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This talk is about a function field version of

Mazur’s control theorems for abelian varieties

over Zdp-extensions

(”Rational points of abelian varieties with val-

ues in towers of number fields”, Invent. Math.

18(1972), 183-266;

”Galois theory for the Selmer group of an abelian

variety”, R. Greenberg, Comp. Math. 136(2003),

255-297).

Let A be an abelian variety over a field K of

characteristic p. We regard A as a sheaf for

the flat topology on K. And for each positive

integer m, we use A[pm] to denote the kernel

of the multiplication by pm on A, while as usual

we use A[pm] to denote the pm-torsion points

on A.



Suppose that K is a global function field. The

pm-Selmer group Selpm(K) is defined as the

kernel of the composite

H1(K,A[pm]) −→ H1(K,A)
loc
−→

⊕

v
H1(Kv, A),

where loc is the localization map and in the

direct sum v runs through all places of K.

The p∞-Selmer group Selp∞(K) is defined as

the direct limit of Selpm(K).

Theorem. 1 Let A be an abelian variety over

a global field K of characteristic p. Suppose

L/K is a Zdp-extension unramified outside a fi-

nite set S of places of K. And assume that

A has good, ordinary reduction at each place

v ∈ S. Then for all finite intermediate exten-

sions L′/K of L/K, the orders of the kernels

and co-kernels of the restriction maps

Selp∞(K) −→ Selp∞(L′)Gal(L′/K)



are bounded.
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Application Iwasawa theory: For an exten-

sion L/K satisfying the conditions in the the-

orem, define Selp∞(L) as the direct limit of

Selp∞(L′) for L′ runs through all intermediate

fields of L/K and denote Γ = Gal(L/K). By

Nakayama’s Lemma, it follows from the theo-

rem that the Pontryagin dual

XL := Hom(Selp∞(L),Qp/Zp))

is a finitely generated module of the Iwasawa

algebra ΛΓ := Zp[[Γ]].

The case where A/K is a non-isotrivial ellip-

tic curve has been studied by A. Bandini and I.

Longhi, in ”Control theorems for elliptic curves

over function fields” (manuscript 2006. Avail-

abel online at

http://arxiv.org/abs/math/0604249).



The local control theorem:

Theorem. 2 Assume that A is an abelian va-

riety over a local field K = Fq((T )) so that the

reduction Ā of A is an ordinary abelian variety.

If L/K is a Zdp-extension, then

|H1(L/K,A(L))| ≤ |Ā(Fq)p|
d+1,

here Ā(Fq)p denotes the p-Sylow subgroup of

Ā(Fq).

Theorem 2 =⇒ Theorem 1,

by more or less standard arguments using the

following: (1) the Hochschild-Serre spectral

sequence, (2) the fact that A(L)p := A[p∞]

is unramified over K, (3) the boundedness of

Hi(L′/K,A(L′)p), i = 1,2.

The rest of this talk is devoted to proving The-

orem 2.



Assume that K = Fq((t)).

For each n, denote K(1/pn) = Fq((t1/p
n
)) which

is the unique purely inseparable extension over

K of degree pn.

Use K̄ to denote the separable closure of K

and write GK = Gal(K̄/K). And simply write

K̄(1/pn) = K(1/pn).

Thus, the algebraic closure of K equals

K̄(1/p∞) :=
∞⋃

n=1

K̄(1/pn).

The Frobenius substitution

Frobpn : K(1/pn) −→ K, x 7→ xp
n
,

is an isomorphism. And we use it to identify

G
K(1/pn), for n = 1, ...,∞, with GK.



We have the following useful illustration:

K̄ ↪→ K̄(1/p) . . . ↪→ K̄(1/pn) . . . ↪→ K̄(1/p∞)

| GK | GK | GK | GK
K ↪→ K(1/p) . . . ↪→ K(1/pn) . . . ↪→ K(1/p∞)

§ Some facts about ordinary abelian varieties.

Assume that K is a field of characteristic p and

A/K is an abelian variety of dimension g. Over

the algebraic closure of K, the étale part of the

group scheme A[p] is of the form (Z/pZ)g−r for

some non-negative integer r.

A/K is ordinary if and only if

r = 0.

In this case, the multiplication by p on A, is

decomposted as:

[p] = V ◦ F,



where F : A −→ A(p) is the Frobenius isogeny

and V : A(p) −→ A is separable.

For the rest of this talk, K is a local field and

Ā, the reduction of A, is an ordinary abelian

variety.

(a) The étale part of Ā[p] equals (Z/pZ)g, and

so is that of A[p]. The reduction map gives

rise to an isomorphism

A[pm] ' Ā[pm] ' (Z/pmZ)g.

Therefore, A/K is also ordinary.

(b) If L is a local field containing K and P

is a point in A(L), then all the pm-division

points of P are contained in A(L̄(1/pm)). In

particular, the pm-torsion points A[pm] ⊂

A(K̄(1/pm)).



(c) Suppose L/K is a Galois extension and

I ⊂ Gal(L/K) is the inertia group. If σ ∈ I

and Q ∈ A(L)p, then (a) says that
σQ − Q = 0. Therefore, A(L)p is unrami-

fied over K ,in the sense that every point

in A(L)p is rational over the maximal un-

ramified sub-extension of L/K.

(d) Let A1(L) denote the subgroup of A(L)

consisting of points with trivial reduction.

Then A1(L) is a torsion free Zp-module.

(e) For each P ∈ A1(L) there is a unique P ′ ∈

A1(L(1/pm)) such that pmP ′ = P , and vice

versa. In other words, we have

A1(L) = pmA1(L(1/pm)). (1)

To see this, let Q ∈ A(L̄(1/pm)) be a pm-

division point of P ∈ A1(L). Since the re-

duction Q̄ is contained in Ā[pm], there is



a point R ∈ A[pm] ⊂ A(L̄(1/pm)) such that

P ′ := Q − R ∈ A1(L̄(1/pm)). Obviously, P ′

is also a pm-division point of P , and for

σ ∈ GL, we have

σP ′ − P ′ ∈ A[pm] ∩A1(L̄(1/pm)) = {0}.

(f) For a local field L finite over K, we use FL
to denote its constant field. And we also

regard FL as the residue field of L. One

easily deduces from (a) and (e) that

A(L(1/p∞)) = A1(L(1/p∞))×A(L(1/p∞))tor

and the reduction map sends A(L(1/p∞))tor
bijectively onto Ā(FL). Furthermore, this

bijection respects the action of AutK(L).

In view of this, the GK-modules A(K̄(1/p∞))tor
and Ā(F̄q), are isomorphic under the reduc-

tion map.

§ Tate’s local duality Theorem



Let B denote the dual abelian variety to A over

K. Since B is isogenous to A, it also has ordi-

nary reduction.

Via the Poincaré biextension W −→ A × B,

a point on B is regarded as an element in

Ext(A,Gm), and hence a point Q ∈ B(L) gives

rise to an exact sequence of GL-modules:

0 −→ L̄∗ −→WQ −→ A(L̄) −→ 0.

Using the induced long exact sequence:

. . . −→ H1(L,A)
δQ
−→H2(L, L̄∗) −→ . . . ,

one defines the local duality pairing of Q and

a class ξ ∈ H1(L,A) as

< ξ,Q >A,B,L:= inv(δQ(ξ)).

Here inv : H2(L, L̄∗) −→ Q/Z is the invariant of

the Brauer group.



The pairing is compatible with isogenies. If

ψ : A −→ A′ and ψ̂ : B′ −→ B are dual isogeny,

then

< , >A,B,L: H1(L,A)×B(L) −→ Q/Z

↓ ψ ↑ ψ̂ 	 ‖
< , >A′,B′,L: H1(L,A′)×B′(L) −→ Q/Z.

In particular, for Q′ ∈ B(p)(L) and ξ ∈ H1(L,A),

we have

< ξ, F̂ (Q′) >A,B,L=< F (ξ), Q′ >
A(p),B(p),L

.

Tate’s local duality theorem says that the lo-

cal pairing is non-degenerated, and it identifies

H1(K,A) with the Pontryagin dual of B(L).

Lemma. 3 Let i∗ be the homomorphism from

H1(K,A) = H1(GK, A(K̄)) to H1(GK, A(K̄(1/p∞)))

induced from the inclusion A(K̄) −→ A(K̄(1/p∞)).

If i∗(ξ) = 0, then ξ annihilates B1(K).



§ Kummer Theory

Over the field K̄(1/p∞), we have the following

exact sequence of GK-modules:

0 −→ A[pm]
j
−→ A(K̄(1/p∞))

[pm]
−→ A(K̄(1/p∞)) −→ 0.

We are allowed to replace A[pm] by Ā[pm] ((f)).

And by taking the direct limit over m for the in-

duced Kummer sequence, we get the following

exact sequence:

0 −→ A(K(1/p∞))⊗Z Qp/Zp
↘

H1(GK , Ā[p∞])
↙ j∗

0←− H1(GK, A(K(1/p∞)))p,

Equations (1) implies

A(K(1/p∞))⊗Z Qp/Zp = 0. (2)



Let k∗ = j−1
∗ ◦i∗ : H1(K,A)p −→ H1(GK, Ā[p∞]).

By Lemma 3,

ker(k∗) ⊂
̂̄B(Fq) (3)

We have | ̂̄B(Fq)|= |B̄(Fq)| = |Ā(Fq)|.

Lemma. 4 Suppose L/K is a Zdp-extension, then

for every finite intermediate extension L′/K ⊂

L/K we have

|H1(L′/K, Ā(FL′)p)| ≤ |Ā(FK)p|
d.

§ The proof of Lemma 3

Let L/K be a finite extension. We first con-

sider of the map

H1(GL, A(L̄))
i1∗−→ H1(GL, A(L̄(1/p)))



induced from A(L̄)
i1−→ A(L̄(1/p)). Next, we

show that if i1∗(ξ) annihilates B1(L(1/p)), then

ξ annihilates B1(L).

The lemma is proved by inductively taking L =

K(1/pm) for m = 0,1, ...,∞.

The ideal is to relate the map i1 to some

isogeny.

The Frobenius substitution Frobp induces an

isomorphism of GL-modules

Frobp : A(L̄(1/p)) −→ A(p)(L̄)
P 7→ F (P ).

Therefore,
A(L̄)

i1−→ A(L̄(1/p))
‖ � ↓ Frobp

A(L̄)
F
−→ A(p)(L̄).

and the bot-

tom rightarrow induces

H1(GL, A(L̄))
F∗−→ H1(GL, A

(p)(L̄)).



• i1∗(ξ) annihilates B1(L(1/p)) if and only if

F∗(ξ) annihilates (B(p))1(L(1/p)).

Let F̂ : B(p) −→ B be the dual isogeny to F .

• F∗(ξ) annihilates (B(p))1(L(1/p)) if and only

if ξ annihilates F̂ ((B(p))1(L)).

The kernel of F̂ , which is the dual of (µp)g,

is exactly the maximal etale subgroup of the

group scheme B(p)[p], where B(p)[p] denotes

the kernel of the multiplication by p on B(p).

But, if we write [p]B, the multiplication by p on

B, as the composite VB ◦ FB, then the kernel

of VB also equals the maximal etale subgroup

of B(p)[p]. Therefore,

F̂ (((B(p))1)(L)) = VB(((B(p))1)(L)).

Equality (1), for A = B, says

B1(L) = pB1(L(1/p)) = VB(FB(B1(L(1/p))))



which is a subset of VB((B(p))1(L)). Q.E.D.

§ The proof of Lemma 4

Let L′0 be the maximal unramified extension

of K contained in L′. Write G = Gal(L′/K),

H0 = Gal(L′/L′0), M = Ā(FL′)p. We have M =

MH0

Consider the inflation-restriction exact sequence:

H1(G/H0,M)
inf
−→ H1(G,M)

↓ res

H1(H0,M)G/H0.

We shall bound the orders of ker(res) and Im(res).

Since G/H0 is cyclic, by computing the Her-

brand quotient, one sees that

|H1(G/H0,M)|= |Ā(Fq)p/N|,

where N is the image of the norm map

NG/H0
: M −→ Ā(FK)p.



Also, since M is fixed by the action of H0, we

have

H1(H0,M)G/H0 = Hom(H0, Ā(Fq)p).

To proceed further, we choose a basis e1, ..., ec

of G, for some c ≤ d, so that e′1 := pme1, e2, ..., ec,

for some non-negative integer m, form a basis

of H0. The cocycle condition implies that if ρ

be a 1-cocycle representing a class in H1(G,M),

then the value ρ(e′1) equals NG/H0
(ρ(e1)). And

this implies that the image of res must be con-

tained in the subgroup

{φ ∈ Hom(H0, Ā(Fq)p) | φ(e
′
1) ∈ N},

whose order is bounded by |Ā(Fq)p|c · |N |.

Q.E.D.


