On spherical dual width

Sho Suda

Tohoku University, POSTECH

August 21,2009

Sho Suda (Tohoku University, POSTECH)

Q-polynomial scheme

- Design (Delsarte,1973)
- Dual width (Brouwer-Godsil-Koolen-Martin,2003)

Sphere

- Spherical design (Delsarte-Goethals-Seidel, 1977)
- Spherical dual width (in this talk)

Definition (Symmetric Association Schemes)

Let X be a finite set and $\mathcal{R} = \{R_0, R_1, \dots, R_d\}$ be a set of non-empty subsets of $X \times X$.

Let A_i be the adjacency matrix of the graph (X, R_i) .

 (X, \mathcal{R}) is a symmetric association scheme if

(1) A_0 is the identity matrix;

(2)
$$\sum_{i=0}^{d} A_i = J$$
, where J is the all ones matrix;

(3)
$$A_i^T = A_i$$
 for $1 \le i \le d$;

(4) $A_i A_j$ is a linear combination of A_0, A_1, \ldots, A_d for $0 \le i, j \le d$.

The vector space \mathcal{A} spanned by the A_i is an algebra. \mathcal{A} is called the Bose-Mesner algebra of (X, \mathcal{R}) . Since \mathcal{A} is commutative and is closed under borh entrywise and ordinary multiplication, there exist two canonical bases of \mathcal{A} :

A

$$\{A_0 = I, A_1, \dots, A_d\} \qquad \{E_0 = \frac{1}{|X|}J, E_1, \dots, E_d\}$$
$$A_i \circ A_j = \delta_{i,j}A_i \qquad E_iE_j = \delta_{i,j}E_i$$
$$A_iA_j = \sum_{k=0}^d p_{i,j}^kA_k \qquad E_i \circ E_j = \frac{1}{|X|}\sum_{k=0}^d q_{i,j}^kE_k$$
$$A_i = \sum_{j=0}^d P_{j,i}E_j \qquad E_i = \frac{1}{|X|}\sum_{j=0}^d Q_{j,i}A_j$$

P-,Q-polynomiality

Definition (*P*-polynomial)

 (X, \mathcal{R}) is *P*-polynomial with respect to the ordering $\{A_i\}_{i=0}^d$ if for each *i* there is a polynomial v_i with degree *i* such that $A_i = v_i(A_1)$.

 \triangleright *P*-polynomial scheme = Distance-regular graph.

Definition (Q-polynomial)

 (X, \mathcal{R}) is Q-polynomial with respect to the ordering $\{E_i\}_{i=0}^d$ if for each *i* there is a polynomial v_i^* with degree *i* such that $E_i = v_i^* \circ (E_1)$.

Notation: $f \circ (M)$ is matrix obtained by applying *f* to each entry.

Design and dual width in Q-polynomial scheme

Let (X, \mathcal{R}) be a Q-polynomial scheme with respect to the ordering E_0, E_1, \ldots, E_d .

Let Y be a subset of X, and χ be the characteristic vector of Y. We define $b_i = \frac{|Y|}{|X|} \chi^T E_i \chi$ for $0 \le i \le d$.

Definition (Design)

Y is a *t*-design if $b_1 = \cdots = b_t = 0 \neq b_{t+1}$.

Definition (Dual width)

Y has a dual width w^* if $b_{w^*} \neq 0 = b_{w^*+1} = \cdots = b_d$.

Well known results

Let (X, \mathcal{R}) be a Q-polynomial scheme.

Let Y be a subset in X which is *t*-design with dual width w^* and degree s of Y is defined by

$$\mathbf{s} = |\{j \mid \chi^T \mathbf{A}_{j\chi} \neq \mathbf{0}\}|.$$

Theorem(Delsarte, 1973)

If $2s - 2 \le t$, then Y induces a Q-polynomial scheme.

Theorem(Brouwer-Godsil-Koolen-Martin,2003)

 $w^* \ge d - s$ holds. If equality holds, Y induces a Q-polynomial scheme.

Sho Suda (Tohoku University, POSTECH)

Spherical design

Definition (Spherical *t***-design)**

 $X \subset S^{d-1}$ is a spherical *t*-design if

$$\frac{1}{|X|}\sum_{x\in X}f(x)=\frac{1}{|S^{d-1}|}\int_{S^{d-1}}f(x)d\sigma(x)$$

for all
$$f(x) \in \bigoplus_{l=1}^t \bigoplus_{k=0}^{\lfloor \frac{l}{2} \rfloor} (x_1^2 + \dots + x_d^2)^k \operatorname{Harm}_{l-2k}(\mathbb{R}^d).$$

Spherical design is generalized as follows;

- (1) sphere is replaced by another space; (E.g.) Euclidean design
- (2) add integration to weight function; (E.g.) Weighted spherical design
- (3) the vector space ℝ[x₁,..., x_d]_{≤t} is replaced by another vector space;(E.g.) in this talk

Spherical dual width

Definition (Spherical (w^*, t) -design)

 $X \subset S^{d-1}$ is a spherical (w^*, t) -design if

$$\frac{1}{|X|}\sum_{x\in X}f(x)=\frac{1}{|S^{d-1}|}\int_{S^{d-1}}f(x)d\sigma(x)$$

for all
$$f(x) \in \bigoplus_{l=1}^t \bigoplus_{k=0}^{\lfloor \frac{l}{2} \rfloor} (x_1^2 + \dots + x_d^2)^k \operatorname{Harm}_{\mathbf{w}^* + l - 2k}(\mathbb{R}^d).$$

 \triangleright A spherical (0, *t*)-design coincides with a spherical *t*-design.

Definition (Spherical dual width)

 w^* is a spherical dual width of X if X is a spherical (w^*, t) -design and is not a spherical $(w^* - 1, t)$ -design.

Characterization of spherical designs

Let X be finite set in S^{m-1} . We define $b_k = \sum_{x,y \in X} Q_k(\langle x, y \rangle)$ for $k \in \mathbb{N}$. $Q_0(x) = 1, Q_1(x) = x, \frac{k+1}{m+2k}Q_{k+1}(x) = xQ_k(x) - \frac{m+k-3}{m+2k-4}Q_{k-1}(x)$.

Proposition

The following are equivalent;

(1) X is a spherical t-design;

(2)
$$b_1 = \cdots = b_t = 0.$$

Proposition

The following are equivalent;

(1) X is a spherical
$$(w^*, t)$$
-design ;

(2)
$$b_{w^*+1} = \cdots = b_{w^*+t} = 0.$$

Main result

We define inner product set $A(X) := \{\langle x, y \rangle \mid x, y \in X, x \neq y\}$. Let d = |A(X)| and $A(X) = \{\alpha_1, \dots, \alpha_d\}, \alpha_0 = 1$. $R_k = \{(x, y) \in X \times X \mid \langle x, y \rangle = \alpha_k\}$. Let X be a (w^*, t) -design.

Theorem(Delsarte-Goethals-Seidel,1977)

Assume $w^* = 0$. If $2d - 2 \le t$, then $(X, \{R_k\}_{k=0}^d)$ is a Q-polynomial association scheme.

Theorem(S)

Assume $w^* \ge 1$. If $2d - 1 \le t$, then $(X, \{R_k\}_{k=0}^d)$ is a Q-polynomial association scheme.