Control Theorems for Abelian varieties over Global Function Fields of Characteristic p

Ki-Seng Tan

January, 21, 2008

This talk is about a function field version of Mazur's control theorems for abelian varieties over \mathbb{Z}_p^d -extensions

("Rational points of abelian varieties with values in towers of number fields", Invent. Math. **18**(1972), 183-266;

"Galois theory for the Selmer group of an abelian variety", R. Greenberg, Comp. Math. **136**(2003), 255-297).

Let A be an abelian variety over a field K of characteristic p. We regard A as a sheaf for the flat topology on K. And for each positive integer m, we use $\mathcal{A}[p^m]$ to denote the kernel of the multiplication by p^m on A, while as usual we use $A[p^m]$ to denote the p^m -torsion points on A.

Suppose that K is a global function field. The p^m -Selmer group $Sel_{p^m}(K)$ is defined as the kernel of the composite

$$\mathsf{H}^1(K, \mathcal{A}[p^m]) \longrightarrow \mathsf{H}^1(K, A) \xrightarrow{loc} \bigoplus_v \mathsf{H}^1(K_v, A),$$

where loc is the localization map and in the direct sum v runs through all places of K.

The p^{∞} -Selmer group $\operatorname{Sel}_{p^{\infty}}(K)$ is defined as the direct limit of $\operatorname{Sel}_{p^m}(K)$.

Theorem. 1 Let A be an abelian variety over a global field K of characteristic p. Suppose L/K is a \mathbb{Z}_p^d -extension unramified outside a finite set S of places of K. And assume that A has good, ordinary reduction at each place $v \in S$. Then for all finite intermediate extensions L'/K of L/K, the orders of the kernels and co-kernels of the restriction maps

 $\operatorname{Sel}_{p^{\infty}}(K) \longrightarrow \operatorname{Sel}_{p^{\infty}}(L')^{\operatorname{Gal}(L'/K)}$

are bounded.

Manuscript 2008. Availabel online at http://arxiv.org/abs/0801.2690

Application Iwasawa theory: For an extension L/K satisfying the conditions in the theorem, define $\operatorname{Sel}_{p^{\infty}}(L)$ as the direct limit of $\operatorname{Sel}_{p^{\infty}}(L')$ for L' runs through all intermediate fields of L/K and denote $\Gamma = \operatorname{Gal}(L/K)$. By Nakayama's Lemma, it follows from the theorem that the Pontryagin dual

 $X_L := \operatorname{Hom}(\operatorname{Sel}_{p^{\infty}}(L), \mathbb{Q}_p/\mathbb{Z}_p))$

is a finitely generated module of the Iwasawa algebra $\Lambda_{\Gamma} := \mathbb{Z}_p[[\Gamma]].$

The case where A/K is a non-isotrivial elliptic curve has been studied by A. Bandini and I. Longhi, in "Control theorems for elliptic curves over function fields" (manuscript 2006. Availabel online at

http://arxiv.org/abs/math/0604249).

The local control theorem:

Theorem. 2 Assume that A is an abelian variety over a local field $K = \mathbb{F}_q((T))$ so that the reduction \overline{A} of A is an ordinary abelian variety. If L/K is a \mathbb{Z}_p^d -extension, then

 $|\mathsf{H}^{1}(L/K, A(L))| \leq |\overline{A}(\mathbb{F}_{q})_{p}|^{d+1},$

here $\overline{A}(\mathbb{F}_q)_p$ denotes the *p*-Sylow subgroup of $\overline{A}(\mathbb{F}_q)$.

Theorem 2 \implies Theorem 1,

by more or less standard arguments using the following: (1) the Hochschild-Serre spectral sequence, (2) the fact that $A(L)_p := A[p^{\infty}]$ is unramified over K, (3) the boundedness of

$$H^{i}(L'/K, A(L')_{p}), \quad i = 1, 2.$$

The rest of this talk is devoted to proving Theorem 2. Assume that $K = \mathbb{F}_q((t))$.

For each n, denote $K^{(1/p^n)} = \mathbb{F}_q((t^{1/p^n}))$ which is the unique purely inseparable extension over K of degree p^n .

Use \overline{K} to denote the separable closure of Kand write $G_K = \text{Gal}(\overline{K}/K)$. And simply write

$$\bar{K}^{(1/p^n)} = \overline{K^{(1/p^n)}}.$$

Thus, the algebraic closure of K equals

$$\bar{K}^{(1/p^{\infty})} := \bigcup_{n=1}^{\infty} \bar{K}^{(1/p^n)}$$

The Frobenius substitution

$$\operatorname{Frob}_{p^n}: K^{(1/p^n)} \longrightarrow K, \ x \mapsto x^{p^n},$$

is an isomorphism. And we use it to identify $G_{K^{(1/p^n)}}$, for $n = 1, ..., \infty$, with G_K .

We have the following useful illustration:

§ Some facts about ordinary abelian varieties.

Assume that K is a field of characteristic p and A/K is an abelian variety of dimension g. Over the algebraic closure of K, the étale part of the group scheme $\mathcal{A}[p]$ is of the form $(\mathbb{Z}/p\mathbb{Z})^{g-r}$ for some non-negative integer r.

A/K is ordinary if and only if

$$r = 0.$$

In this case, the multiplication by p on A, is decomposted as:

$$[p] = V \circ F,$$

where $F : A \longrightarrow A^{(p)}$ is the Frobenius isogeny and $V : A^{(p)} \longrightarrow A$ is separable.

For the rest of this talk, K is a local field and \overline{A} , the reduction of A, is an ordinary abelian variety.

(a) The étale part of $\overline{\mathcal{A}}[p]$ equals $(\mathbb{Z}/p\mathbb{Z})^g$, and so is that of $\mathcal{A}[p]$. The reduction map gives rise to an isomorphism

 $A[p^m] \simeq \overline{A}[p^m] \simeq (\mathbb{Z}/p^m\mathbb{Z})^g.$

Therefore, A/K is also ordinary.

(b) If L is a local field containing K and P is a point in A(L), then all the p^m -division points of P are contained in $A(\overline{L}^{(1/p^m)})$. In particular, the p^m -torsion points $A[p^m] \subset A(\overline{K}^{(1/p^m)})$.

- (c) Suppose L/K is a Galois extension and $I \subset \text{Gal}(L/K)$ is the inertia group. If $\sigma \in I$ and $Q \in A(L)_p$, then (a) says that ${}^{\sigma}Q Q = 0$. Therefore, $A(L)_p$ is unramified over K , in the sense that every point in $A(L)_p$ is rational over the maximal unramified sub-extension of L/K.
- (d) Let $A^1(L)$ denote the subgroup of A(L)consisting of points with trivial reduction. Then $A^1(L)$ is a torsion free \mathbb{Z}_p -module.
- (e) For each $P \in A^1(L)$ there is a unique $P' \in A^1(L^{(1/p^m)})$ such that $p^m P' = P$, and vice versa. In other words, we have

$$A^{1}(L) = p^{m} A^{1}(L^{(1/p^{m})}).$$
 (1)

To see this, let $Q \in A(\overline{L}^{(1/p^m)})$ be a p^m division point of $P \in A^1(L)$. Since the reduction \overline{Q} is contained in $\overline{A}[p^m]$, there is a point $R \in A[p^m] \subset A(\overline{L}^{(1/p^m)})$ such that $P' := Q - R \in A^1(\overline{L}^{(1/p^m)})$. Obviously, P' is also a p^m -division point of P, and for $\sigma \in G_L$, we have

$${}^{\sigma}P' - P' \in A[p^m] \cap A^1(\overline{L}^{(1/p^m)}) = \{0\}.$$

(f) For a local field L finite over K, we use \mathbb{F}_L to denote its constant field. And we also regard \mathbb{F}_L as the residue field of L. One easily deduces from (a) and (e) that

 $A(L^{(1/p^{\infty})}) = A^1(L^{(1/p^{\infty})}) \times A(L^{(1/p^{\infty})})_{tor}$

and the reduction map sends $A(L^{(1/p^{\infty})})_{tor}$ bijectively onto $\overline{A}(\mathbb{F}_L)$. Furthermore, this bijection respects the action of $\operatorname{Aut}_K(L)$. In view of this, the G_K -modules $A(\overline{K}^{(1/p^{\infty})})_{tor}$ and $\overline{A}(\overline{\mathbb{F}}_q)$, are isomorphic under the reduction map.

 \S Tate's local duality Theorem

Let B denote the dual abelian variety to A over K. Since B is isogenous to A, it also has ordinary reduction.

Via the Poincaré biextension $W \longrightarrow A \times B$, a point on B is regarded as an element in $Ext(A, G_m)$, and hence a point $Q \in B(L)$ gives rise to an exact sequence of G_L -modules:

$$0 \longrightarrow \overline{L}^* \longrightarrow W_Q \longrightarrow A(\overline{L}) \longrightarrow 0.$$

Using the induced long exact sequence:

$$\dots \longrightarrow \mathsf{H}^1(L,A) \xrightarrow{\delta_Q} \mathsf{H}^2(L,\overline{L}^*) \longrightarrow \dots,$$

one defines the local duality pairing of Q and a class $\xi \in H^1(L, A)$ as

$$\langle \xi, Q \rangle_{A,B,L} := inv(\delta_Q(\xi)).$$

Here $inv : H^2(L, \overline{L}^*) \longrightarrow \mathbb{Q}/\mathbb{Z}$ is the invariant of the Brauer group.

The pairing is compatible with isogenies. If $\psi: A \longrightarrow A'$ and $\hat{\psi}: B' \longrightarrow B$ are dual isogeny, then

In particular, for $Q' \in B^{(p)}(L)$ and $\xi \in H^1(L, A)$, we have

$$<\xi, \hat{F}(Q')>_{A,B,L}=_{A^{(p)},B^{(p)},L}$$

Tate's local duality theorem says that the local pairing is non-degenerated, and it identifies $H^1(K, A)$ with the Pontryagin dual of B(L).

Lemma. 3 Let i_* be the homomorphism from $H^1(K, A) = H^1(G_K, A(\bar{K}))$ to $H^1(G_K, A(\bar{K}^{(1/p^{\infty})}))$ induced from the inclusion $A(\bar{K}) \longrightarrow A(\bar{K}^{(1/p^{\infty})})$. If $i_*(\xi) = 0$, then ξ annihilates $B^1(K)$. § Kummer Theory

Over the field $\overline{K}^{(1/p^{\infty})}$, we have the following exact sequence of G_K -modules:

 $0 \longrightarrow A[p^m] \xrightarrow{j} A(\bar{K}^{(1/p^\infty)}) \xrightarrow{[p^m]} A(\bar{K}^{(1/p^\infty)}) \longrightarrow 0.$

We are allowed to replace $A[p^m]$ by $\overline{A}[p^m]$ ((f)).

And by taking the direct limit over m for the induced Kummer sequence, we get the following exact sequence:

Equations (1) implies

$$A(K^{(1/p^{\infty})}) \otimes_{\mathbb{Z}} \mathbb{Q}_p / \mathbb{Z}_p = 0.$$
 (2)

Let
$$k_* = j_*^{-1} \circ i_* : H^1(K, A)_p \longrightarrow H^1(G_K, \overline{A}[p^\infty]).$$

By Lemma 3,

$$\operatorname{ker}(k_*)\subset \widehat{ar{B}}(\mathbb{F}_q)$$
 (3)

We have $|\widehat{\overline{B}}(\mathbb{F}_q)| = |\overline{B}(\mathbb{F}_q)| = |\overline{A}(\mathbb{F}_q)|.$

Lemma. 4 Suppose L/K is a \mathbb{Z}_p^d -extension, then for every finite intermediate extension $L'/K \subset L/K$ we have

$$|\mathsf{H}^{1}(L'/K, \bar{A}(\mathbb{F}_{L'})_{p})| \leq |\bar{A}(\mathbb{F}_{K})_{p}|^{d}.$$

 \S The proof of Lemma 3

Let L/K be a finite extension. We first consider of the map

$$\mathsf{H}^1(G_L, A(\overline{L})) \xrightarrow{i_{1*}} \mathsf{H}^1(G_L, A(\overline{L}^{(1/p)}))$$

induced from $A(\overline{L}) \xrightarrow{i_1} A(\overline{L}^{(1/p)})$. Next, we show that if $i_{1*}(\xi)$ annihilates $B^1(L^{(1/p)})$, then ξ annihilates $B^1(L)$.

The lemma is proved by inductively taking $L = K^{(1/p^m)}$ for $m = 0, 1, ..., \infty$.

The ideal is to relate the map i_1 to some isogeny.

The Frobenius substitution Frob_p induces an isomorphism of G_L -modules

Frob_p:
$$A(\overline{L}^{(1/p)}) \longrightarrow A^{(p)}(\overline{L})$$

 $P \mapsto F(P).$

 $\begin{array}{rccc} A(\bar{L}) & \stackrel{i_1}{\longrightarrow} & A(\bar{L}^{(1/p)}) \\ \text{Therefore,} & \parallel & \circlearrowright & \downarrow \operatorname{Frob}_p & \text{and the bot-} \\ & A(\bar{L}) & \stackrel{F}{\longrightarrow} & A^{(p)}(\bar{L}). \end{array}$ tom rightarrow induces

$$\mathsf{H}^1(G_L, A(\overline{L})) \xrightarrow{F_*} \mathsf{H}^1(G_L, A^{(p)}(\overline{L})).$$

• $i_{1*}(\xi)$ annihilates $B^1(L^{(1/p)})$ if and only if $F_*(\xi)$ annihilates $(B^{(p)})^1(L^{(1/p)})$.

Let $\widehat{F}: B^{(p)} \longrightarrow B$ be the dual isogeny to F.

• $F_*(\xi)$ annihilates $(B^{(p)})^1(L^{(1/p)})$ if and only if ξ annihilates $\widehat{F}((B^{(p)})^1(L))$.

The kernel of \hat{F} , which is the dual of $(\mu_p)^g$, is exactly the maximal etale subgroup of the group scheme $\mathcal{B}^{(p)}[p]$, where $\mathcal{B}^{(p)}[p]$ denotes the kernel of the multiplication by p on $B^{(p)}$.

But, if we write $[p]_B$, the multiplication by p on B, as the composite $V_B \circ F_B$, then the kernel of V_B also equals the maximal etale subgroup of $\mathcal{B}^{(p)}[p]$. Therefore,

$$\widehat{F}(((B^{(p)})^1)(L)) = V_B(((B^{(p)})^1)(L)).$$

Equality (1), for A = B, says $B^{1}(L) = pB^{1}(L^{(1/p)}) = V_{B}(F_{B}(B^{1}(L^{(1/p)})))$ which is a subset of $V_B((B^{(p)})^1(L))$. Q.E.D.

\S The proof of Lemma 4

Let L'_0 be the maximal unramified extension of K contained in L'. Write G = Gal(L'/K), $H_0 = \text{Gal}(L'/L'_0)$, $M = \overline{A}(\mathbb{F}_{L'})_p$. We have $M = M^{H_0}$

Consider the inflation-restriction exact sequence:

$$\begin{array}{ccc} \mathsf{H}^{1}(G/H_{0}, M) & \xrightarrow{inf} & \mathsf{H}^{1}(G, M) \\ & \downarrow res \\ & \mathsf{H}^{1}(H_{0}, M)^{G/H_{0}} \end{array}$$

We shall bound the orders of ker(res) and Im(res).

Since G/H_0 is cyclic, by computing the Herbrand quotient, one sees that

$$|\mathsf{H}^{1}(G/H_{0}, M)| = |\bar{A}(\mathbb{F}_{q})_{p}/\mathcal{N}|,$$

where $\ensuremath{\mathcal{N}}$ is the image of the norm map

$$N_{G/H_0}: M \longrightarrow \overline{A}(\mathbb{F}_K)_p.$$

Also, since M is fixed by the action of H_0 , we have

$$\mathsf{H}^{1}(H_{0}, M)^{G/H_{0}} = \mathsf{Hom}(H_{0}, \overline{A}(\mathbb{F}_{q})_{p}).$$

To proceed further, we choose a basis $e_1, ..., e_c$ of G, for some $c \leq d$, so that $e'_1 := p^m e_1, e_2, ..., e_c$, for some non-negative integer m, form a basis of H_0 . The cocycle condition implies that if ρ be a 1-cocycle representing a class in $H^1(G, M)$, then the value $\rho(e'_1)$ equals $N_{G/H_0}(\rho(e_1))$. And this implies that the image of res must be contained in the subgroup

 $\{\phi \in \operatorname{Hom}(H_0, \overline{A}(\mathbb{F}_q)_p) \mid \phi(e'_1) \in \mathcal{N}\},\$ whose order is bounded by $|\overline{A}(\mathbb{F}_q)_p|^c \cdot |\mathcal{N}|.$ Q.E.D.