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Definitions

Let G = (V ,E) be a graph with vertex set V and edge set E .
I A k -coloring of G is a map f : V → C with |C| = k , such

that f (u) 6= f (v) holds for every edge uv ∈ E .
I G is k -chromatic, written χ(G) = k , if k is the least number

such that a k -coloring of G exists.
I G is critical if χ(H) < χ(G) holds for every proper subgraph

H of G. Equivalently, G = K1 or χ(G − e) < χ(G) for all
e ∈ E .

I G is vertex-critical if χ(H) < χ(G) holds for every proper
induced subgraph H of G. Equivalently, χ(G − v) < χ(G)
for all v ∈ V .
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Examples
I k < 3

The complete graph Kk is the unique critical k -chromatic graph.

I k = 3
The critical (vertex-critical) graphs are precisely the odd cycles
C2n+1 for n ≥ 1 (König 1916).

I k ≥ 4
I As before, Kk is a critical k -chromatic graph.
I But the number of non-isomorphic critical k -chromatic

graphs of order n is at least cn2
, for some c > 1 (V. Rödl).

I And a vertex-critical graph is not necessarily critical.
I Each decision problem CRITICAL k -CHROMATIC and

VERTEX-CRITICAL k -CHROMATIC is an element of NP
only if co-NP=NP: They are hard problems.
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I And a vertex-critical graph is not necessarily critical.
I Each decision problem CRITICAL k -CHROMATIC and

VERTEX-CRITICAL k -CHROMATIC is an element of NP
only if co-NP=NP: They are hard problems.

Critical Graphs



Critical Graphs Density Precoloring Subgraphs Critical Subgraphs Vertex-Critical vs. Critical Constructions Summary

Examples
I k < 3

The complete graph Kk is the unique critical k -chromatic graph.

I k = 3
The critical (vertex-critical) graphs are precisely the odd cycles
C2n+1 for n ≥ 1 (König 1916).

I k ≥ 4
I As before, Kk is a critical k -chromatic graph.
I But the number of non-isomorphic critical k -chromatic

graphs of order n is at least cn2
, for some c > 1 (V. Rödl).
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What are they for?

I Introduced by Dirac ∼ 1949. Discussed by Dirac and
Erdős.

I Every critical graph is finite (de Bruijn & Erdős, 1951).
I Critical graphs have special structure: e.g. δ ≥ χ− 1.
I Finding a (perhaps small) critical k -chromatic subgraph of

G gives a certificate for χ(G) ≥ k .
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How many edges can they have?

Let Fk (n) be the maximal number of edges of a critical
k -chromatic graph of order n.

I Does lim Fk (n)/n2 exist?
I Is F6(n) = 1

4n2 + n for all n ≡ 2 (mod 4)?
I Does a constant ε > 0 exist such that F4(n) ≥ ( 1

16 + ε)n2

for infinitely many values of n?
P. Erdős 1949

G.A. Dirac 1952
B. Toft 1970
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P. Erdős 1949

G.A. Dirac 1952
B. Toft 1970

Critical Graphs



Critical Graphs Density Precoloring Subgraphs Critical Subgraphs Vertex-Critical vs. Critical Constructions Summary

How many edges can they have?

I F6(n) ≥ 1
4n2 + n for all n ≡ 2 (mod 4).

G.A. Dirac 1952
I Fk (n) > ckn2 when k ≥ 4, where c4 ≥ 1/16 and c5 ≥ 4/31.

B. Toft 1970
I ck ≤ k−2

2(k−1) .

T.R.J. 2002
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How few edges can they have?

Let fk (n) be the minimal number of edges of a critical
k -chromatic graph of order n, where k ≥ 4 and n ≥ k + 2.

I What is a best possible lower bound on fk (n)?
I Does equality hold in f4(n) ≤ b5n/3c?
I Determine R(k , s) such that

2|E | ≥ (k − 1)|V |+ R(k , s)

is true if Ks 6⊆ G.
G.A. Dirac 1957

B. Toft 1974
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How few edges can they have?

I 2fk (n) ≥ (k − 1 + (k − 3)/((k − c)(k − 1) + k − 3))n
for k ≥ 6, where c = (k − 5)(1/2− 1/(k − 1)(k − 2)).

A.V. Kostochka & M. Stiebitz 2003
I The constant (k − 1) in 2|E | ≥ (k − 1)|V |+ R(k , s) has

been improved.
M. Krivelevich 1998
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Minimal degrees and regularity.

Let δk (n) be the largest minimal degree of a critical k -chromatic
graph of order n.

I Is there a constant c > 0 such that δ4(n) ≥ cn?
I What is the order of magnitude of δ5(n)?
I Do r -regular critical 4-chromatic graphs exist for all r ≥ 3?

P. Erdős 1949,1989
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P. Erdős 1949,1989

Critical Graphs



Critical Graphs Density Precoloring Subgraphs Critical Subgraphs Vertex-Critical vs. Critical Constructions Summary

Minimal degrees and regularity.

Let δk (n) be the largest minimal degree of a critical k -chromatic
graph of order n.

I Is there a constant c > 0 such that δ4(n) ≥ cn?
I What is the order of magnitude of δ5(n)?
I Do r -regular critical 4-chromatic graphs exist for all r ≥ 3?
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Minimal degrees and regularity.
I δ4(n) ≥ c 3

√
n.

M. Simonovits 1972 & B. Toft 1972
I δ6(n) ≥ n/2.

G.A. Dirac 1949
I There are infinitely many 4-regular critical 4-chromatic

graphs.
T. Gallai 1963

I There are infinitely many 5-regular critical 4-chromatic
graphs.

T.R.J. 2002
I There exists a r -regular critical 4-chromatic graph for each

r = 6,8,10.
A.A. Dobrynin, L.S. Mel’nikov & A.V. Pyatkin 2003
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Non-amenable critical graphs.

G is amenable if for every non-constant f : V → {1,2, . . . , k}
there exists a k -coloring ϕ : V → {1,2, . . . , k} such that
ϕ(v) 6= f (v) for all v ∈ V .

I What is the minimal order nk of a critical k -chromatic graph
which is not amenable?

T. Gallai 1963
B. Toft 1970
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Non-amenable critical graphs.

I nk ≤ 11k − 24 for all k ≥ 5.
B.Aa. Sørensen & B. Toft 1974

I n4 ≤ 50.
B. Toft 1987

I n4 ≥ 10.
J.I. Brown, D. Kelly, J. Schönheim & R.E. Woodrow 1990

Critical Graphs



Critical Graphs Density Precoloring Subgraphs Critical Subgraphs Vertex-Critical vs. Critical Constructions Summary

Non-amenable critical graphs.

I nk ≤ 11k − 24 for all k ≥ 5.
B.Aa. Sørensen & B. Toft 1974

I n4 ≤ 50.
B. Toft 1987

I n4 ≥ 10.
J.I. Brown, D. Kelly, J. Schönheim & R.E. Woodrow 1990

Critical Graphs



Critical Graphs Density Precoloring Subgraphs Critical Subgraphs Vertex-Critical vs. Critical Constructions Summary

Non-amenable critical graphs.

I nk ≤ 11k − 24 for all k ≥ 5.
B.Aa. Sørensen & B. Toft 1974

I n4 ≤ 50.
B. Toft 1987

I n4 ≥ 10.
J.I. Brown, D. Kelly, J. Schönheim & R.E. Woodrow 1990

Critical Graphs



Critical Graphs Density Precoloring Subgraphs Critical Subgraphs Vertex-Critical vs. Critical Constructions Summary

Degree 5 problem.

I Assuming that
I G is critical 4-chromatic,
I v is a vertex of degree 5 in G and N(v) is its set of

neighbors,
I f : N(v)→ {1,2,3} is a non-constant map,

does a 3-coloring ϕ : V \ {v} → {1,2,3} of G− v exist that
satisfies ϕ(x) 6= f (x) for all x ∈ N(v)?

B. Toft 1974
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Degree 5 problem.

I True for any vertex v of degree < 5, but false for vertices of
degree > 5.

I For critical k -chromatic graphs, and precoloring with k − 1
colors, when k > 4: true for vertices of degree ≤ 2k − 3,
and false for degree ≥ 2k − 2.

B. Toft 1974
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Fixed subgraphs.

Assume that a graph F is a subgraph of some critical
k -chromatic graph.

I Is F a subgraph of a critical k -chromatic graph H of order

|V (H)| ≤ ck |V (F )|,

where ck depends only on k?
M. Stiebitz 1987
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Fixed subgraphs.

I If F is any (k − 2)-colorable graph, there exists a critical
k -chromatic graph H with F as subgraph, and satisfying

|V (H)| ≤ 2|V (F )|+ dk ,

where dk depends only on k .
B. Toft 1974
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Smallest circumference.

I What is the minimal value Lk (n) of the length of a longest
cycle in a critical k -chromatic graph of order at least n?

J.B. Kelly and L.M. Kelly 1954
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Smallest circumference.

Bounds for k ≥ 4:
I Lk (n) < 2(k − 1) log n/ log(k − 2) for infinitely many n.

T. Gallai 1963
I Lk (n) ≥ 2

√
log(n − 1)/ log(k − 2).

N. Alon, M. Krivelevich & P.D. Seymour 2000
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Erdős & Lovász Tihany Problem.

Assume G 6= Kk . Choose a,b ≥ 2 so that a + b = k + 1.
I Does G contain two disjoint subgraphs of chromatic

numbers a and b?
I In particular (b = 2), is Kk the only k -chromatic

double-critical graph? That is, if G − u − v is
(k − 2)-colorable for every edge uv ∈ E , then this implies
G = Kk?

P. Erdős and L. Lovász 1968
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Erdős & Lovász Tihany Problem.

Assume G 6= Kk . Choose a,b ≥ 2 so that a + b = k + 1.
I Does G contain two disjoint subgraphs of chromatic

numbers a and b?
I In particular (b = 2), is Kk the only k -chromatic

double-critical graph? That is, if G − u − v is
(k − 2)-colorable for every edge uv ∈ E , then this implies
G = Kk?
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Erdős & Lovász Tihany Problem.

I True for
(k ,a,b) ∈ {(4,2,3), (5,2,4), (5,3,3), (6,3,4), (7,3,5)}.

W.G. Brown & H.A. Jung 1969
N.N. Mozhan 1986

M. Stiebitz 1987, 1988
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Large critical subgraphs.

I Does every critical k -chromatic graph contain a large
critical (k − 1)-chromatic subgraph?

J. Nešetřil and V. Rödl 1973
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Large critical subgraphs.

I True for k = 4.
J.B. Kelly & L.M. Kelly 1954

H.-J. Voss 1977, 1991
I If every critical (k − 1)-chromatic subgraph is a Kk−1, then

G is a Kk .
M. Stiebitz 1987
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Critical subgraph with a given path.

Let P be a path of length 2 in G.
I Is there a critical (k − 1)-chromatic subgraph of G which

contains P?
B. Toft 1974
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Critical subgraph with a given path.

I True for k = 4.
G.A. Dirac 1964

I For all e1,e2 ∈ E there exists a critical (k − 1)-chromatic
subgraph of G containing e1 but not e2.

B. Toft 1974
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Partial joins.

G is a partial join of G1 and G2 if both are induced subgraphs of
G, and if V = V (G1) ∪ V (G2).

I Characterize the critical graphs that are partial joins of
other critical graphs.

I In particular, when is a partial join of two odd cycles a
critical graph?

I When is a partial join of a complete graph with another
critical graph again critical?

T. Gallai 1969
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Partial joins.

I If a partial join of two complete graphs is critical, then the
join is a complete join (⇔ the complement of a bipartite
graph is perfect).

T. Gallai 1969
I A characterization of critical partial joins of complete

graphs with odd cycles is known.
M. Stiebitz & W. Wessel 1993
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Number of critical subgraphs.

I Does a critical k -chromatic graph of order n contain n
distinct critical (k − 1)-chromatic subgraphs?

I Does a vertex-critical k -chromatic graph of order n contain
n distinct vertex-critical (k − 1)-chromatic subgraphs?

I If G 6= Kk , is there an edge of G that is contained in at most
one complete subgraph of order k − 1?

T. Gallai 1984
Xiang-Ying Su 1994
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Number of critical subgraphs.

I A critical k -chromatic graph contains at least log n distinct
critical (k − 1)-chromatic subgraphs.

M. Stiebitz 1985
I A vertex-critical k -chromatic graph contains at least

k−1
√

n(k − 1)! vertex-critical (k − 1)-chromatic subgraphs.
H.L. Abbott & Bing Zhou 1992

I If k ≤ 7, and if G 6= Kk , then there is an edge of G that is
contained in at most one complete subgraph of order k − 1.

Xiang-Ying Su 1994
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Vertex-critical graphs without critical edges.

An element x ∈ V ∪ E is critical if χ(G − x) < χ(G).

I Does there exist a vertex-critical 4-chromatic graph without
critical edges?

I Is there a function f : N→ N such that there exists for each
k ≥ 5 a vertex-critical k -chromatic graph Gk with

χ(Gk − A) = k for all A ⊂ E(Gk ) with |A| ≤ f (|V (Gk )|)?

If f exists, how fast may it increase?
G.A. Dirac ?

P. Erdős 1989
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P. Erdős 1989

Critical Graphs



Critical Graphs Density Precoloring Subgraphs Critical Subgraphs Vertex-Critical vs. Critical Constructions Summary

Vertex-critical graphs without critical edges.

I For each k ≥ 5 there are infinitely many vertex-critical
k -chromatic graphs without critical edges. Still the bound
f ≥ 1 is the best known lower bound on the growth of f .

I There exists a vertex-critical 5-chromatic graph with two
edge-disjoint critical 5-chromatic subgraphs.

I There exists a vertex-critical 5-chromatic graph H
satisfying

χ(H − A) = k for all A ⊂ E(H) with |A| ≤ 2

T.R.J. 2002
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Construction of critical graphs.

I Does a construction of critical k -chromatic graphs exist,
starting from Kk and applying elementary steps in which
each intermediate graph is itself critical k -chromatic?

G. Hajós 1961
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Construction of critical graphs.

I The classical Hajós and Ore constructions do not achieve
this for any value k ≥ 4.

D. Hanson, G.C. Robinson & B. Toft 1986
T.R.J. & G.F. Royle 1999
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Summary

I Critical graphs have been studied for the past 60 years by
a number of the most prominent combinatorialists.

I And yet, almost all classical problems on critical graphs
remain open.

I Outlook
I Complexity issues for hard problems gain increasing

importance. Perhaps this may lead to renewed interest in
problems about criticality.
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Thank you!
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For Further Reading I

T.R. Jensen & B. Toft
Graph Coloring Problems (Chapter 5).
Wiley-Interscience 1995.

http://www.imada.sdu.dk/∼btoft/graphcol
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