Control Theorems for Abelian varieties over Global Function Fields of
 Characteristic p

Ki-Seng Tan
January, 21, 2008

This talk is about a function field version of Mazur's control theorems for abelian varieties over \mathbb{Z}_{p}^{d}-extensions
(" Rational points of abelian varieties with values in towers of number fields", Invent. Math. 18(1972), 183-266;
" Galois theory for the Selmer group of an abelian variety", R. Greenberg, Comp. Math. 136(2003), 255-297).

Let A be an abelian variety over a field K of characteristic p. We regard A as a sheaf for the flat topology on K. And for each positive integer m, we use $\mathcal{A}\left[p^{m}\right]$ to denote the kernel of the multiplication by p^{m} on A, while as usual we use $A\left[p^{m}\right]$ to denote the p^{m}-torsion points on A.

Suppose that K is a global function field. The p^{m}-Selmer group Sel $_{p^{m}}(K)$ is defined as the kernel of the composite

$$
\mathrm{H}^{1}\left(K, \mathcal{A}\left[p^{m}\right]\right) \longrightarrow \mathrm{H}^{1}(K, A) \xrightarrow{l o c} \bigoplus_{v} \mathrm{H}^{1}\left(K_{v}, A\right),
$$

where $l o c$ is the localization map and in the direct sum v runs through all places of K.

The p^{∞}-Selmer group $\operatorname{Sel}_{p \infty}(K)$ is defined as the direct limit of $\operatorname{Sel}_{p^{m}}(K)$.

Theorem. 1 Let A be an abelian variety over a global field K of characteristic p. Suppose L / K is a \mathbb{Z}_{p}^{d}-extension unramified outside a finite set S of places of K. And assume that A has good, ordinary reduction at each place $v \in S$. Then for all finite intermediate extensions L^{\prime} / K of L / K, the orders of the kernels and co-kernels of the restriction maps

$$
\operatorname{Sel}_{p \infty}(K) \longrightarrow \operatorname{Sel}_{p} \infty\left(L^{\prime}\right) \operatorname{Gal}^{\left(L^{\prime} / K\right)}
$$

are bounded.

Manuscript 2008. Availabel online at http://arxiv.org/abs/0801.2690

Application Iwasawa theory: For an extension L / K satisfying the conditions in the theorem, define $\operatorname{Sel}_{p} \infty(L)$ as the direct limit of Sel $_{p} \infty\left(L^{\prime}\right)$ for L^{\prime} runs through all intermediate fields of L / K and denote $\Gamma=\operatorname{Gal}(L / K)$. By Nakayama's Lemma, it follows from the theorem that the Pontryagin dual

$$
\left.X_{L}:=\operatorname{Hom}\left(\operatorname{Sel}_{p} \infty(L), \mathbb{Q}_{p} / \mathbb{Z}_{p}\right)\right)
$$

is a finitely generated module of the Iwasawa algebra $\wedge_{\Gamma}:=\mathbb{Z}_{p}[[\Gamma]]$.

The case where A / K is a non-isotrivial elliptic curve has been studied by A. Bandini and I. Longhi, in " Control theorems for elliptic curves over function fields" (manuscript 2006. Availabel online at http://arxiv.org/abs/math/0604249).

The local control theorem:

Theorem. 2 Assume that A is an abelian variety over a local field $K=\mathbb{F}_{q}((T))$ so that the reduction \bar{A} of A is an ordinary abelian variety. If L / K is a \mathbb{Z}_{p}^{d}-extension, then

$$
\left|\mathrm{H}^{1}(L / K, A(L))\right| \leq\left|\bar{A}\left(\mathbb{F}_{q}\right)_{p}\right|^{d+1}
$$

here $\bar{A}\left(\mathbb{F}_{q}\right)_{p}$ denotes the p-Sylow subgroup of $\bar{A}\left(\mathbb{F}_{q}\right)$.

Theorem $2 \Longrightarrow$ Theorem 1,
by more or less standard arguments using the following: (1) the Hochschild-Serre spectral sequence, (2) the fact that $A(L)_{p}:=A\left[p^{\infty}\right]$ is unramified over K, (3) the boundedness of

$$
\mathrm{H}^{i}\left(L^{\prime} / K, A\left(L^{\prime}\right) p\right), \quad i=1,2
$$

The rest of this talk is devoted to proving Theorem 2.

Assume that $K=\mathbb{F}_{q}((t))$.
For each n, denote $K^{\left(1 / p^{n}\right)}=\mathbb{F}_{q}\left(\left(t^{1 / p^{n}}\right)\right)$ which is the unique purely inseparable extension over K of degree p^{n}.

Use \bar{K} to denote the separable closure of K and write $G_{K}=\operatorname{Gal}(\bar{K} / K)$. And simply write

$$
\bar{K}^{\left(1 / p^{n}\right)}=\overline{K^{\left(1 / p^{n}\right)}} .
$$

Thus, the algebraic closure of K equals

$$
\bar{K}^{\left(1 / p^{\infty}\right)}:=\bigcup_{n=1}^{\infty} \bar{K}^{\left(1 / p^{n}\right)} .
$$

The Frobenius substitution

$$
\operatorname{Frob}_{p^{n}}: K^{\left(1 / p^{n}\right)} \longrightarrow K, \quad x \mapsto x^{p^{n}},
$$

is an isomorphism. And we use it to identify $G_{K^{\left(1 / p^{n}\right)}}$, for $n=1, \ldots, \infty$, with G_{K}.

We have the following useful illustration:

$$
\begin{array}{ccccc}
\bar{K} & \hookrightarrow \bar{K}^{(1 / p)} \ldots \hookrightarrow & \bar{K}^{\left(1 / p^{n}\right)} \ldots \hookrightarrow & \bar{K}^{\left(1 / p^{\infty}\right)} \\
\mid G_{K} & \mid G_{K} & \mid G_{K} & \mid G_{K} \\
K & \hookrightarrow K^{(1 / p)} \ldots \hookrightarrow & K^{\left(1 / p^{n}\right)} \ldots \hookrightarrow & K^{\left(1 / p^{\infty}\right)}
\end{array}
$$

§ Some facts about ordinary abelian varieties.

Assume that K is a field of characteristic p and A / K is an abelian variety of dimension g. Over the algebraic closure of K, the étale part of the group scheme $\mathcal{A}[p]$ is of the form $(\mathbb{Z} / p \mathbb{Z})^{g-r}$ for some non-negative integer r.
A / K is ordinary if and only if

$$
r=0 .
$$

In this case, the multiplication by p on A, is decomposted as:

$$
[p]=V \circ F,
$$

where $F: A \longrightarrow A^{(p)}$ is the Frobenius isogeny and $V: A^{(p)} \longrightarrow A$ is separable.

For the rest of this talk, K is a local field and \bar{A}, the reduction of A, is an ordinary abelian variety.
(a) The étale part of $\overline{\mathcal{A}}[p]$ equals $(\mathbb{Z} / p \mathbb{Z})^{g}$, and so is that of $\mathcal{A}[p]$. The reduction map gives rise to an isomorphism

$$
A\left[p^{m}\right] \simeq \bar{A}\left[p^{m}\right] \simeq\left(\mathbb{Z} / p^{m} \mathbb{Z}\right)^{g}
$$

Therefore, A / K is also ordinary.
(b) If L is a local field containing K and P is a point in $A(L)$, then all the p^{m}-division points of P are contained in $A\left(\bar{L}^{\left(1 / p^{m}\right)}\right)$. In particular, the p^{m}-torsion points $A\left[p^{m}\right] \subset$ $A\left(\bar{K}^{\left(1 / p^{m}\right)}\right)$.
(c) Suppose L / K is a Galois extension and $I \subset \operatorname{Gal}(L / K)$ is the inertia group. If $\sigma \in I$ and $Q \in A(L)_{p}$, then (a) says that ${ }^{\sigma} Q-Q=0$. Therefore, $A(L)_{p}$ is unramified over K, in the sense that every point in $A(L)_{p}$ is rational over the maximal unramified sub-extension of L / K.
(d) Let $A^{1}(L)$ denote the subgroup of $A(L)$ consisting of points with trivial reduction. Then $A^{1}(L)$ is a torsion free \mathbb{Z}_{p}-module.
(e) For each $P \in A^{1}(L)$ there is a unique $P^{\prime} \in$ $A^{1}\left(L^{\left(1 / p^{m}\right)}\right)$ such that $p^{m} P^{\prime}=P$, and vice versa. In other words, we have

$$
\begin{equation*}
A^{1}(L)=p^{m} A^{1}\left(L^{\left(1 / p^{m}\right)}\right) \tag{1}
\end{equation*}
$$

To see this, let $Q \in A\left(\bar{L}^{\left(1 / p^{m}\right)}\right)$ be a $p^{m_{-}}$ division point of $P \in A^{1}(L)$. Since the reduction \bar{Q} is contained in $\bar{A}\left[p^{m}\right]$, there is
a point $R \in A\left[p^{m}\right] \subset A\left(\bar{L}^{\left(1 / p^{m}\right)}\right)$ such that $P^{\prime}:=Q-R \in A^{1}\left(\bar{L}^{\left(1 / p^{m}\right)}\right)$. Obviously, P^{\prime} is also a p^{m}-division point of P, and for $\sigma \in G_{L}$, we have

$$
{ }^{\sigma} P^{\prime}-P^{\prime} \in A\left[p^{m}\right] \cap A^{1}\left(\bar{L}^{\left(1 / p^{m}\right)}\right)=\{0\} .
$$

(f) For a local field L finite over K, we use \mathbb{F}_{L} to denote its constant field. And we also regard \mathbb{F}_{L} as the residue field of L. One easily deduces from (a) and (e) that

$$
A\left(L^{\left(1 / p^{\infty}\right)}\right)=A^{1}\left(L^{\left(1 / p^{\infty}\right)}\right) \times A\left(L^{\left(1 / p^{\infty}\right)}\right)_{t o r}
$$

and the reduction map sends $A\left(L^{\left(1 / p^{\infty}\right)}\right)_{t o r}$ bijectively onto $\bar{A}\left(\mathbb{F}_{L}\right)$. Furthermore, this bijection respects the action of $\mathrm{Aut}_{K}(L)$. In view of this, the $G_{K^{-}}$modules $A\left(\bar{K}^{\left(1 / p^{\infty}\right)}\right)_{t o r}$ and $\bar{A}\left(\overline{\mathbb{F}}_{q}\right)$, are isomorphic under the reduction map.
§ Tate's local duality Theorem

Let B denote the dual abelian variety to A over K. Since B is isogenous to A, it also has ordinary reduction.

Via the Poincaré biextension $W \longrightarrow A \times B$, a point on B is regarded as an element in $\operatorname{Ext}(A, \mathrm{Gm})$, and hence a point $Q \in B(L)$ gives rise to an exact sequence of $G_{L^{-}}$-modules:

$$
0 \longrightarrow \bar{L}^{*} \longrightarrow W_{Q} \longrightarrow A(\bar{L}) \longrightarrow 0 .
$$

Using the induced long exact sequence:

$$
\ldots \longrightarrow \mathrm{H}^{1}(L, A) \xrightarrow{\delta_{Q}} \mathrm{H}^{2}\left(L, \bar{L}^{*}\right) \longrightarrow \ldots,
$$

one defines the local duality pairing of Q and a class $\xi \in \mathrm{H}^{1}(L, A)$ as

$$
<\xi, Q>_{A, B, L}:=\operatorname{inv}\left(\delta_{Q}(\xi)\right)
$$

Here inv: $\mathrm{H}^{2}\left(L, \bar{L}^{*}\right) \longrightarrow \mathbb{Q} / \mathbb{Z}$ is the invariant of the Brauer group.

The pairing is compatible with isogenies. If $\psi: A \longrightarrow A^{\prime}$ and $\hat{\psi}: B^{\prime} \longrightarrow B$ are dual isogeny, then

$$
\begin{array}{rrrr}
<,>_{A, B, L}: & \mathrm{H}^{1}(L, A) \times B(L) & \longrightarrow & \mathbb{Q} / \mathbb{Z} \\
<,>_{A^{\prime}, B^{\prime}, L}: & \mathrm{H}^{1}\left(L, A^{\prime}\right) \times B^{\prime}(L) & \longrightarrow \hat{\psi} & \| \\
& \mathbb{Q} / \mathbb{Z} .
\end{array}
$$

In particular, for $Q^{\prime} \in B^{(p)}(L)$ and $\xi \in \mathrm{H}^{1}(L, A)$, we have

$$
<\xi, \widehat{F}\left(Q^{\prime}\right)>_{A, B, L}=<F(\xi), Q^{\prime}>_{A}^{(p), B^{(p)}, L} \text {. }
$$

Tate's local duality theorem says that the local pairing is non-degenerated, and it identifies $\mathrm{H}^{1}(K, A)$ with the Pontryagin dual of $B(L)$.

Lemma. 3 Let i_{*} be the homomorphism from $\mathrm{H}^{1}(K, A)=\mathrm{H}^{1}\left(G_{K}, A(\bar{K})\right)$ to $\mathrm{H}^{1}\left(G_{K}, A\left(\bar{K}^{\left(1 / p^{\infty}\right)}\right)\right)$ induced from the inclusion $A(\bar{K}) \longrightarrow A\left(\bar{K}^{\left(1 / p^{\infty}\right)}\right)$. If $i_{*}(\xi)=0$, then ξ annihilates $B^{1}(K)$.

§ Summer Theory

Over the field $\bar{K}^{\left(1 / p^{\infty}\right)}$, we have the following exact sequence of G_{K}-modules:
$0 \longrightarrow A\left[p^{m}\right] \xrightarrow{j} A\left(\bar{K}^{\left(1 / p^{\infty}\right)}\right) \xrightarrow{\left[p^{m}\right]} A\left(\bar{K}^{\left(1 / p^{\infty}\right)}\right) \longrightarrow 0$.

We are allowed to replace $A\left[p^{m}\right]$ by $\bar{A}\left[p^{m}\right]$ ((f)).

And by taking the direct limit over m for the induce Summer sequence, we get the following exact sequence:

$$
0 \longrightarrow A\left(K^{\left(1 / p^{\infty}\right)}\right) \otimes_{\mathbb{Z}} \mathbb{Q}_{p} / \mathbb{Z}_{p}
$$

$\mathrm{H}^{1}\left(G_{K}, \bar{A}\left[p^{\infty}\right]\right)$

$$
0 \longleftarrow \mathrm{H}^{1}\left(G_{K}, A\left(K^{\left(1 / p^{\infty}\right)}\right)\right)_{p},
$$

Equations (1) implies

$$
\begin{equation*}
A\left(K^{\left(1 / p^{\infty}\right)}\right) \otimes_{\mathbb{Z}} \mathbb{Q}_{p} / \mathbb{Z}_{p}=0 \tag{2}
\end{equation*}
$$

Let $k_{*}=j_{*}^{-1} \circ i_{*}: \mathrm{H}^{1}(K, A)_{p} \longrightarrow \mathrm{H}^{1}\left(G_{K}, \bar{A}\left[p^{\infty}\right]\right)$.

By Lemma 3,

$$
\begin{equation*}
\operatorname{ker}\left(k_{*}\right) \subset \hat{\bar{B}}\left(\mathbb{F}_{q}\right) \tag{3}
\end{equation*}
$$

We have $\left|\hat{\bar{B}}\left(\mathbb{F}_{q}\right)\right|=\left|\bar{B}\left(\mathbb{F}_{q}\right)\right|=\left|\bar{A}\left(\mathbb{F}_{q}\right)\right|$.
Lemma. 4 Suppose L / K is a \mathbb{Z}_{p}^{d}-extension, then for every finite intermediate extension $L^{\prime} / K \subset$ L / K we have

$$
\left|\mathrm{H}^{1}\left(L^{\prime} / K, \bar{A}\left(\mathbb{F}_{L^{\prime}}\right)_{p}\right)\right| \leq\left|\bar{A}\left(\mathbb{F}_{K}\right)_{p}\right|^{d} .
$$

§ The proof of Lemma 3

Let L / K be a finite extension. We first consider of the map

$$
\mathrm{H}^{1}\left(G_{L}, A(\bar{L})\right) \xrightarrow{i_{1 *}} \mathbf{H}^{1}\left(G_{L}, A\left(\bar{L}^{(1 / p)}\right)\right)
$$

induced from $A(\bar{L}) \xrightarrow{i_{1}} A\left(\bar{L}^{(1 / p)}\right)$. Next, we show that if $i_{1 *}(\xi)$ annihilates $B^{1}\left(L^{(1 / p)}\right)$, then ξ annihilates $B^{1}(L)$.

The lemma is proved by inductively taking $L=$ $K^{\left(1 / p^{m}\right)}$ for $m=0,1, \ldots, \infty$.

The ideal is to relate the map i_{1} to some isogeny.

The Frobenius substitution Frob $_{p}$ induces an isomorphism of G_{L}-modules

$$
\begin{aligned}
& \begin{aligned}
\operatorname{Frob}_{p}: A\left(\bar{L}^{(1 / p)}\right) & \longrightarrow A^{(p)}(\bar{L}) \\
P & \longmapsto F(P) .
\end{aligned} \\
& A(\bar{L}) \xrightarrow{i_{1}} A\left(\bar{L}^{(1 / p)}\right) \\
& \text { Therefore, \|| 〕 } \downarrow \mathrm{Frob}_{p} \text { and the bot- } \\
& A(\bar{L}) \xrightarrow{F} A^{(p)}(\bar{L}) .
\end{aligned}
$$

tom rightarrow induces

$$
\mathrm{H}^{1}\left(G_{L}, A(\bar{L})\right) \xrightarrow{F_{*}} \mathrm{H}^{1}\left(G_{L}, A^{(p)}(\bar{L})\right)
$$

- $i_{1 *}(\xi)$ annihilates $B^{1}\left(L^{(1 / p)}\right)$ if and only if $F_{*}(\xi)$ annihilates $\left(B^{(p)}\right)^{1}\left(L^{(1 / p)}\right)$.

Let $\hat{F}: B^{(p)} \longrightarrow B$ be the dual isogeny to F.

- $F_{*}(\xi)$ annihilates $\left(B^{(p)}\right)^{1}\left(L^{(1 / p)}\right)$ if and only if ξ annihilates $\widehat{F}\left(\left(B^{(p)}\right)^{1}(L)\right)$.

The kernel of \hat{F}, which is the dual of $\left(\mu_{p}\right)^{g}$, is exactly the maximal etale subgroup of the group scheme $\mathcal{B}^{(p)}[p]$, where $\mathcal{B}^{(p)}[p]$ denotes the kernel of the multiplication by p on $B^{(p)}$.

But, if we write $[p]_{B}$, the multiplication by p on B, as the composite $V_{B} \circ F_{B}$, then the kernel of V_{B} also equals the maximal etale subgroup of $\mathcal{B}^{(p)}[p]$. Therefore,

$$
\widehat{F}\left(\left(\left(B^{(p)}\right)^{1}\right)(L)\right)=V_{B}\left(\left(\left(B^{(p)}\right)^{1}\right)(L)\right)
$$

Equality (1), for $A=B$, says

$$
B^{1}(L)=p B^{1}\left(L^{(1 / p)}\right)=V_{B}\left(F_{B}\left(B^{1}\left(L^{(1 / p)}\right)\right)\right)
$$

which is a subset of $V_{B}\left(\left(B^{(p)}\right)^{1}(L)\right)$. Q.E.D.
§ The proof of Lemma 4
Let L_{0}^{\prime} be the maximal unramified extension of K contained in L^{\prime}. Write $G=\operatorname{Gal}\left(L^{\prime} / K\right)$, $H_{0}=\operatorname{Gal}\left(L^{\prime} / L_{0}^{\prime}\right), M=\bar{A}\left(\mathbb{F}_{L^{\prime}}\right)_{p}$. We have $M=$ $M^{H_{0}}$

Consider the inflation-restriction exact sequence:

$$
\left[\begin{array}{ll}
\mathrm{H}^{1}\left(G / H_{0}, M\right) \xrightarrow{\text { inf }} & \begin{array}{c}
\mathrm{H}^{1}(G, M) \\
\downarrow \text { res }
\end{array} \\
\mathrm{H}^{1}\left(H_{0}, M\right)^{G / H_{0}} .
\end{array}\right.
$$

We shall bound the orders of $\operatorname{ker}($ res $)$ and $\operatorname{Im}(r e s)$.
Since G / H_{0} is cyclic, by computing the Herbrand quotient, one sees that

$$
\left|\mathrm{H}^{1}\left(G / H_{0}, M\right)\right|=\left|\bar{A}\left(\mathbb{F}_{q}\right)_{p} / \mathcal{N}\right|,
$$

where \mathcal{N} is the image of the norm map

$$
N_{G / H_{0}}: M \longrightarrow \bar{A}\left(\mathbb{F}_{K}\right)_{p} .
$$

Also, since M is fixed by the action of H_{0}, we have

$$
\mathrm{H}^{1}\left(H_{0}, M\right)^{G / H_{0}}=\operatorname{Hom}\left(H_{0}, \bar{A}\left(\mathbb{F}_{q}\right)_{p}\right) .
$$

To proceed further, we choose a basis e_{1}, \ldots, e_{c} of G, for some $c \leq d$, so that $e_{1}^{\prime}:=p^{m} e_{1}, e_{2}, \ldots, e_{c}$, for some non-negative integer m, form a basis of H_{0}. The cocycle condition implies that if ρ be a 1-cocycle representing a class in $\mathrm{H}^{1}(G, M)$, then the value $\rho\left(e_{1}^{\prime}\right)$ equals $N_{G / H_{0}}\left(\rho\left(e_{1}\right)\right)$. And this implies that the image of res must be contained in the subgroup

$$
\left\{\phi \in \operatorname{Hom}\left(H_{0}, \bar{A}\left(\mathbb{F}_{q}\right)_{p}\right) \mid \phi\left(e_{1}^{\prime}\right) \in \mathcal{N}\right\},
$$

whose order is bounded by $\left|\bar{A}\left(\mathbb{F}_{q}\right)_{p}\right|^{c} \cdot|\mathcal{N}|$. Q.E.D.

