On spherical dual width

Sho Suda

Tohoku University,POSTECH

August 21,2009

Subsets in Q-polynomial scheme and sphere

Q-polynomial scheme
\triangleright Design (Delsarte,1973)
\triangleright Dual width (Brouwer-Godsil-Koolen-Martin,2003)
Sphere
\triangleright Spherical design (Delsarte-Goethals-Seidel,1977)
\triangleright Spherical dual width (in this talk)

Symmetric Association Schemes

Definition (Symmetric Association Schemes)

Let X be a finite set and $\mathcal{R}=\left\{R_{0}, R_{1}, \ldots, R_{d}\right\}$ be a set of non-empty subsets of $X \times X$.
Let A_{i} be the adjacency matrix of the graph $\left(X, R_{i}\right)$.
(X, \mathcal{R}) is a symmetric association scheme if
(1) A_{0} is the identity matrix;
(2) $\sum_{i=0}^{d} A_{i}=J$, where J is the all ones matrix;
(3) $A_{i}^{T}=A_{i}$ for $1 \leq i \leq d$;
(4) $A_{i} A_{j}$ is a linear combination of $A_{0}, A_{1}, \ldots, A_{d}$ for $0 \leq i, j \leq d$.

The vector space \mathcal{A} spanned by the A_{i} is an algebra.
\mathcal{A} is called the Bose-Mesner algebra of (X, \mathcal{R}).

Parameters of Bose-Mesner algebra

Since \mathcal{A} is commutative and is closed under borh entrywise and ordinary multiplication, there exist two canonical bases of \mathcal{A} :

$$
\begin{array}{lr}
\left\{A_{0}=l, A_{1}, \ldots, A_{d}\right\} & \left\{E_{0}=\frac{1}{|X|} J, E_{1}, \ldots, E_{d}\right\} \\
A_{i} \circ A_{j}=\delta_{i, j} A_{i} & E_{i} E_{j}=\delta_{i, j} E_{i} \\
A_{i} A_{j}=\sum_{k=0}^{d} p_{i, j}^{k} A_{k} & E_{i} \circ E_{j}=\frac{1}{|X|} \sum_{k=0}^{d} q_{i, j}^{k} E_{k} \\
A_{i}=\sum_{j=0}^{d} P_{j, i} E_{j} & E_{i}=\frac{1}{|X|} \sum_{j=0}^{d} Q_{j, i} A_{j}
\end{array}
$$

P-, Q-polynomiality

Definition (P-polynomial)

(X, \mathcal{R}) is P-polynomial with respect to the ordering $\left\{A_{i}\right\}_{i=0}^{d}$ if for each i there is a polynomial v_{i} with degree i such that $A_{i}=v_{i}\left(A_{1}\right)$.
$\triangleright P$-polynomial scheme $=$ Distance-regular graph.

Definition (Q-polynomial)

(X, \mathcal{R}) is Q-polynomial with respect to the ordering $\left\{E_{i}\right\}_{i=0}^{d}$ if for each i there is a polynomial v_{i}^{*} with degree i such that $E_{i}=v_{i}^{*} \circ\left(E_{1}\right)$.

Notation: $f \circ(M)$ is matrix obtained by applying f to each entry.

Design and dual width in Q-polynomial scheme

Let (X, \mathcal{R}) be a Q-polynomial scheme with respect to the ordering $E_{0}, E_{1}, \ldots, E_{d}$.
Let Y be a subset of X, and χ be the characteristic vector of Y. We define $b_{i}=\frac{|Y|}{|X|} \chi^{\top} E_{i} \chi$ for $0 \leq i \leq d$.

Definition (Design)

Y is a t-design if $b_{1}=\cdots=b_{t}=0 \neq b_{t+1}$.

Definition (Dual width)

Y has a dual width w^{*} if $b_{w^{*}} \neq 0=b_{w^{*}+1}=\cdots=b_{d}$.

Well known results

Let (X, \mathcal{R}) be a Q-polynomial scheme.
Let Y be a subset in X which is t-design with dual width w^{*} and degree s of Y is defined by

$$
s=\left|\left\{j \mid \chi^{T} A_{j \chi} \neq 0\right\}\right|
$$

Theorem(Delsarte,1973)

If $2 s-2 \leq t$, then Y induces a Q-polynomial scheme.

Theorem(Brouwer-Godsil-Koolen-Martin,2003)

$w^{*} \geq d-s$ holds. If equality holds, Y induces a Q-polynomial scheme.

Spherical design

Definition (Spherical t-design)

$X \subset S^{d-1}$ is a spherical t-design if

$$
\frac{1}{|X|} \sum_{x \in X} f(x)=\frac{1}{\left|S^{d-1}\right|} \int_{S^{d-1}} f(x) d \sigma(x)
$$

for all $f(x) \in \bigoplus_{l=1}^{t} \bigoplus_{k=0}^{\left[\frac{1}{2}\right]}\left(x_{1}^{2}+\cdots+x_{d}^{2}\right)^{k} \operatorname{Harm}_{l-2 k}\left(\mathbb{R}^{d}\right)$.
Spherical design is generalized as follows;
(1) sphere is replaced by another space;(E.g.) Euclidean design
(2) add integration to weight function; (E.g.) Weighted spherical design
(3) the vector space $\mathbb{R}\left[x_{1}, \ldots, x_{d}\right]_{\leq t}$ is replaced by another vector space;(E.g.) in this talk

Spherical dual width

Definition (Spherical (w^{*}, t)-design)

$X \subset S^{d-1}$ is a spherical $\left(w^{*}, t\right)$-design if

$$
\frac{1}{|X|} \sum_{x \in X} f(x)=\frac{1}{\left|S^{d-1}\right|} \int_{S^{d-1}} f(x) d \sigma(x)
$$

for all $f(x) \in \bigoplus_{l=1}^{t} \bigoplus_{k=0}^{\left[\frac{1}{2}\right]}\left(x_{1}^{2}+\cdots+x_{d}^{2}\right)^{k} \operatorname{Harm}_{w^{*}+l-2 k}\left(\mathbb{R}^{d}\right)$.
\triangleright A spherical $(0, t)$-design coincides with a spherical t-design.

Definition (Spherical dual width)

w^{*} is a spherical dual width of X if X is a spherical (w^{*}, t)-design and is not a spherical $\left(w^{*}-1, t\right)$-design.

Characterization of spherical designs

Let X be finite set in S^{m-1}.

We define $b_{k}=\sum_{x, y \in X} Q_{k}(\langle x, y\rangle)$ for $k \in \mathbb{N}$.

$$
Q_{0}(x)=1, Q_{1}(x)=x, \frac{k+1}{m+2 k} Q_{k+1}(x)=x Q_{k}(x)-\frac{m+k-3}{m+2 k-4} Q_{k-1}(x)
$$

Proposition

The following are equivalent;
(1) X is a spherical t-design;
(2) $b_{1}=\cdots=b_{t}=0$.

Proposition

The following are equivalent;
(1) X is a spherical $\left(w^{*}, t\right)$-design ;
(2) $b_{w^{*}+1}=\cdots=b_{w^{*}+t}=0$.

Main result

> We define inner product set $A(X):=\{\langle x, y\rangle \mid x, y \in X, x \neq y\}$. Let $d=|A(X)|$ and $A(X)=\left\{\alpha_{1}, \ldots, \alpha_{d}\right\}, \alpha_{0}=1$. $R_{k}=\left\{(x, y) \in X \times X \mid\langle x, y\rangle=\alpha_{k}\right\}$. Let X be a $\left(w^{*}, t\right)$-design.

Theorem(Delsarte-Goethals-Seidel,1977)

Assume $w^{*}=0$. If $2 d-2 \leq t$, then $\left(X,\left\{R_{k}\right\}_{k=0}^{d}\right)$ is a Q-polynomial association scheme.

Theorem(S)

Assume $w^{*} \geq 1$. If $2 d-1 \leq t$, then $\left(X,\left\{R_{k}\right\}_{k=0}^{d}\right)$ is a Q-polynomial association scheme.

