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This talk is about a function field version of
Mazur's control theorems for abelian varieties
over Zg-extensions

(" Rational points of abelian varieties with val-
ues in towers of number fields’, Invent. Math.
18(1972), 183-266;

" Galois theory for the Selmer group of an abelian
variety” , R. Greenberg, Comp. Math. 136(2003),
255-297).

Let A be an abelian variety over a field K of
characteristic p. We regard A as a sheaf for
the flat topology on K. And for each positive
integer m, we use A[p™] to denote the kernel
of the multiplication by p™ on A, while as usual
we use A[p™] to denote the p™-torsion points
on A.



Suppose that K is a global function field. The
p"-Selmer group Sel,m(K) is defined as the
kernel of the composite

HL(K, A[p™]) — HI(K, A) 225 D H(K,, A),

where loc is the localization map and in the
direct sum v runs through all places of K.

The p°°-Selmer group Sel,~(K) is defined as
the direct limit of Sel,m(K).

Theorem. 1 Let A be an abelian variety over
a global field K of characteristic p. Suppose
L/K is a Z%-extension unramified outside a fi-
nite set S of places of K. And assume that
A has good, ordinary reduction at each place
v € S. Then for all finite intermediate exten-
sions L'/K of L/K, the orders of the kernels
and co-kernels of the restriction maps

Sely0(K) — Selyoo (L) G/ K)



are bounded.

Manuscript 2008. Availabel online at
http://arxiv.org/abs/0801.2690

Application Iwasawa theory:. For an exten-
sion L/K satisfying the conditions in the the-
orem, define Sely(L) as the direct limit of
Selyo(L') for L' runs through all intermediate
fields of L/K and denote ' = Gal(L/K). By
Nakayama’'s Lemma, it follows from the theo-
rem that the Pontryagin dual

X1, :=Hom(Sel,o(L),Qp/Zyp))

is a finitely generated module of the Iwasawa
algebra Ar := Zp[[l']].

The case where A/K is a non-isotrivial ellip-
tic curve has been studied by A. Bandini and 1.
LLonghi, in " Control theorems for elliptic curves
over function fields” (manuscript 2006. Avail-
abel online at
http://arxiv.org/abs/math/0604249).



The local control theorem:

Theorem. 2 Assume that A is an abelian va-
riety over a local field K = TF,((T)) so that the
reduction A of A is an ordinary abelian variety.
If L/K is a Z4-extension, then

|HI(L/K, A(L))| < |A(Fg)p|?T1,

here A(F,), denotes the p-Sylow subgroup of
A(F,).

Theorem 2 = Theorem 1,

by more or less standard arguments using the
following: (1) the Hochschild-Serre spectral
sequence, (2) the fact that A(L)p = A[p*]
is unramified over K, (3) the boundedness of

HY(L' /K, A(L")y), i=1,2.

The rest of this talk is devoted to proving T he-
orem 2.



Assume that K = Fy((¢)).

For each n, denote K(1/P") = F,((t1/P")) which
IS the unique purely inseparable extension over
K of degree p™.

Use K to denote the separable closure of K
and write G = Gal(K/K). And simply write

K/ — g (1/p)

Thus, the algebraic closure of K equals

RO = ] g/,

n=1
The Frobenius substitution

Frob,n : xk/P K, x+w— 2P

IS an isomorphism. And we use it to identify
GK(l/pn), forn=1,...,00, with GK



We have the following useful illustration:

K .;)R(l/p).—_) K(l/pn)';) K(l/poo)
| Gk | Gk | Gk | Gk
K <_>K(1/p)c_> K(l/pn)c_> K(l/poo)

§ Some facts about ordinary abelian varieties.

Assume that K is a field of characteristic p and
A/K is an abelian variety of dimension g. Over
the algebraic closure of K, the étale part of the
group scheme Alp] is of the form (Z/pZ)9~" for
some non-negative integer r.

A/K is ordinary if and only if

r = 0.

In this case, the multiplication by p on A, is
decomposted as:

[p] =V o F,



where F : A — A(®) is the Frobenius isogeny
and V : A®®P) —, A is separable.

For the rest of this talk, K is a local field and
A, the reduction of A, is an ordinary abelian
variety.

(@) The étale part of A[p] equals (Z/pZ)9, and
so is that of A[p]. The reduction map gives
rise to an isomorphism

Alp™ ~ Alp™ ~ (Z/p™Z)0.

Therefore, A/K is also ordinary.

(b) If L is a local field containing K and P
is a point in A(L), then all the p™-division
points of P are contained in A(L(/P"™)). In
particular, the p™-torsion points A[p™] C
A(K/P™)Y.



(c) Suppose L/K is a Galois extension and
I C Gal(L/K) is the inertia group. If o € 1
and @ € A(L)p, then (@) says that
9QQ — Q = 0. Therefore, A(L)p is unrami-
fied over K ,in the sense that every point
in A(L)p is rational over the maximal un-
ramified sub-extension of L/K.

(d) Let Al(L) denote the subgroup of A(L)
consisting of points with trivial reduction.
Then Al(L) is a torsion free Z,-module.

(e) For each P € AL(L) there is a unique P’ €
AY(L(/P™)Y such that p™P' = P, and vice
versa. In other words, we have

AN(L) = pmAl(L/P™), (1)

To see this, let Q € A(L(/P™) be a pm-
division point of P € AL(L). Since the re-
duction @ is contained in A[p™], there is



a point R € A[p™] ¢ A(L(1/P™)) such that
P :=0Q—-R e AL(L(1/P™). Obviously, P’
is also a p™-division point of P, and for
o € Gy, we have

op' — P e Alp™ n AL(Z(/P™)y = {0},

(f) For a local field L finite over K, we use F
to denote its constant field. And we also
regard [F; as the residue field of L. One
easily deduces from (a) and (e) that

A(L/P?)y = AT (/P™)y 5 ALYy, .

and the reduction map sends A(L(1/P™)),,.
bijectively onto A(F;). Furthermore, this
bijection respects the action of Auty(L).
In view of this, the G -modules A(K(1/P%)),,,.
and A(F,), are isomorphic under the reduc-
tion map.

§ Tate's local duality Theorem



Let B denote the dual abelian variety to A over
K. Since B is isogenous to A, it also has ordi-
nary reduction.

Via the Poincaré biextension W — A X B,
a point on B is regarded as an element in
Ext(A,Gm), and hence a point Q € B(L) gives
rise to an exact sequence of G;-modules:

0 — L* — Wgo — A(L) — 0.
Using the induced long exact sequence:
1 0Q 2 T %
. — H (L, A)—H“(L,L") — ...,
one defines the local duality pairing of ) and
a class € € HI(L, A) as
<& Q >4 .= 1nv(6g(§)).

Here inv : H2(L, L*) — Q/Z is the invariant of
the Brauer group.



The pairing is compatible with isogenies. If
Y : A— A’ and ¢ : Bl — B are dual isogeny,
then

<,>apr: HYWL,A)xB(L) — Q/Z

Ly 19 O |
<, >aqp . HY(L,A)xB(L) — Q/Z

In particular, for Q' € B(P)(L) and ¢ € H1(L, A),
we have

<&F(Q) >aBL=< F(),Q > 46) po 1,

Tate's local duality theorem says that the lo-
cal pairing is non-degenerated, and it identifies
H1(K, A) with the Pontryagin dual of B(L).

Lemma. 3 Let i« be the homomorphism from
HI(K, A) = HY(Gx, A(K)) to HY (G, A(K(1/P™)Y)
induced from the inclusion A(K) —s A(K(1/P™)).
If ix(¢€) = 0, then ¢ annihilates B1(K).



§ Kummer Theory

Over the field £(1/P™) we have the following
exact sequence of G x-modules:

0 — Alp™ L ARy I 4 g™y o

We are allowed to replace A[p™] by A[p™] ((f)).

And by taking the direct limit over m for the in-
duced Kummer sequence, we get the following
exact sequence:

0 — AK1/PN) », Qp/Zyp
N _
HY(Gk, A[p™])
I
0 — HY(Gg, A(K1/PT))),,
Equations (1) implies

AK Py @7 Qp/ 2, = 0. (2)



Let kx = jy Toix : HL(K, A)p — H1(Gx, A[p™)).

By Lemma 3,

ker(k«) C B(Fy) (3)

We have |B(Fy)| = |B(Fy)| = |A(F,)|.

Lemma. 4 Suppose L/K is a Zi-extension, then
for every finite intermediate extension L'/K C
L/K we have

HY(L /K, A(F)p)| < |AFx)p|®

§ The proof of Lemma 3

Let L/K be a finite extension. We first con-
sider of the map

HL(GL, A(L)) 25 H1(Gy, A(L/P)Y)



induced from A(L) A, A(L(A/P)y. Next, we
show that if i1,(¢) annihilates B1(L(1/P)), then
¢ annihilates B1(L).

The lemma is proved by inductively taking L =
K/P™) for m = 0,1, ..., 00.

The ideal is to relate the map 7 to some
iIsogeny.

‘The Frobenius substitution Froby, induces an
isomorphism of G;-modules

Frob, : A(L(Y/P)) —  AW)(L)
P — F(P).

A(D) L AL/
Therefore, || O | Frob, and the bot-

AL £ AG(D).

tom rightarrow induces

H1(G L, A(L)) =5 HY(GL, AP)X(D)).



e i1,(&) annihilates BY(L(1/P)) if and only if
F. (&) annihilates (B®)1(L(1/p)).

Let ' : B(P) . B be the dual isogeny to F.

o F.(£) annihilates (B®P)H)1(L(/P)Y) if and only
if £ annihilates F((B®P)H1(L)).

The kernel of F, which is the dual of (up)9,
is exactly the maximal etale subgroup of the
group scheme B®P)[p], where B(P)[p] denotes
the kernel of the multiplication by p on B().

But, if we write [p] g, the multiplication by p on
B, as the composite Vg o F'g, then the kernel
of Vg also equals the maximal etale subgroup
of B(P)[p]. Therefore,

F(BPHYLY(L)) = va((BPHL)(L)).

Equality (1), for A = B, says
BY(L) = pBY(L1/P)) = vg(Fp(B(L(1/P))))



which is a subset of Vg((B®)H)1(L)). Q.E.D.
§ The proof of Lemma 4

Let L be the maximal unramified extension
of K contained in L'. Write G = Gal(L'/K),
Ho = Gal(L'/Ly), M = A(F1/)p. We have M =
MHo

Consider the inflation-restriction exact sequence:
HI(G/Hy, M) T H(G, M)
| res
H1(Ho, M)C/Ho.

We shall bound the orders of ker(res) and Im(res).

Since G/Hg is cyclic, by computing the Her-
brand quotient, one sees that

|HY(G/Hp, M)| = |A(Fg)p/ N,
where N is the image of the norm map

NG/HO M — A(FK)p



Also, since M is fixed by the action of Hgp, we
have

H (Ho, M)“/Ho = Hom (Hy, A(Fy)p).

To proceed further, we choose a basis e, ..., ec

of G, for some ¢ < d, so that e} := p™ey, e, ..., ec,
for some non-negative integer m, form a basis

of Hy. The cocycle condition implies that if p

be a 1-cocycle representing a class in Hl(G, M),

then the value p(e)) equals N¢/m,(p(e1)). And

this implies that the image of res must be con-

tained in the subgroup

{¢ € Hom(Hg, A(Fq)p) | ¢(e1) € N},

whose order is bounded by [A(FFy)p|¢ - |NV].
Q.E.D.



