{\chi_{2}}\right)^{\oplus d} \oplus \overline{\mathbf{Q}}_{l}^{r+s-2 d}
$$

where $d=(r, s)$.
$R f_{!} \overline{\mathbf{Q}}_{l}$ is lisse outside the points $y=\frac{1+\frac{s}{r}}{\zeta^{s}\left(\frac{s}{r}\right)^{\frac{s}{r+s}}}$.

Study of $\mathcal{F}\left(R f \overline{\mathbf{Q}}_{l}\right)$

$f: \mathbf{A}^{1}-\{0\} \rightarrow \mathbf{A}^{1}, f(x)=x^{r}+\frac{1}{x^{s}}$ is a finite morphism.
$\frac{\partial f}{\partial x}=0$ only at $x=\zeta\left(\frac{s}{r}\right)^{\frac{1}{r+s}}$, where $\zeta^{r+s}=1$.
At $x=\zeta\left(\frac{s}{r}\right)^{\frac{1}{r+s}}$, we have

$$
f(x)=\frac{1+\frac{s}{r}}{\zeta^{s}\left(\frac{s}{r}\right)^{\frac{s}{r+s}}}, \frac{\partial^{2} f}{\partial x^{2}} \neq 0 .
$$

So as a sheaf on the spectrum of the local field η_{y} at $y=\frac{1+\frac{s}{r}}{\zeta^{s}\left(\frac{s}{r}\right)^{\frac{s}{r+s}}}$, we have

$$
\left.\left(R f_{!} \overline{\mathbf{Q}}_{l}\right)\right|_{\eta_{y}} \cong\left(\mathbf{Q}_{l} \oplus \mathcal{K}_{\chi_{2}}\right)^{\oplus d} \oplus \overline{\mathbf{Q}}_{l}^{r+s-2 d}
$$

where $d=(r, s)$.
$R f_{!} \overline{\mathbf{Q}}_{l}$ is lisse outside the points $y=\frac{1+\frac{s}{r}}{\zeta^{s}\left(\frac{s}{r}\right)^{\frac{s}{r+s}}}$.
$\left.\left(R f_{!} \overline{\mathbf{Q}}_{l}\right)\right|_{\eta_{\infty}}$ is tamely ramified.

By the Stationary Phase Principle, we have
$\left.\left(\mathcal{F}\left(R f_{!} \overline{\mathbf{Q}}_{l}\right)\right)\right|_{\eta_{\infty^{\prime}}}$

By the Stationary Phase Principle, we have

$$
\left.\left.\cong \bigoplus_{y=\frac{1+\frac{s}{r}}{\zeta^{s}\left(\frac{s}{r}\right)^{\frac{s}{r+s}}}} \mathcal{F}^{\left(y, \infty^{\prime}\right)}\left(\left.\left(R f_{!} \overline{\mathbf{Q}}_{l}\right)\right|_{\eta_{y}}\right) \bigoplus \mathcal{F}^{\left(\infty, \infty^{\prime}\right)}\left(\left(R f_{!} \overline{\mathbf{Q}}_{l}\right)\right)\right|_{\left.\left.\eta_{\infty^{\prime}}\right)_{\eta_{\infty}}\right)}\right)
$$

By the Stationary Phase Principle, we have

$$
\begin{aligned}
& \left.\left(\mathcal{F}\left(R f_{!} \overline{\mathbf{Q}}_{l}\right)\right)\right|_{\eta_{\infty^{\prime}}} \\
\cong & \bigoplus_{y=\frac{1+\frac{s}{r}}{\zeta^{s}\left(\frac{s}{r}\right)^{\frac{s}{r}+s}}} \mathcal{F}^{\left(y, \infty^{\prime}\right)}\left(\left.\left(R f_{!} \overline{\mathbf{Q}}_{l}\right)\right|_{\eta_{y}}\right) \bigoplus \mathcal{F}^{\left(\infty, \infty^{\prime}\right)}\left(\left(R f_{!} \overline{\mathbf{Q}}_{l}\right)_{\eta_{\infty}}\right) \\
\cong & \left.\bigoplus_{\zeta^{s}} \mathcal{F}^{\left(\frac{1+\frac{s}{r}}{\zeta^{s}\left(\frac{s}{r}\right)^{\frac{s}{r+s}}}, \infty^{\prime}\right.}\right)\left(\mathcal{K}_{\chi_{2}}^{\oplus d}\right)
\end{aligned}
$$

By the Stationary Phase Principle, we have

$$
\begin{aligned}
&\left.\left(\mathcal{F}\left(R f_{!} \overline{\mathbf{Q}}_{l}\right)\right)\right|_{\eta_{\infty^{\prime}}} \\
& \cong \bigoplus_{y=\frac{1+\frac{s}{r}}{\zeta^{s}\left(\frac{s}{r} \frac{s}{r+s}\right.}} \mathcal{F}^{\left(y, \infty^{\prime}\right)}\left(\left.\left(R f_{!} \overline{\mathbf{Q}}_{l}\right)\right|_{\eta_{y}}\right) \bigoplus \mathcal{F}^{\left(\infty, \infty^{\prime}\right)}\left(\left(R f_{!} \overline{\mathbf{Q}}_{l}\right)_{\eta_{\infty}}\right) \\
& \cong\left.\bigoplus_{\zeta^{s}} \mathcal{F}^{\left(\frac{1+\frac{s}{r}}{\zeta^{s}\left(\frac{s}{r}\right)^{\frac{s}{r+s}}}, \infty^{\prime}\right.}\right) \\
&\left(\mathcal{K}_{\chi_{2}}^{\oplus d}\right) \\
& \cong \bigoplus_{\zeta^{s}}\left(\mathcal{L}_{\psi}\left(\frac{1+\frac{s}{r}}{\zeta^{s}\left(\frac{s}{r}\right)^{\frac{s}{r+s}}} t^{\prime}\right) \otimes \mathcal{K}_{\chi_{2}}\right)^{\oplus d},
\end{aligned}
$$

that is,

$$
\left(\mathcal{F}\left(R f \overline{\mathbf{Q}}_{l}\right)\right)_{\eta_{\infty^{\prime}}} \cong \bigoplus_{\zeta^{s}}\left(\mathcal{L}_{\psi}\left(\frac{1+\frac{s}{r}}{\zeta^{s}\left(\frac{s}{r}\right)^{\frac{s}{r+s}}} t^{\prime}\right) \otimes \mathcal{K}_{\chi_{2}}\right)^{\oplus d} .
$$

By the Stationary Phase Principle again, we have
that is,

$$
\left(\mathcal{F}\left(R f \overline{\mathbf{Q}}_{l}\right)\right)_{\eta_{\infty^{\prime}}} \cong \bigoplus_{\zeta^{s}}\left(\mathcal{L}_{\psi}\left(\frac{1+\frac{s}{r}}{\zeta^{s}\left(\frac{s}{r}\right)^{\frac{s}{r+s}}} t^{\prime}\right) \otimes \mathcal{K}_{\chi_{2}}\right)^{\oplus d} .
$$

By the Stationary Phase Principle again, we have

$$
\left.[r+s]^{*} \mathcal{F}^{\left(0, \infty^{\prime}\right)}\left([r]_{*} \alpha^{*} \mathcal{L}_{\psi}\right) \cong\left([r+s]^{*} \mathcal{F}\left(j![r]_{*} \alpha^{*} \mathcal{L}_{\psi}\right)\right)\right|_{\eta_{\infty^{\prime}}}
$$

that is,

$$
\left(\mathcal{F}\left(R f \overline{\mathbf{Q}}_{l}\right)\right)_{\eta_{\infty^{\prime}}} \cong \bigoplus_{\zeta^{s}}\left(\mathcal{L}_{\psi}\left(\frac{1+\frac{s}{r}}{\zeta^{s}\left(\frac{s}{r}\right)^{\frac{s}{r+s}}} t^{\prime}\right) \otimes \mathcal{K}_{\chi_{2}}\right)^{\oplus d} .
$$

By the Stationary Phase Principle again, we have

$$
\begin{aligned}
{[r+s]^{*} \mathcal{F}^{\left(0, \infty^{\prime}\right)}\left([r]_{*} \alpha^{*} \mathcal{L}_{\psi}\right) } & \left.\cong\left([r+s]^{*} \mathcal{F}\left(j_{j}[r]_{*} \alpha^{*} \mathcal{L}_{\psi}\right)\right)\right|_{\eta_{\infty^{\prime}}} \\
& \left.\cong\left([s]^{*} \mathcal{F}\left(R f \overline{\mathbf{Q}}_{l}\right)\right)\right|_{\eta_{\infty^{\prime}}}
\end{aligned}
$$

that is,

$$
\left(\mathcal{F}\left(R f_{!} \overline{\mathbf{Q}}_{l}\right)\right)_{\eta_{\infty^{\prime}}} \cong \bigoplus_{\zeta^{s}}\left(\mathcal{L}_{\psi}\left(\frac{1+\frac{s}{r}}{\zeta^{s}\left(\frac{s}{r}\right)^{\frac{s}{r+s}}} t^{\prime}\right) \otimes \mathcal{K}_{\chi_{2}}\right)^{\oplus d}
$$

By the Stationary Phase Principle again, we have

$$
\begin{aligned}
{[r+s]^{*} \mathcal{F}^{\left(0, \infty^{\prime}\right)}\left([r]_{*} \alpha^{*} \mathcal{L}_{\psi}\right) } & \left.\cong\left([r+s]^{*} \mathcal{F}\left(j_{!}[r]_{*} \alpha^{*} \mathcal{L}_{\psi}\right)\right)\right|_{\eta_{\infty^{\prime}}} \\
& \left.\cong\left([s]^{*} \mathcal{F}\left(R f_{!} \overline{\mathbf{Q}_{l}}\right)\right)\right|_{\eta_{\infty^{\prime}}} \\
& \cong \bigoplus_{\zeta^{s}}[s]^{*}\left(\mathcal{L}_{\psi}\left(\frac{1+\frac{s}{r}}{\zeta^{s}\left(\frac{s}{r}\right)^{\frac{s}{r+s}}} t^{\prime}\right) \otimes \mathcal{K}_{\chi_{2}}\right)^{\oplus d}
\end{aligned}
$$

that is,

$$
\left(\mathcal{F}\left(R f_{!} \overline{\mathbf{Q}}_{l}\right)\right)_{\eta_{\infty^{\prime}}} \cong \bigoplus_{\zeta^{s}}\left(\mathcal{L}_{\psi}\left(\frac{1+\frac{s}{r}}{\zeta^{s}\left(\frac{s}{r}\right)^{\frac{s}{r+s}}} t^{\prime}\right) \otimes \mathcal{K}_{\chi_{2}}\right)^{\oplus d}
$$

By the Stationary Phase Principle again, we have

$$
\begin{aligned}
{[r+s]^{*} \mathcal{F}^{\left(0, \infty^{\prime}\right)}\left([r]_{*} \alpha^{*} \mathcal{L}_{\psi}\right) } & \cong\left(\left.[r+s]^{*} \mathcal{F}\left(j\left[[r] * \alpha^{*} \mathcal{L}_{\psi}\right)\right)\right|_{\eta_{\infty^{\prime}}}\right. \\
& \left.\cong\left([s]^{*} \mathcal{F}\left(R f \overline{\mathbf{Q}}_{l}\right)\right)\right|_{\eta_{\infty^{\prime}}} \\
& \cong \bigoplus_{\zeta^{s}}[s]^{*}\left(\mathcal{L}_{\psi}\left(\frac{1+\frac{s}{r}}{\zeta^{s}\left(\frac{s}{r}\right)^{\frac{s}{r}+s}} t^{\prime}\right) \otimes \mathcal{K}_{\chi_{2}}\right)^{\oplus d} \\
& \cong \bigoplus_{\zeta^{s}}\left(\mathcal{L}_{\psi}\left(\frac{1+\frac{s}{r}}{\zeta^{s}\left(\frac{s}{r} \frac{s}{r}\right)^{\frac{s}{r+s}} t^{\prime s}}\right) \otimes[s]^{*} \mathcal{K}_{\chi_{2}}\right)^{\oplus d}
\end{aligned}
$$

that is,

$$
\left(\mathcal{F}\left(R f_{!} \overline{\mathbf{Q}}_{l}\right)\right)_{\eta_{\infty^{\prime}}} \cong \bigoplus_{\zeta^{s}}\left(\mathcal{L}_{\psi}\left(\frac{1+\frac{s}{r}}{\zeta^{s}\left(\frac{s}{r}\right)^{\frac{s}{r+s}}} t^{\prime}\right) \otimes \mathcal{K}_{\chi_{2}}\right)^{\oplus d}
$$

By the Stationary Phase Principle again, we have

$$
\begin{aligned}
{[r+s]^{*} \mathcal{F}^{\left(0, \infty^{\prime}\right)}\left([r]_{*} \alpha^{*} \mathcal{L}_{\psi}\right) } & \cong\left(\left.[r+s]^{*} \mathcal{F}\left(j\left[[r]_{*} \alpha^{*} \mathcal{L}_{\psi}\right)\right)\right|_{\eta_{\infty^{\prime}}}\right. \\
& \left.\cong\left([s]^{*} \mathcal{F}\left(R f \overline{\mathbf{Q}}_{1}\right)\right)\right|_{\eta_{\infty^{\prime}}} \\
& \cong \bigoplus_{\zeta^{s}}[s]^{*}\left(\mathcal{L}_{\psi}\left(\frac{1+\frac{s}{r}}{\zeta^{s}\left(\frac{s}{r}\right)} t^{\frac{s}{r}+s} t^{\prime}\right) \otimes \mathcal{K}_{\chi_{2}}\right)^{\oplus d} \\
& \cong \bigoplus_{\zeta^{s}}\left(\mathcal{L}_{\psi}\left(\frac{1+\frac{s}{r}}{\zeta^{s}\left(\frac{s}{r}\right.}{ }^{\frac{s}{r}+5} t^{\prime s}\right) \otimes[s]^{*} \mathcal{K}_{\chi_{2}}\right)^{\oplus d} \\
& \cong[r+s]^{*}[r+s]_{*}\left(\beta^{*} \mathcal{L}_{\psi} \otimes[s]^{*} \mathcal{K}_{\chi_{2}}\right) .
\end{aligned}
$$

The proof of the Laumon-Malgrange conjecture for general α involves more complicated changes of variables,

The proof of the Laumon-Malgrange conjecture for general α involves more complicated changes of variables, and a subtle use of a fact stronger than the Stationary Phase Principle.

