Kashaev's volume conjecture

Jinseok Cho
Seoul National University

August 19, 2009

(Complexified) Kashaev's volume conjecture

Conjecture

$$
\operatorname{vol}(L)=2 \pi \lim _{N \rightarrow \infty} \frac{\log \left|\langle L\rangle_{N}\right|}{N},
$$

where L is a hyperbolic link, $\operatorname{vol}(L)$ is the hyperbolic volume, $\langle L\rangle_{N}$ is the Kashaev invariant.

Conjecture

$$
i(\operatorname{vol}(L)+i c s(L)) \equiv 2 \pi \lim _{N \rightarrow \infty} \frac{\log \langle L\rangle_{N}}{N}\left(\bmod \pi^{2}\right),
$$

where $\operatorname{cs}(L)$ is the Chern-Simons invariant.

Hyperbolic space

Definition (Upper half space model of \mathbb{H}^{3})

$$
\mathbb{H}^{3}=\{(z, t) \mid z \in \mathbb{C}, t>0\}
$$

with the metric

$$
d s^{2}=\frac{d z^{2}+d t^{2}}{t^{2}}
$$

is called the hyperbolic space. \mathbb{H}^{3} is a Riemannian 3-manifold with the constant sectional curvature -1 .
We consider $\partial \mathbb{H}^{3}=\widehat{\mathbb{C}}=\mathbb{C} \cup\{\infty\}$.

Definition

A knot K is called hyperbolic if the complement $S^{3}-K$ admits a complete hyperbolic structure.

Lemma

An ideal tetrahedron in \mathbb{H}^{3} can be parametrized with a complex number $z \in \mathbb{C}$.

Definition of the Twist Knot T_{n}

Ideal Triangulation

Ideal Triangulation

This picture comes from the paper of H. Murakami.

Example of $5_{2} \mathrm{Knot}$

Gluing Pattern of the Ideal Triangulation

Result of the Gluing

Ideal Triangulation of the 5_{2} Knot Complement

Collapsing Tetrahedra

Collapsing Tetrahedra

Topological Ideal Triangulation of the 5_{2} Knot Complement

Topological Ideal Triangulation of the 5_{2} Knot Complement

$\left(\right.$ Note that $\beta_{0}=\beta_{1}$ and $\left.\alpha_{0}=\delta\right)$

Parametrizing Tetrahedra

Parametrizing Tetrahedra

Parametrization of Tetrahedra

Hyperbolicity Equation

Using this triangulation, the hyperbolicity equations of 5_{2} knot is as follows.

$$
\left\{\begin{array}{l}
1-\frac{z_{0}}{z_{1}}=\left(1-z_{0}\right)\left(1-\frac{1}{z_{0}}\right), \\
1-\frac{1}{z_{1}}=\left(1-z_{1}\right)\left(1-\frac{z_{0}}{z_{1}}\right) .
\end{array}\right.
$$

There is unique solution $\left(z_{0}, z_{1}\right)$ which gives the hyperbolic structure to the 5_{2} knot complement. We call the unique solution the geometric solution. Let r_{k} be the even integers satisfying

$$
r_{k} \pi i= \begin{cases}\log \left(1-\frac{z_{0}}{z_{1}}\right)-\log \left(1-z_{0}\right)-\log \left(1-\frac{1}{z_{0}}\right) & \text { for } k=0 \\ \log \left(1-\frac{1}{z_{1}}\right)-\log \left(1-z_{1}\right)-\log \left(1-\frac{z_{0}}{z_{1}}\right) & \text { for } k=1\end{cases}
$$

Using numerical calculation, we obtain

$$
-\left(1-z_{0}\right)^{3}=z_{0}=0.3376410214+0.5622795125 i, z_{1}=z_{0}-1, r_{0}=r_{1}=0
$$

Definition of $V\left(z_{0}, z_{1}\right)$ and $V_{0}\left(z_{0}, z_{1}\right)$

Definition of $V\left(z_{0}, z_{1}\right)$ and $V_{0}\left(z_{0}, z_{1}\right)$

Let $V\left(z_{0}, z_{1}\right)$ be

$$
\begin{aligned}
V\left(z_{0}, z_{1}\right) & =\left\{\frac{\pi^{2}}{6}-\operatorname{Li}_{2}\left(\frac{1}{z_{0}}\right)\right\} \\
& +\left\{\operatorname{Li}_{2}\left(z_{0}\right)-\frac{\pi^{2}}{6}\right\}+\left\{\frac{\pi^{2}}{6}-\operatorname{Li}_{2}\left(\frac{z_{0}}{z_{1}}\right)\right\}+\left\{\operatorname{Li}_{2}\left(\frac{1}{z_{1}}\right)-\frac{\pi^{2}}{6}\right\} \\
& +\left\{\operatorname{Li}_{2}\left(z_{1}\right)-\frac{\pi^{2}}{6}\right\}
\end{aligned}
$$

and $V_{0}\left(z_{0}, z_{1}\right)$ be

$$
V_{0}\left(z_{0}, z_{1}\right)=V\left(z_{0}, z_{1}\right)-\sum_{k=0}^{1} r_{k} \pi i \log z_{k}
$$

Optimisitc limit of $\left\langle 5_{2}\right\rangle_{N}$

By applying the formal approximation

$$
\frac{1}{(q)_{k}} \sim \exp \frac{N}{2 \pi i}\left(\operatorname{Li}_{2}\left(q^{k}\right)-\frac{\pi^{2}}{6}\right), \frac{1}{(\bar{q})_{k}} \sim \exp \frac{N}{2 \pi i}\left(\frac{\pi^{2}}{6}-\operatorname{Li}_{2}\left(\bar{q}^{k}\right)\right)
$$

to

$$
\left\langle 5_{2}\right\rangle_{N}= \pm \sum_{1 \leq k_{1} \leq k_{2}+1 \leq N} \frac{N^{3}}{(\bar{q})_{k_{1}-1}(q)_{k_{1}-1}(\bar{q})_{k_{2}-k_{1}+1}(q)_{N-k_{2}-1}(q)_{k_{2}}}
$$

and by letting $z_{0}=q^{k_{1}}, z_{1}=q^{k_{2}}$, we can obtain $V\left(z_{0}, z_{1}\right)$ again as follows:

$$
\begin{aligned}
& \frac{2 \pi i \log \left\langle 5_{2}\right\rangle}{N} \sim\left\{\frac{\pi^{2}}{6}-\operatorname{Li}_{2}\left(\frac{1}{z_{0}}\right)\right\} \\
& \quad+\left\{\operatorname{Li}_{2}\left(z_{0}\right)-\frac{\pi^{2}}{6}\right\}+\left\{\frac{\pi^{2}}{6}-\operatorname{Li}_{2}\left(\frac{z_{0}}{z_{1}}\right)\right\}+\left\{\operatorname{Li}\left(\frac{1}{z_{1}}\right)-\frac{\pi^{2}}{6}\right\} \\
& \quad+\left\{\operatorname{Li}_{2}\left(z_{1}\right)-\frac{\pi^{2}}{6}\right\}=V\left(z_{0}, z_{1}\right)
\end{aligned}
$$

Optimisitc limit of $\left\langle 5_{2}\right\rangle_{N}$

Note that

$$
\left\{\begin{array}{l}
z_{0} \frac{\partial V\left(z_{0}, z_{1}\right)}{\partial z_{0}}=\log \left(1-\frac{z_{0}}{z_{1}}\right)-\log \left(1-z_{0}\right)-\log \left(1-\frac{1}{z_{0}}\right)=r_{0} \pi i \\
z_{1} \frac{\partial V\left(z_{0}, z_{1}\right)}{\partial z_{1}}=\log \left(1-\frac{1}{z_{1}}\right)-\log \left(1-z_{1}\right)-\log \left(1-\frac{z_{0}}{z_{1}}\right)=r_{1} \pi i
\end{array}\right.
$$

We define the optimistic limit of $\left\langle 5_{2}\right\rangle_{N}$ by

$$
\begin{aligned}
\stackrel{\mathrm{o}-\lim }{ } \frac{2 \pi i \log \left\langle 5_{2}\right\rangle_{N}}{N} & :=V\left(z_{0}, z_{1}\right)-\sum_{k=0}^{1}\left(z_{k} \frac{\partial V\left(z_{0}, z_{1}\right)}{\partial z_{k}} \log z_{k}\right) \\
& =V\left(z_{0}, z_{1}\right)-\sum_{k=0}^{1} r_{k} \pi i \log z_{k}=V_{0}\left(z_{0}, z_{1}\right) .
\end{aligned}
$$

Yokota Theory for the 5_{2} Knot

Theorem (Yokota)

Let $V\left(z_{0}, z_{1}\right)$ and $V_{0}\left(z_{0}, z_{1}\right)$ be the functions defined for the 5_{2} knot.
Then
(1) $V\left(z_{0}, z_{1}\right)$ can be obtained from $\left\langle 5_{2}\right\rangle_{N}$ by using formal substitution,
(2) $\left\{\exp \left(z_{0} \frac{\partial V\left(z_{0}, z_{1}\right)}{\partial z_{0}}\right)=1, \exp \left(z_{1} \frac{\partial V\left(z_{0}, z_{1}\right)}{\partial z_{1}}\right)=1\right\}$ is the set of the hyperbolicity equations of the 5_{2} knot,
(3) $\operatorname{Im} V_{0}\left(z_{0}, z_{1}\right)=\operatorname{vol}\left(5_{2}\right)$ for the geometric solution $\left(z_{0}, z_{1}\right)$.

Now we will see the Yokota theory for the general twist knots.

Ideal Triangulation of the Twist $\operatorname{Knot} T_{n}$

Ideal Triangulation of the Twist $\operatorname{Knot} T_{n}$

Hyperbolicity Equation

Using this triangulation, the hyperbolicity equations of T_{n} is as follows.

$$
\begin{aligned}
1-\frac{z_{0}}{z_{1}} & =\left(1-z_{0}\right)\left(1-\frac{1}{z_{0}}\right) \\
\left(1-\frac{z_{k}}{z_{k+1}}\right)\left(1-\frac{1}{z_{k}}\right) & =\left(1-z_{k}\right)\left(1-\frac{z_{k-1}}{z_{k}}\right), \text { for } k=1,2, \ldots, n-1, \\
1-\frac{1}{z_{n}} & =\left(1-z_{n}\right)\left(1-\frac{z_{n-1}}{z_{n}}\right)
\end{aligned}
$$

Let r_{k} be the even integers satisfying

$$
r_{k} \pi i=\left\{\begin{array}{l}
\log \left(1-\frac{z_{0}}{z_{1}}\right)-\log \left(1-z_{0}\right)-\log \left(1-\frac{1}{z_{0}}\right) \quad(k=0) \\
\log \left(1-\frac{z_{k}}{z_{k+1}}\right)+\log \left(1-\frac{1}{z_{k}}\right)-\log \left(1-z_{k}\right)-\log \left(1-\frac{z_{k-1}}{z_{k}}\right) \\
\quad(k=1,2, \ldots, n-1), \\
\log \left(1-\frac{1}{z_{n}}\right)-\log \left(1-z_{n}\right)-\log \left(1-\frac{z_{n-1}}{z_{n}}\right) \quad(k=n)
\end{array}\right.
$$

Definition of $V\left(z_{0}, z_{1}, \ldots, z_{n}\right)$ and $V_{0}\left(z_{0}, z_{1}, \ldots, z_{n}\right)$

Let $V\left(z_{0}, z_{1}, \ldots, z_{n}\right)$ be

$$
\begin{aligned}
& V\left(z_{0}, z_{1}, \ldots, z_{n}\right)=\left(\frac{\pi^{2}}{6}-\operatorname{Li}_{2}\left(\frac{1}{z_{0}}\right)\right) \\
& \quad+\sum_{k=1}^{n}\left\{\left(\operatorname{Li}_{2}\left(z_{k-1}\right)-\frac{\pi^{2}}{6}\right)+\left(\frac{\pi^{2}}{6}-\operatorname{Li}_{2}\left(\frac{z_{k-1}}{z_{k}}\right)\right)+\left(\operatorname{Li}_{2}\left(\frac{1}{z_{k}}\right)-\frac{\pi^{2}}{6}\right)\right\} \\
& \quad+\left(\operatorname{Li}_{2}\left(z_{n}\right)-\frac{\pi^{2}}{6}\right)
\end{aligned}
$$

and $V_{0}\left(z_{0}, z_{1}, \ldots, z_{n}\right)$ be

$$
V_{0}\left(z_{0}, z_{1}, \ldots, z_{n}\right)=V\left(z_{0}, z_{1}, \ldots, z_{n}\right)-\sum_{k=0}^{n} r_{k} \pi i \log z_{k}
$$

Yokota Theory for T_{n}

Theorem (Yokota)
Let $V\left(z_{0}, z_{1}, \ldots, z_{n}\right)$ and $V_{0}\left(z_{0}, z_{1}, \ldots, z_{n}\right)$ be the functions defined for the twist knot T_{n}. Then
(1) $V\left(z_{0}, z_{1}, \ldots, z_{n}\right)$ can be obtained from $\left\langle T_{n}\right\rangle_{N}$ by using formal substitution,
(2 $\left\{\left.\exp \left(z_{k} \frac{\partial V\left(z_{0}, z_{1}, \ldots, z_{n}\right)}{\partial z_{k}}\right)=1 \right\rvert\, k=0,1, \ldots, n\right\}$ is the set of the hyperbolicity equations of T_{n},
(0) $\operatorname{Im} V_{0}\left(z_{0}, z_{1}, \ldots, z_{n}\right)=\operatorname{vol}\left(T_{n}\right)$ for the geometric solution $\left(z_{0}, z_{1}, \ldots, z_{n}\right)$.

Recent developments

Theorem (Cho, J. Murakami and Yokota)
For a twist knot T_{n} and the geometric solution $\left(z_{0}, z_{1}, \ldots, z_{n}\right)$,

$$
V_{0}\left(z_{0}, z_{1}, \ldots, z_{n}\right) \equiv i\left(\operatorname{vol}\left(T_{n}\right)+i \operatorname{cs}\left(T_{n}\right)\right)\left(\bmod \pi^{2}\right)
$$

where $\operatorname{cs}\left(T_{n}\right)$ is the Chern-Simons invariant of the T_{n} knot complement.

Theorem (Cho and J. Murakami)

For a twist knot T_{n} and the geometric solution $\left(z_{0}, z_{1}, \ldots, z_{n}\right)$,

$$
\sum_{k=0}^{n} r_{k} \pi i \log z_{k} \equiv 0\left(\bmod \pi^{2}\right) .
$$

This implies

$$
V\left(z_{0}, z_{1}, \ldots, z_{n}\right) \equiv i\left(\operatorname{vol}\left(T_{n}\right)+i \operatorname{cs}\left(T_{n}\right)\right)\left(\bmod \pi^{2}\right)
$$

Recent developments

Lemma (H. Murakami and J. Murakami)

For a knot K,

$$
\langle K\rangle_{N}=J_{N}\left(K ; \exp \left(\frac{2 \pi i}{N}\right)\right)
$$

where $J_{N}(K ; u)$ is the N-th colored Jones polynomial of the knot K evaluated at $u \in \mathbb{C}$.

Ohnuki made 'the colored Jones polynomial version' of Yokota theory for 2-bridge links. Cho and J. Murakami reconstructed his theory for twist knots, and showed the relation between 'the volume and the Chern-Simons invariant of the knot complement' and 'the optimistic limit of the colored Jones polynomial'.

