
Kashaev’s volume conjecture

Jinseok Cho

Seoul National University

August 19, 2009

Jinseok Cho (Seoul National University) Kashaev’s volume conjecture August 19, 2009 1 / 34



(Complexified) Kashaev’s volume conjecture

Conjecture

vol(L) = 2π lim
N→∞

log |〈L〉N |
N

,

where L is a hyperbolic link, vol(L) is the hyperbolic volume, < L >N is
the Kashaev invariant.

Conjecture

i(vol(L) + i cs(L)) ≡ 2π lim
N→∞

log〈L〉N
N

(mod π2),

where cs(L) is the Chern-Simons invariant.
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Hyperbolic space

Definition (Upper half space model of H3)

H3 = {(z , t)|z ∈ C, t > 0}

with the metric

ds2 =
dz2 + dt2

t2

is called the hyperbolic space. H3 is a Riemannian 3-manifold with the
constant sectional curvature -1.

We consider ∂H3 = Ĉ = C ∪ {∞}.

Definition

A knot K is called hyperbolic if the complement S3 − K admits a
complete hyperbolic structure.
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Lemma

An ideal tetrahedron in H3 can be parametrized with a complex number
z ∈ C.
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Definition of the Twist Knot Tn
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Ideal Triangulation
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Ideal Triangulation

This picture comes from the paper of H. Murakami.
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Example of 52 Knot
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Gluing Pattern of the Ideal Triangulation
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Gluing Pattern of the Ideal Triangulation
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Gluing Pattern of the Ideal Triangulation
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Gluing Pattern of the Ideal Triangulation
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Result of the Gluing
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Ideal Triangulation of the 52 Knot Complement
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Collapsing Tetrahedra
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Collapsing Tetrahedra
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Topological Ideal Triangulation of the 52 Knot Complement
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Topological Ideal Triangulation of the 52 Knot Complement

(Note that β0 = β1 and α0 = δ)
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Parametrizing Tetrahedra

z0

z1
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Parametrizing Tetrahedra
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Parametrization of Tetrahedra
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Hyperbolicity Equation

Using this triangulation, the hyperbolicity equations of 52 knot is as
follows. {

1− z0
z1

= (1− z0)(1− 1
z0

),

1− 1
z1

= (1− z1)(1− z0
z1

).

There is unique solution (z0, z1) which gives the hyperbolic structure to the
52 knot complement. We call the unique solution the geometric solution.
Let rk be the even integers satisfying

rkπi =

{
log(1− z0

z1
)− log(1− z0)− log(1− 1

z0
) for k = 0,

log(1− 1
z1

)− log(1− z1)− log(1− z0
z1

) for k = 1.

Using numerical calculation, we obtain

−(1−z0)3 = z0 = 0.3376410214+0.5622795125i , z1 = z0−1, r0 = r1 = 0.
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Definition of V (z0, z1) and V0(z0, z1)
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Definition of V (z0, z1) and V0(z0, z1)

Let V (z0, z1) be

V (z0, z1) =

{
π2

6
− Li2(

1

z0
)

}
+

{
Li2(z0)− π2

6

}
+

{
π2

6
− Li2(

z0

z1
)

}
+

{
Li2(

1

z1
)− π2

6

}
+

{
Li2(z1)− π2

6

}
and V0(z0, z1) be

V0(z0, z1) = V (z0, z1)−
1∑

k=0

rkπi log zk .
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Optimisitc limit of 〈52〉N
By applying the formal approximation

1

(q)k
∼ exp

N

2πi

(
Li2(qk)− π2

6

)
,

1

(q)k
∼ exp

N

2πi

(
π2

6
− Li2(qk)

)
to

〈52〉N = ±
∑

1≤k1≤k2+1≤N

N3

(q)k1−1(q)k1−1(q)k2−k1+1(q)N−k2−1(q)k2

.

and by letting z0 = qk1 , z1 = qk2 , we can obtain V (z0, z1) again as follows:

2πi log〈52〉
N

∼
{
π2

6
− Li2(

1

z0
)

}
+

{
Li2(z0)− π2

6

}
+

{
π2

6
− Li2(

z0

z1
)

}
+

{
Li2(

1

z1
)− π2

6

}
+

{
Li2(z1)− π2

6

}
= V (z0, z1).
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Optimisitc limit of 〈52〉N

Note that
z0

∂V (z0,z1)
∂z0

= log(1− z0
z1

)− log(1− z0)− log(1− 1
z0

) = r0πi ,

z1
∂V (z0,z1)

∂z1
= log(1− 1

z1
)− log(1− z1)− log(1− z0

z1
) = r1πi .

We define the optimistic limit of 〈52〉N by

o-lim
N→∞

2πi log〈52〉N
N

:= V (z0, z1)−
1∑

k=0

(
zk
∂V (z0, z1)

∂zk
log zk

)

= V (z0, z1)−
1∑

k=0

rkπi log zk = V0(z0, z1).
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Yokota Theory for the 52 Knot

Theorem (Yokota)

Let V (z0, z1) and V0(z0, z1) be the functions defined for the 52 knot.
Then

1 V (z0, z1) can be obtained from 〈52〉N by using formal substitution,

2

{
exp(z0

∂V (z0,z1)
∂z0

) = 1, exp(z1
∂V (z0,z1)

∂z1
) = 1

}
is the set of the

hyperbolicity equations of the 52 knot,

3 ImV0(z0, z1) = vol(52) for the geometric solution (z0, z1).

Now we will see the Yokota theory for the general twist knots.
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Ideal Triangulation of the Twist Knot Tn

...
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Ideal Triangulation of the Twist Knot Tn

(k = 2, 3, . . . , n. Note that αn−1 = δ and αn = γ1)
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Hyperbolicity Equation

Using this triangulation, the hyperbolicity equations of Tn is as follows.

1− z0

z1
= (1− z0)(1− 1

z0
),

(1− zk

zk+1
)(1− 1

zk
) = (1− zk)(1− zk−1

zk
), for k = 1, 2, . . . , n − 1,

1− 1

zn
= (1− zn)(1− zn−1

zn
).

Let rk be the even integers satisfying

rkπi =


log(1− z0

z1
)− log(1− z0)− log(1− 1

z0
) (k = 0),

log(1− zk
zk+1

) + log(1− 1
zk

)− log(1− zk)− log(1− zk−1

zk
)

(k = 1, 2, . . . , n − 1),
log(1− 1

zn
)− log(1− zn)− log(1− zn−1

zn
) (k = n).
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Definition of V (z0, z1, . . . , zn) and V0(z0, z1, . . . , zn)

Let V (z0, z1, . . . , zn) be

V (z0, z1, . . . , zn) =

(
π2

6
− Li2(

1

z0
)

)
+

n∑
k=1

{(
Li2(zk−1)− π2

6

)
+

(
π2

6
− Li2(

zk−1

zk
)

)
+

(
Li2(

1

zk
)− π2

6

)}
+

(
Li2(zn)− π2

6

)
and V0(z0, z1, . . . , zn) be

V0(z0, z1, . . . , zn) = V (z0, z1, . . . , zn)−
n∑

k=0

rkπi log zk .
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Yokota Theory for Tn

Theorem (Yokota)

Let V (z0, z1, . . . , zn) and V0(z0, z1, . . . , zn) be the functions defined for
the twist knot Tn. Then

1 V (z0, z1, . . . , zn) can be obtained from 〈Tn〉N by using formal
substitution,

2

{
exp(zk

∂V (z0,z1,...,zn)
∂zk

) = 1 | k = 0, 1, . . . , n
}

is the set of the

hyperbolicity equations of Tn,

3 ImV0(z0, z1, . . . , zn) = vol(Tn) for the geometric solution
(z0, z1, . . . , zn).
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Recent developments

Theorem (Cho, J. Murakami and Yokota)

For a twist knot Tn and the geometric solution (z0, z1, . . . , zn),

V0(z0, z1, . . . , zn) ≡ i(vol(Tn) + ics(Tn)) (mod π2)

where cs(Tn) is the Chern-Simons invariant of the Tn knot complement.

Theorem (Cho and J. Murakami)

For a twist knot Tn and the geometric solution (z0, z1, . . . , zn),

n∑
k=0

rkπi log zk ≡ 0 (mod π2).

This implies

V (z0, z1, . . . , zn) ≡ i(vol(Tn) + ics(Tn)) (mod π2).
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Recent developments

Lemma (H. Murakami and J. Murakami)

For a knot K ,

〈K 〉N = JN

(
K ; exp(

2πi

N
)

)
where JN(K ; u) is the N-th colored Jones polynomial of the knot K
evaluated at u ∈ C.

Ohnuki made ‘the colored Jones polynomial version’ of Yokota theory for
2-bridge links. Cho and J. Murakami reconstructed his theory for twist
knots, and showed the relation between ‘the volume and the Chern-Simons
invariant of the knot complement’ and ‘the optimistic limit of the colored
Jones polynomial’.
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