Open Problems on Critical Graphs

Tommy R. Jensen

Department of Mathematics Kyungpook National University

2009 Combinatorics Workshop KAIST, August 20–21, 2009

- ▶ A *k*-coloring of *G* is a map $f : V \to C$ with |C| = k, such that $f(u) \neq f(v)$ holds for every edge $uv \in E$.
- ► G is k-chromatic, written \(\chi(G) = k\), if k is the least number such that a k-coloring of G exists.
- G is critical if χ(H) < χ(G) holds for every proper subgraph H of G. Equivalently, G = K₁ or χ(G − e) < χ(G) for all e ∈ E.
- G is vertex-critical if χ(H) < χ(G) holds for every proper induced subgraph H of G. Equivalently, χ(G − v) < χ(G) for all v ∈ V.

- ► A *k*-coloring of *G* is a map $f : V \to C$ with |C| = k, such that $f(u) \neq f(v)$ holds for every edge $uv \in E$.
- ► G is k-chromatic, written \(\chi(G) = k\), if k is the least number such that a k-coloring of G exists.
- G is critical if χ(H) < χ(G) holds for every proper subgraph H of G. Equivalently, G = K₁ or χ(G − e) < χ(G) for all e ∈ E.
- G is vertex-critical if χ(H) < χ(G) holds for every proper induced subgraph H of G. Equivalently, χ(G − v) < χ(G) for all v ∈ V.

- ► A *k*-coloring of *G* is a map $f : V \to C$ with |C| = k, such that $f(u) \neq f(v)$ holds for every edge $uv \in E$.
- ► G is k-chromatic, written \(\chi(G) = k\), if k is the least number such that a k-coloring of G exists.
- G is critical if χ(H) < χ(G) holds for every proper subgraph H of G. Equivalently, G = K₁ or χ(G − e) < χ(G) for all e ∈ E.
- G is vertex-critical if χ(H) < χ(G) holds for every proper induced subgraph H of G. Equivalently, χ(G − v) < χ(G) for all v ∈ V.

- ► A *k*-coloring of *G* is a map $f : V \to C$ with |C| = k, such that $f(u) \neq f(v)$ holds for every edge $uv \in E$.
- ► G is k-chromatic, written \(\chi(G) = k\), if k is the least number such that a k-coloring of G exists.
- G is critical if χ(H) < χ(G) holds for every proper subgraph H of G. Equivalently, G = K₁ or χ(G − e) < χ(G) for all e ∈ E.
- G is vertex-critical if χ(H) < χ(G) holds for every proper induced subgraph H of G. Equivalently, χ(G − v) < χ(G) for all v ∈ V.

- ► A *k*-coloring of *G* is a map $f : V \to C$ with |C| = k, such that $f(u) \neq f(v)$ holds for every edge $uv \in E$.
- ► G is k-chromatic, written \(\chi(G) = k\), if k is the least number such that a k-coloring of G exists.
- G is critical if χ(H) < χ(G) holds for every proper subgraph H of G. Equivalently, G = K₁ or χ(G − e) < χ(G) for all e ∈ E.
- G is vertex-critical if χ(H) < χ(G) holds for every proper induced subgraph H of G. Equivalently, χ(G − ν) < χ(G) for all ν ∈ V.

► *k* < 3

The complete graph K_k is the unique critical k-chromatic graph.

▶ *k* = 3

The critical (vertex-critical) graphs are precisely the odd cycles C_{2n+1} for $n \ge 1$ (König 1916).

- As before, K_k is a critical *k*-chromatic graph.
- ▶ But the number of non-isomorphic critical *k*-chromatic graphs of order *n* is at least *c^{n²*}, for some *c* > 1 (V. Rödl).
- And a vertex-critical graph is not necessarily critical.
- Each decision problem CRITICAL k-CHROMATIC and VERTEX-CRITICAL k-CHROMATIC is an element of NP only if co-NP=NP: They are hard problems.

► *k* < 3

The complete graph K_k is the unique critical *k*-chromatic graph.

► *k* = 3

The critical (vertex-critical) graphs are precisely the odd cycles C_{2n+1} for $n \ge 1$ (König 1916).

- As before, K_k is a critical *k*-chromatic graph.
- ▶ But the number of non-isomorphic critical *k*-chromatic graphs of order *n* is at least c^{n^2} , for some c > 1 (V. Rödl).
- And a vertex-critical graph is not necessarily critical.
- Each decision problem CRITICAL k-CHROMATIC and VERTEX-CRITICAL k-CHROMATIC is an element of NP only if co-NP=NP: They are hard problems.

► *k* < 3

The complete graph K_k is the unique critical *k*-chromatic graph.

► *k* = 3

The critical (vertex-critical) graphs are precisely the odd cycles C_{2n+1} for $n \ge 1$ (König 1916).

- As before, K_k is a critical *k*-chromatic graph.
- ▶ But the number of non-isomorphic critical *k*-chromatic graphs of order *n* is at least c^{n^2} , for some c > 1 (V. Rödl).
- And a vertex-critical graph is not necessarily critical.
- Each decision problem CRITICAL k-CHROMATIC and VERTEX-CRITICAL k-CHROMATIC is an element of NP only if co-NP=NP: They are hard problems.

► *k* < 3

The complete graph K_k is the unique critical *k*-chromatic graph.

► *k* = 3

The critical (vertex-critical) graphs are precisely the odd cycles C_{2n+1} for $n \ge 1$ (König 1916).

- As before, K_k is a critical *k*-chromatic graph.
- But the number of non-isomorphic critical k-chromatic graphs of order n is at least c^{n²}, for some c > 1 (V. Rödl).
- And a vertex-critical graph is not necessarily critical.
- Each decision problem CRITICAL k-CHROMATIC and VERTEX-CRITICAL k-CHROMATIC is an element of NP only if co-NP=NP: They are hard problems.

► *k* < 3

The complete graph K_k is the unique critical *k*-chromatic graph.

► *k* = 3

The critical (vertex-critical) graphs are precisely the odd cycles C_{2n+1} for $n \ge 1$ (König 1916).

- As before, K_k is a critical *k*-chromatic graph.
- ▶ But the number of non-isomorphic critical *k*-chromatic graphs of order *n* is at least c^{n²}, for some c > 1 (V. Rödl).
- And a vertex-critical graph is not necessarily critical.
- Each decision problem CRITICAL k-CHROMATIC and VERTEX-CRITICAL k-CHROMATIC is an element of NP only if co-NP=NP: They are hard problems.

► *k* < 3

The complete graph K_k is the unique critical *k*-chromatic graph.

► *k* = 3

The critical (vertex-critical) graphs are precisely the odd cycles C_{2n+1} for $n \ge 1$ (König 1916).

▶ k ≥ 4

- As before, K_k is a critical *k*-chromatic graph.
- But the number of non-isomorphic critical k-chromatic graphs of order n is at least c^{n²}, for some c > 1 (V. Rödl).
- And a vertex-critical graph is not necessarily critical.
- Each decision problem CRITICAL k-CHROMATIC and VERTEX-CRITICAL k-CHROMATIC is an element of NP only if co-NP=NP: They are hard problems.

伺い イヨト イヨト

- Introduced by Dirac ~ 1949. Discussed by Dirac and Erdős.
- Every critical graph is finite (de Bruijn & Erdős, 1951).
- Critical graphs have special structure: e.g. $\delta \ge \chi 1$.
- ► Finding a (perhaps small) critical k-chromatic subgraph of G gives a certificate for \(\chi(G)\) ≥ k.

- Introduced by Dirac ~ 1949. Discussed by Dirac and Erdős.
- Every critical graph is finite (de Bruijn & Erdős, 1951).
- Critical graphs have special structure: e.g. $\delta \ge \chi 1$.
- Finding a (perhaps small) critical k-chromatic subgraph of G gives a certificate for χ(G) ≥ k.

- Introduced by Dirac ~ 1949. Discussed by Dirac and Erdős.
- Every critical graph is finite (de Bruijn & Erdős, 1951).
- Critical graphs have special structure: e.g. $\delta \ge \chi 1$.
- Finding a (perhaps small) critical k-chromatic subgraph of G gives a certificate for χ(G) ≥ k.

- Introduced by Dirac ~ 1949. Discussed by Dirac and Erdős.
- Every critical graph is finite (de Bruijn & Erdős, 1951).
- Critical graphs have special structure: e.g. $\delta \ge \chi 1$.
- ► Finding a (perhaps small) critical k-chromatic subgraph of G gives a certificate for \(\chi(G)\) ≥ k.

・ロト ・ 雪 ト ・ ヨ ト ・

Let $F_k(n)$ be the maximal number of edges of a critical *k*-chromatic graph of order *n*.

- Does lim $F_k(n)/n^2$ exist?
- ▶ Is $F_6(n) = \frac{1}{4}n^2 + n$ for all $n \equiv 2 \pmod{4}$?
- ▶ Does a constant $\varepsilon > 0$ exist such that $F_4(n) \ge (\frac{1}{16} + \varepsilon)n^2$ for infinitely many values of *n*?

Let $F_k(n)$ be the maximal number of edges of a critical *k*-chromatic graph of order *n*.

- Does $\lim F_k(n)/n^2$ exist?
- ▶ Is $F_6(n) = \frac{1}{4}n^2 + n$ for all $n \equiv 2 \pmod{4}$?
- ▶ Does a constant $\varepsilon > 0$ exist such that $F_4(n) \ge (\frac{1}{16} + \varepsilon)n^2$ for infinitely many values of *n*?

Let $F_k(n)$ be the maximal number of edges of a critical *k*-chromatic graph of order *n*.

- Does $\lim F_k(n)/n^2$ exist?
- Is $F_6(n) = \frac{1}{4}n^2 + n$ for all $n \equiv 2 \pmod{4}$?
- ▶ Does a constant $\varepsilon > 0$ exist such that $F_4(n) \ge (\frac{1}{16} + \varepsilon)n^2$ for infinitely many values of *n*?

Let $F_k(n)$ be the maximal number of edges of a critical *k*-chromatic graph of order *n*.

- Does $\lim F_k(n)/n^2$ exist?
- Is $F_6(n) = \frac{1}{4}n^2 + n$ for all $n \equiv 2 \pmod{4}$?
- Does a constant ε > 0 exist such that F₄(n) ≥ (¹/₁₆ + ε)n² for infinitely many values of n?

P. Erdős 1949 G.A. Dirac 1952 B. Toft 1970

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 つんの

Let $F_k(n)$ be the maximal number of edges of a critical *k*-chromatic graph of order *n*.

- Does $\lim F_k(n)/n^2$ exist?
- Is $F_6(n) = \frac{1}{4}n^2 + n$ for all $n \equiv 2 \pmod{4}$?
- Does a constant ε > 0 exist such that F₄(n) ≥ (¹/₁₆ + ε)n² for infinitely many values of n?

•
$$F_6(n) \ge \frac{1}{4}n^2 + n$$
 for all $n \equiv 2 \pmod{4}$.

G.A. Dirac 1952

► $F_k(n) > c_k n^2$ when $k \ge 4$, where $c_4 \ge 1/16$ and $c_5 \ge 4/31$. B. Toft 1970

T.R.J. 2002

Critical Graphs

▶ $C_k \leq \frac{k-2}{2(k-1)}$.

T.R.J. 2002

*F*₆(*n*) ≥
$$\frac{1}{4}n^2 + n$$
 for all *n* ≡ 2 (mod 4).
G.A. Dirac 1952
 F_k(*n*) > *c_kn²* when *k* ≥ 4, where *c*₄ ≥ 1/16 and *c*₅ ≥ 4/31.
B. Toft 1970
 c_k ≤ $\frac{k-2}{2(k-1)}$.

T.R.J. 2002

Let $f_k(n)$ be the minimal number of edges of a critical k-chromatic graph of order n, where $k \ge 4$ and $n \ge k + 2$.

- What is a best possible lower bound on f_k(n)?
- ▶ Does equality hold in $f_4(n) \leq \lfloor 5n/3 \rfloor$?
- Determine R(k, s) such that

$$2|E| \ge (k-1)|V| + R(k,s)$$

is true if $K_s \not\subseteq G$.

G.A. Dirac 1957 B. Toft 1974

▲□▶▲圖▶▲臣▶▲臣▶ = ● ● ●

Let $f_k(n)$ be the minimal number of edges of a critical k-chromatic graph of order n, where $k \ge 4$ and $n \ge k + 2$.

- What is a best possible lower bound on f_k(n)?
- ▶ Does equality hold in $f_4(n) \leq \lfloor 5n/3 \rfloor$?

Determine R(k, s) such that

$$2|E| \ge (k-1)|V| + R(k,s)$$

is true if $K_s \not\subseteq G$.

G.A. Dirac 1957 B. Toft 1974

▲口 ▶ ▲圖 ▶ ▲目 ▶ ▲目 ▶ ▲目 ◆ ○ ◆ ○ ◆

Let $f_k(n)$ be the minimal number of edges of a critical k-chromatic graph of order n, where $k \ge 4$ and $n \ge k + 2$.

- What is a best possible lower bound on f_k(n)?
- Does equality hold in $f_4(n) \leq \lfloor 5n/3 \rfloor$?

• Determine R(k, s) such that

$$2|E| \ge (k-1)|V| + R(k,s)$$

is true if $K_s \not\subseteq G$.

G.A. Dirac 1957 B. Toft 1974

▲□▶▲圖▶▲圖▶▲圖▶ ▲圖▶ 圖 のQ@

Let $f_k(n)$ be the minimal number of edges of a critical k-chromatic graph of order n, where $k \ge 4$ and $n \ge k + 2$.

- What is a best possible lower bound on f_k(n)?
- Does equality hold in $f_4(n) \leq \lfloor 5n/3 \rfloor$?
- Determine R(k, s) such that

$$2|E| \geq (k-1)|V| + R(k,s)$$

is true if $K_s \not\subseteq G$.

G.A. Dirac 1957 B. Toft 1974

Let $f_k(n)$ be the minimal number of edges of a critical k-chromatic graph of order n, where $k \ge 4$ and $n \ge k + 2$.

- What is a best possible lower bound on f_k(n)?
- Does equality hold in $f_4(n) \leq \lfloor 5n/3 \rfloor$?
- Determine R(k, s) such that

$$2|E| \geq (k-1)|V| + R(k,s)$$

is true if $K_s \not\subseteq G$.

G.A. Dirac 1957 B. Toft 1974

▲口を▲聞を▲目を▲目を一回、今へ⊙

- ► $2f_k(n) \ge (k-1+(k-3)/((k-c)(k-1)+k-3))n$ for $k \ge 6$, where c = (k-5)(1/2-1/(k-1)(k-2)). A.V. Kostochka & M. Stiebitz 2003
- ► The constant (k 1) in $2|E| \ge (k 1)|V| + R(k, s)$ has been improved.

M. Krivelevich 1998

- ► $2f_k(n) \ge (k-1+(k-3)/((k-c)(k-1)+k-3))n$ for $k \ge 6$, where c = (k-5)(1/2-1/(k-1)(k-2)). A.V. Kostochka & M. Stiebitz 2003
- ► The constant (k 1) in $2|E| \ge (k 1)|V| + R(k, s)$ has been improved.

M. Krivelevich 1998

Let $\delta_k(n)$ be the largest minimal degree of a critical *k*-chromatic graph of order *n*.

- ▶ Is there a constant c > 0 such that $\delta_4(n) \ge cn$?
- What is the order of magnitude of $\delta_5(n)$?
- ▶ Do *r*-regular critical 4-chromatic graphs exist for all *r* ≥ 3?
 P. Erdős 1949,1989

Let $\delta_k(n)$ be the largest minimal degree of a critical *k*-chromatic graph of order *n*.

- ▶ Is there a constant c > 0 such that $\delta_4(n) \ge cn$?
- What is the order of magnitude of $\delta_5(n)$?
- ▶ Do *r*-regular critical 4-chromatic graphs exist for all *r* ≥ 3?
 P. Erdős 1949,1989

Let $\delta_k(n)$ be the largest minimal degree of a critical *k*-chromatic graph of order *n*.

- ▶ Is there a constant c > 0 such that $\delta_4(n) \ge cn$?
- What is the order of magnitude of δ₅(n)?
- ▶ Do *r*-regular critical 4-chromatic graphs exist for all *r* ≥ 3?
 P. Erdős 1949,1989

Let $\delta_k(n)$ be the largest minimal degree of a critical *k*-chromatic graph of order *n*.

- ▶ Is there a constant c > 0 such that $\delta_4(n) \ge cn$?
- What is the order of magnitude of δ₅(n)?
- ► Do *r*-regular critical 4-chromatic graphs exist for all $r \ge 3$?

P. Erdős 1949,1989

・ロト ・ 同ト ・ ヨト ・ ヨト

Let $\delta_k(n)$ be the largest minimal degree of a critical *k*-chromatic graph of order *n*.

- ▶ Is there a constant c > 0 such that $\delta_4(n) \ge cn$?
- What is the order of magnitude of δ₅(n)?
- ► Do *r*-regular critical 4-chromatic graphs exist for all *r* ≥ 3? P. Erdős 1949.1989

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

 $\blacktriangleright \ \delta_4(n) \ge c\sqrt[3]{n}.$

M. Simonovits 1972 & B. Toft 1972

► $\delta_6(n) \ge n/2$.

G.A. Dirac 1949

There are infinitely many 4-regular critical 4-chromatic graphs.

T. Gallai 1963

There are infinitely many 5-regular critical 4-chromatic graphs.

T.R.J. 2002

There exists a *r*-regular critical 4-chromatic graph for each r = 6, 8, 10.

A.A. Dobrynin, L.S. Mel'nikov & A.V. Pyatkin 2003

・ロト・西ト・ヨト・ヨー うへぐ

 $\triangleright \ \delta_4(n) \geq c\sqrt[3]{n}.$

M. Simonovits 1972 & B. Toft 1972

δ₆(n) ≥ n/2.

G.A. Dirac 1949

There are infinitely many 4-regular critical 4-chromatic graphs.

T. Gallai 1963

There are infinitely many 5-regular critical 4-chromatic graphs.

T.R.J. 2002

There exists a *r*-regular critical 4-chromatic graph for each r = 6, 8, 10.

A.A. Dobrynin, L.S. Mel'nikov & A.V. Pyatkin 2003

▲□▶▲□▶▲□▶▲□▶ □ のへで

 $\triangleright \ \delta_4(n) \geq c\sqrt[3]{n}.$

M. Simonovits 1972 & B. Toft 1972

► $\delta_6(n) \ge n/2$.

G.A. Dirac 1949

 There are infinitely many 4-regular critical 4-chromatic graphs.

T. Gallai 1963

There are infinitely many 5-regular critical 4-chromatic graphs.

T.R.J. 2002

There exists a *r*-regular critical 4-chromatic graph for each r = 6, 8, 10.

A.A. Dobrynin, L.S. Mel'nikov & A.V. Pyatkin 2003

▲□▶▲□▶▲□▶▲□▶ □ のへで

 $\triangleright \ \delta_4(n) \geq c\sqrt[3]{n}.$

M. Simonovits 1972 & B. Toft 1972

► $\delta_6(n) \ge n/2$.

G.A. Dirac 1949

There are infinitely many 4-regular critical 4-chromatic graphs.

T. Gallai 1963

 There are infinitely many 5-regular critical 4-chromatic graphs.

T.R.J. 2002

There exists a *r*-regular critical 4-chromatic graph for each r = 6, 8, 10.

A.A. Dobrynin, L.S. Mel'nikov & A.V. Pyatkin 2003

▲□▶▲□▶▲□▶▲□▶ □ ● のへぐ

 $\triangleright \ \delta_4(n) \geq c\sqrt[3]{n}.$

M. Simonovits 1972 & B. Toft 1972

► $\delta_6(n) \ge n/2$.

G.A. Dirac 1949

There are infinitely many 4-regular critical 4-chromatic graphs.

T. Gallai 1963

 There are infinitely many 5-regular critical 4-chromatic graphs.

T.R.J. 2002

• There exists a *r*-regular critical 4-chromatic graph for each r = 6, 8, 10.

A.A. Dobrynin, L.S. Mel'nikov & A.V. Pyatkin 2003

G is amenable if for every non-constant $f : V \to \{1, 2, ..., k\}$ there exists a *k*-coloring $\varphi : V \to \{1, 2, ..., k\}$ such that $\varphi(v) \neq f(v)$ for all $v \in V$.

What is the minimal order n_k of a critical k-chromatic graph which is not amenable?

> T. Gallai 1963 B. Toft 1970

G is amenable if for every non-constant $f: V \to \{1, 2, ..., k\}$ there exists a *k*-coloring $\varphi: V \to \{1, 2, ..., k\}$ such that $\varphi(v) \neq f(v)$ for all $v \in V$.

What is the minimal order n_k of a critical k-chromatic graph which is not amenable?

> T. Gallai 1963 B. Toft 1970

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 つんの

G is amenable if for every non-constant $f : V \to \{1, 2, ..., k\}$ there exists a *k*-coloring $\varphi : V \to \{1, 2, ..., k\}$ such that $\varphi(v) \neq f(v)$ for all $v \in V$.

What is the minimal order n_k of a critical k-chromatic graph which is not amenable?

> T. Gallai 1963 B. Toft 1970

・ロト ・ 同ト ・ ヨト ・ ヨト

▶ n₄ ≥ 10. J.I. Brown, D. Kelly, J. Schönheim & R.E. Woodrow 1990

►
$$n_k \le 11k - 24$$
 for all $k \ge 5$.
B.Aa. Sørensen & B. Toft 1974

*n*₄ ≤ 50.
 B. Toft 1987

▶ n₄ ≥ 10. J.I. Brown, D. Kelly, J. Schönheim & R.E. Woodrow 1990

►
$$n_k \le 11k - 24$$
 for all $k \ge 5$.
B.Aa. Sørensen & B. Toft 1974

- *n*₄ ≤ 50.
 B. Toft 1987
- *n*₄ ≥ 10.
 J.I. Brown, D. Kelly, J. Schönheim & R.E. Woodrow 1990

Assuming that

- G is critical 4-chromatic,
- v is a vertex of degree 5 in G and N(v) is its set of neighbors,
- $f: N(v) \rightarrow \{1, 2, 3\}$ is a non-constant map,

does a 3-coloring $\varphi : V \setminus \{v\} \to \{1, 2, 3\}$ of G - v exist that satisfies $\varphi(x) \neq f(x)$ for all $x \in N(v)$?

B. Toft 1974

イロト イボト イヨト イヨト

Assuming that

- G is critical 4-chromatic,
- v is a vertex of degree 5 in G and N(v) is its set of neighbors,
- $f: N(v) \rightarrow \{1, 2, 3\}$ is a non-constant map,

does a 3-coloring $\varphi : V \setminus \{v\} \to \{1, 2, 3\}$ of G - v exist that satisfies $\varphi(x) \neq f(x)$ for all $x \in N(v)$?

B. Toft 1974

・ロト ・ 同ト ・ ヨト ・ ヨト

Assuming that

- G is critical 4-chromatic,
- v is a vertex of degree 5 in G and N(v) is its set of neighbors,
- $f: N(v) \rightarrow \{1, 2, 3\}$ is a non-constant map,

does a 3-coloring $\varphi : V \setminus \{v\} \to \{1, 2, 3\}$ of G - v exist that satisfies $\varphi(x) \neq f(x)$ for all $x \in N(v)$?

B. Toft 1974

・ロト ・ 同ト ・ ヨト ・ ヨト

Assuming that

- G is critical 4-chromatic,
- v is a vertex of degree 5 in G and N(v) is its set of neighbors,
- $f: N(v) \rightarrow \{1, 2, 3\}$ is a non-constant map,

does a 3-coloring $\varphi : V \setminus \{v\} \to \{1, 2, 3\}$ of G - v exist that satisfies $\varphi(x) \neq f(x)$ for all $x \in N(v)$?

B. Toft 1974

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 つんの

Assuming that

- G is critical 4-chromatic,
- v is a vertex of degree 5 in G and N(v) is its set of neighbors,
- $f: N(v) \rightarrow \{1, 2, 3\}$ is a non-constant map,

does a 3-coloring $\varphi : V \setminus \{v\} \to \{1, 2, 3\}$ of G - v exist that satisfies $\varphi(x) \neq f(x)$ for all $x \in N(v)$?

B. Toft 1974

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 つんの

True for any vertex v of degree < 5, but false for vertices of degree > 5.

For critical *k*-chromatic graphs, and precoloring with k - 1 colors, when k > 4: true for vertices of degree $\le 2k - 3$, and false for degree $\ge 2k - 2$.

B. Toft 1974

- True for any vertex v of degree < 5, but false for vertices of degree > 5.
- ▶ For critical *k*-chromatic graphs, and precoloring with k 1 colors, when k > 4: true for vertices of degree $\leq 2k 3$, and false for degree $\geq 2k 2$.

B. Toft 1974

ヘロト 人間 とくほ とくほ とう

Assume that a graph F is a subgraph of some critical k-chromatic graph.

Is F a subgraph of a critical k-chromatic graph H of order

 $|V(H)| \leq c_k |V(F)|,$

where c_k depends only on k?

M. Stiebitz 1987

Assume that a graph F is a subgraph of some critical k-chromatic graph.

Is F a subgraph of a critical k-chromatic graph H of order

 $|V(H)| \leq c_k |V(F)|,$

where c_k depends only on k?

M. Stiebitz 1987

э

ヘロト 人間 とくほ とくほ とう

Assume that a graph F is a subgraph of some critical k-chromatic graph.

Is F a subgraph of a critical k-chromatic graph H of order

$$|V(H)| \leq c_k |V(F)|,$$

where c_k depends only on k?

M. Stiebitz 1987

A (10) A (10) A (10) A

If F is any (k − 2)-colorable graph, there exists a critical k-chromatic graph H with F as subgraph, and satisfying

 $|V(H)| \leq 2|V(F)| + d_k,$

where d_k depends only on k.

B. Toft 1974

э

ヘロト 人間 とくほ とくほ とう

What is the minimal value L_k(n) of the length of a longest cycle in a critical k-chromatic graph of order at least n?

J.B. Kelly and L.M. Kelly 1954

不得下 イヨト イヨト

What is the minimal value L_k(n) of the length of a longest cycle in a critical k-chromatic graph of order at least n?
 J.B. Kelly and L.M. Kelly 1954

Bounds for $k \ge 4$:

- ► $L_k(n) < 2(k-1) \log n / \log(k-2)$ for infinitely many n. T. Gallai 1963
- ► $L_k(n) \ge 2\sqrt{\log(n-1)/\log(k-2)}$. N. Alon, M. Krivelevich & P.D. Seymour 2000

Bounds for $k \ge 4$:

► $L_k(n) < 2(k-1) \log n / \log(k-2)$ for infinitely many *n*. T. Gallai 1963

► $L_k(n) \ge 2\sqrt{\log(n-1)/\log(k-2)}$. N. Alon, M. Krivelevich & P.D. Seymour 2000

Bounds for $k \ge 4$:

► $L_k(n) < 2(k-1) \log n / \log(k-2)$ for infinitely many *n*. T. Gallai 1963

►
$$L_k(n) \ge 2\sqrt{\log(n-1)/\log(k-2)}$$
.
N. Alon, M. Krivelevich & P.D. Seymour 2000

Assume $G \neq K_k$. Choose $a, b \ge 2$ so that a + b = k + 1.

- Does G contain two disjoint subgraphs of chromatic numbers a and b?
- In particular (b = 2), is K_k the only k-chromatic double-critical graph? That is, if G − u − v is (k − 2)-colorable for every edge uv ∈ E, then this implies G = K_k?

P. Erdős and L. Lovász 1968

Assume $G \neq K_k$. Choose $a, b \ge 2$ so that a + b = k + 1.

- Does G contain two disjoint subgraphs of chromatic numbers a and b?
- In particular (b = 2), is K_k the only k-chromatic double-critical graph? That is, if G − u − v is (k − 2)-colorable for every edge uv ∈ E, then this implies G = K_k?

P. Erdős and L. Lovász 1968

Assume $G \neq K_k$. Choose $a, b \ge 2$ so that a + b = k + 1.

- Does G contain two disjoint subgraphs of chromatic numbers a and b?
- In particular (b = 2), is K_k the only k-chromatic double-critical graph? That is, if G − u − v is (k − 2)-colorable for every edge uv ∈ E, then this implies G = K_k?

P. Erdős and L. Lovász 1968

ヘロト 人間 とくほ とくほ とう

Assume $G \neq K_k$. Choose $a, b \ge 2$ so that a + b = k + 1.

- Does G contain two disjoint subgraphs of chromatic numbers a and b?
- In particular (b = 2), is K_k the only k-chromatic double-critical graph? That is, if G − u − v is (k − 2)-colorable for every edge uv ∈ E, then this implies G = K_k?

P. Erdős and L. Lovász 1968

ヘロト 人間 とくほ とくほ とう

True for

 $(k, a, b) \in \{(4, 2, 3), (5, 2, 4), (5, 3, 3), (6, 3, 4), (7, 3, 5)\}.$ W.G. Brown & H.A. Jung 1969 N.N. Mozhan 1986 M. Stiebitz 1987, 1988

▲□▶▲□▶▲□▶▲□▶ ▲□▶ □ ● ● ●

Does every critical k-chromatic graph contain a large critical (k – 1)-chromatic subgraph?

J. Nešetřil and V. Rödl 1973

< ロト (同) (三) (三)

э

Does every critical k-chromatic graph contain a large critical (k – 1)-chromatic subgraph?

J. Nešetřil and V. Rödl 1973

э

• True for k = 4.

J.B. Kelly & L.M. Kelly 1954 H.-J. Voss 1977, 1991

▶ If every critical (k - 1)-chromatic subgraph is a K_{k-1} , then *G* is a K_k .

M. Stiebitz 1987

- True for k = 4.
- J.B. Kelly & L.M. Kelly 1954 H.-J. Voss 1977, 1991 ► If every critical (*k* − 1)-chromatic subgraph is a *K*_{*k*−1}, then *G* is a *K*_{*k*}.

M. Stiebitz 1987

Let P be a path of length 2 in G.

► Is there a critical (k − 1)-chromatic subgraph of G which contains P?

B. Toft 1974

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Critical Graphs

Let P be a path of length 2 in G.

► Is there a critical (k − 1)-chromatic subgraph of G which contains P?

B. Toft 1974

э

ヘロト 人間 ト ヘヨト ヘヨト

Let P be a path of length 2 in G.

► Is there a critical (k − 1)-chromatic subgraph of G which contains P?

B. Toft 1974

э

ヘロト 人間 ト ヘヨト ヘヨト

• True for k = 4.

G.A. Dirac 1964

For all e₁, e₂ ∈ E there exists a critical (k − 1)-chromatic subgraph of G containing e₁ but not e₂.

B. Toft 1974

• True for k = 4.

G.A. Dirac 1964

For all e₁, e₂ ∈ E there exists a critical (k − 1)-chromatic subgraph of G containing e₁ but not e₂.

B. Toft 1974

G is a partial join of G_1 and G_2 if both are induced subgraphs of *G*, and if $V = V(G_1) \cup V(G_2)$.

- Characterize the critical graphs that are partial joins of other critical graphs.
- In particular, when is a partial join of two odd cycles a critical graph?
- When is a partial join of a complete graph with another critical graph again critical?

T. Gallai 1969

・ロト ・ 同ト ・ ヨト ・ ヨト

G is a partial join of G_1 and G_2 if both are induced subgraphs of *G*, and if $V = V(G_1) \cup V(G_2)$.

- Characterize the critical graphs that are partial joins of other critical graphs.
- In particular, when is a partial join of two odd cycles a critical graph?
- When is a partial join of a complete graph with another critical graph again critical?

T. Gallai 1969

G is a partial join of G_1 and G_2 if both are induced subgraphs of *G*, and if $V = V(G_1) \cup V(G_2)$.

- Characterize the critical graphs that are partial joins of other critical graphs.
- In particular, when is a partial join of two odd cycles a critical graph?
- When is a partial join of a complete graph with another critical graph again critical?

T. Gallai 1969

G is a partial join of G_1 and G_2 if both are induced subgraphs of *G*, and if $V = V(G_1) \cup V(G_2)$.

- Characterize the critical graphs that are partial joins of other critical graphs.
- In particular, when is a partial join of two odd cycles a critical graph?
- When is a partial join of a complete graph with another critical graph again critical?

T. Gallai 1969

ヘロト 人間 とくほ とくほ とう

G is a partial join of G_1 and G_2 if both are induced subgraphs of *G*, and if $V = V(G_1) \cup V(G_2)$.

- Characterize the critical graphs that are partial joins of other critical graphs.
- In particular, when is a partial join of two odd cycles a critical graph?
- When is a partial join of a complete graph with another critical graph again critical?

T. Gallai 1969

ヘロト 人間 とくほ とくほ とう

If a partial join of two complete graphs is critical, then the join is a complete join (⇔ the complement of a bipartite graph is perfect).

T. Gallai 1969

A characterization of critical partial joins of complete graphs with odd cycles is known.

M. Stiebitz & W. Wessel 1993

If a partial join of two complete graphs is critical, then the join is a complete join (⇔ the complement of a bipartite graph is perfect).

T. Gallai 1969

A characterization of critical partial joins of complete graphs with odd cycles is known.

M. Stiebitz & W. Wessel 1993

- Does a critical k-chromatic graph of order n contain n distinct critical (k – 1)-chromatic subgraphs?
- Does a vertex-critical k-chromatic graph of order n contain n distinct vertex-critical (k – 1)-chromatic subgraphs?
- ▶ If $G \neq K_k$, is there an edge of *G* that is contained in at most one complete subgraph of order k 1?

T. Gallai 1984 Xiang-Ying Su 1994

- Does a critical k-chromatic graph of order n contain n distinct critical (k – 1)-chromatic subgraphs?
- Does a vertex-critical k-chromatic graph of order n contain n distinct vertex-critical (k – 1)-chromatic subgraphs?
- ▶ If $G \neq K_k$, is there an edge of *G* that is contained in at most one complete subgraph of order k 1?

T. Gallai 1984 Xiang-Ying Su 1994

くロト 不得下 イヨト イヨト

- Does a critical k-chromatic graph of order n contain n distinct critical (k – 1)-chromatic subgraphs?
- Does a vertex-critical k-chromatic graph of order n contain n distinct vertex-critical (k – 1)-chromatic subgraphs?
- ▶ If $G \neq K_k$, is there an edge of *G* that is contained in at most one complete subgraph of order k 1?

T. Gallai 1984 Kiang-Ying Su 1994

- Does a critical k-chromatic graph of order n contain n distinct critical (k – 1)-chromatic subgraphs?
- Does a vertex-critical k-chromatic graph of order n contain n distinct vertex-critical (k – 1)-chromatic subgraphs?
- ▶ If $G \neq K_k$, is there an edge of *G* that is contained in at most one complete subgraph of order k 1?

T. Gallai 1984 Xiang-Ying Su 1994

► A critical k-chromatic graph contains at least log n distinct critical (k - 1)-chromatic subgraphs.

M. Stiebitz 1985

A vertex-critical *k*-chromatic graph contains at least $\sqrt[k-1]{n(k-1)!}$ vertex-critical (k-1)-chromatic subgraphs. H.L. Abbott & Bing Zhou 1992

If k ≤ 7, and if G ≠ K_k, then there is an edge of G that is contained in at most one complete subgraph of order k − 1. Xiang-Ying Su 1994

► A critical k-chromatic graph contains at least log n distinct critical (k - 1)-chromatic subgraphs.

M. Stiebitz 1985

- A vertex-critical *k*-chromatic graph contains at least $\sqrt[k-1]{n(k-1)!}$ vertex-critical (k-1)-chromatic subgraphs. H.L. Abbott & Bing Zhou 1992
- If k ≤ 7, and if G ≠ K_k, then there is an edge of G that is contained in at most one complete subgraph of order k − 1. Xiang-Ying Su 1994

► A critical k-chromatic graph contains at least log n distinct critical (k - 1)-chromatic subgraphs.

M. Stiebitz 1985

- A vertex-critical *k*-chromatic graph contains at least $\sqrt[k-1]{n(k-1)!}$ vertex-critical (k-1)-chromatic subgraphs. H.L. Abbott & Bing Zhou 1992
- If k ≤ 7, and if G ≠ K_k, then there is an edge of G that is contained in at most one complete subgraph of order k − 1. Xiang-Ying Su 1994

An element $x \in V \cup E$ is critical if $\chi(G - x) < \chi(G)$.

- Does there exist a vertex-critical 4-chromatic graph without critical edges?
- ▶ Is there a function $f : \mathbb{N} \to \mathbb{N}$ such that there exists for each $k \ge 5$ a vertex-critical *k*-chromatic graph G_k with

 $\chi(G_k - A) = k$ for all $A \subset E(G_k)$ with $|A| \leq f(|V(G_k)|)$?

If f exists, how fast may it increase?

G.A. Dirac ? P. Erdős 1989

An element $x \in V \cup E$ is critical if $\chi(G - x) < \chi(G)$.

- Does there exist a vertex-critical 4-chromatic graph without critical edges?
- ▶ Is there a function $f : \mathbb{N} \to \mathbb{N}$ such that there exists for each $k \ge 5$ a vertex-critical *k*-chromatic graph G_k with

 $\chi(G_k - A) = k$ for all $A \subset E(G_k)$ with $|A| \leq f(|V(G_k)|)$?

If f exists, how fast may it increase?

G.A. Dirac ? P. Erdős 1989

An element $x \in V \cup E$ is critical if $\chi(G - x) < \chi(G)$.

- Does there exist a vertex-critical 4-chromatic graph without critical edges?
- Is there a function *f* : N → N such that there exists for each *k* ≥ 5 a vertex-critical *k*-chromatic graph *G_k* with

$$\chi(G_k - A) = k$$
 for all $A \subset E(G_k)$ with $|A| \leq f(|V(G_k)|)$?

If f exists, how fast may it increase?

G.A. Dirac ? P. Erdős 1989

- ロト - (周ト - (ヨト - (ヨト -)

An element $x \in V \cup E$ is critical if $\chi(G - x) < \chi(G)$.

- Does there exist a vertex-critical 4-chromatic graph without critical edges?
- Is there a function *f* : N → N such that there exists for each *k* ≥ 5 a vertex-critical *k*-chromatic graph *G_k* with

$$\chi(G_k - A) = k$$
 for all $A \subset E(G_k)$ with $|A| \leq f(|V(G_k)|)$?

If f exists, how fast may it increase?

G.A. Dirac ? P. Erdős 1989

・ロト ・ 雪 ト ・ ヨ ト ・

- For each k ≥ 5 there are infinitely many vertex-critical k-chromatic graphs without critical edges. Still the bound f ≥ 1 is the best known lower bound on the growth of f.
- There exists a vertex-critical 5-chromatic graph with two edge-disjoint critical 5-chromatic subgraphs.
- There exists a vertex-critical 5-chromatic graph H satisfying

$$\chi(H-A) = k$$
 for all $A \subset E(H)$ with $|A| \leq 2$

T.R.J. 2002

- For each k ≥ 5 there are infinitely many vertex-critical k-chromatic graphs without critical edges. Still the bound f ≥ 1 is the best known lower bound on the growth of f.
- There exists a vertex-critical 5-chromatic graph with two edge-disjoint critical 5-chromatic subgraphs.
- There exists a vertex-critical 5-chromatic graph H satisfying

$$\chi(H-A) = k$$
 for all $A \subset E(H)$ with $|A| \le 2$

T.R.J. 2002

- For each k ≥ 5 there are infinitely many vertex-critical k-chromatic graphs without critical edges. Still the bound f ≥ 1 is the best known lower bound on the growth of f.
- There exists a vertex-critical 5-chromatic graph with two edge-disjoint critical 5-chromatic subgraphs.
- There exists a vertex-critical 5-chromatic graph H satisfying

$$\chi(H-A) = k$$
 for all $A \subset E(H)$ with $|A| \leq 2$

T.R.J. 2002

- 同下 - ヨト - ヨト

Construction of critical graphs.

Does a construction of critical k-chromatic graphs exist, starting from K_k and applying elementary steps in which each intermediate graph is itself critical k-chromatic?

G. Hajós 1961

Critical Graphs

Construction of critical graphs.

Does a construction of critical k-chromatic graphs exist, starting from K_k and applying elementary steps in which each intermediate graph is itself critical k-chromatic?

G. Hajós 1961

Critical Graphs

Construction of critical graphs.

 The classical Hajós and Ore constructions do not achieve this for any value k ≥ 4.
 D. Hanson, G.C. Robinson & B. Toft 1986 T.R.J. & G.F. Royle 1999

- Critical graphs have been studied for the past 60 years by a number of the most prominent combinatorialists.
- And yet, almost all classical problems on critical graphs remain open.
- Outlook
 - Complexity issues for hard problems gain increasing importance. Perhaps this may lead to renewed interest in problems about criticality.

- Critical graphs have been studied for the past 60 years by a number of the most prominent combinatorialists.
- And yet, almost all classical problems on critical graphs remain open.
- Outlook
 - Complexity issues for hard problems gain increasing importance. Perhaps this may lead to renewed interest in problems about criticality.

- Critical graphs have been studied for the past 60 years by a number of the most prominent combinatorialists.
- And yet, almost all classical problems on critical graphs remain open.

Outlook

 Complexity issues for hard problems gain increasing importance. Perhaps this may lead to renewed interest in problems about criticality.

- Critical graphs have been studied for the past 60 years by a number of the most prominent combinatorialists.
- And yet, almost all classical problems on critical graphs remain open.
- Outlook
 - Complexity issues for hard problems gain increasing importance. Perhaps this may lead to renewed interest in problems about criticality.

・ 同下 ・ ヨト ・ ヨト

Thank you!

|▲□▶▲圖▶▲≣▶▲≣▶ = ● ● ●

Critical Graphs

For Further Reading I

🦫 T.R. Jensen & B. Toft

Graph Coloring Problems (Chapter 5). Wiley-Interscience 1995.

http://www.imada.sdu.dk/~btoft/graphcol

A 3 1 A 3 1

Critical Graphs