A Dice Rolling Game on a Set of Toruses

Jeehoon Kang, Suh-Ryung Kim and Boram PARK* (Seoul National University)

2009. 8. 20

Fiver game

Fiver Game

7×7 board

Fiver game

Fiver Game

7×7 board

Fiver game

Fiver Game

7×7 board

Fiver game

Fiver Game

"Is it possible to change from being completely full of white pieces to entirely black pieces?"

A variant of Fiver game

A variant of Fiver game

7×7 board

A variant of Fiver game

A variant of Fiver game

$$
7 \times 7 \text { board }
$$

A variant of Fiver game

A variant of Fiver game

$$
7 \times 7 \text { board }
$$

A variant of Fiver game

A variant of Fiver game

7×7 board

A variant of Fiver game

2	0	0	1	0	0	2
0	1	1	2	1	1	0
1	0	1	1	0	1	0
2	0	1	0	1	0	0
2	0	0	1	2	0	2
0	0	0	2	0	1	0
0	2	2	1	2	0	1

2	0	0	1	1	1	0
0	1	1	2	1	1	0
1	0	1	1	0	1	0
2	0	1	0	1	0	0
2	0	0	1	2	0	2
0	0	0	2	0	1	0
0	2	2	1	0	1	2

2	0	0	1	1	1	0
0	1	1	2	1	1	0
1	0	1	1	0	1	0
0	0	1	0	1	1	1
0	0	0	1	2	1	0
0	0	0	2	0	1	0
0	2	2	1	0	1	2

Elements of Z_{3} are located on 7×7 board

A variant of Fiver game

A variant of Fiver game

"Given a torus, is it possible to have 0 appear on the top face of each square on the torus?"

A Dice Rolling Game on a set of Toruses

A Dice Rolling Game on a set of Toruses

- Given a positive integer n, an n-dice is a dice with n faces such that element i of \mathbb{Z}_{n} is written on the i th face.
- Given positive integers α_{1}, α_{2}, we arbitrarily locate $\alpha_{1} \alpha_{2}$ n-dice in an $\alpha_{1} \times \alpha_{2}$ rectangular array, and glue the lower and upper together and also the left and right edges.
$\Rightarrow \alpha_{1} \alpha_{2} n$-dice on a torus

A Dice Rolling Game on a set of Toruses

A Dice Rolling Game on a set of Toruses

- $\mathcal{D}\left(\left(\alpha_{1}, \alpha_{2}\right), n\right)$: the set of toruses on each of which $\alpha_{1} \alpha_{2}$ n-dice are located.
- "(β_{1}, β_{2})-rolling procedure": For positive integers β_{1}, β_{2}, $\beta_{1} \leq \alpha_{1}, \beta_{2} \leq \alpha_{2}$ and a torus belonging to $\mathcal{D}\left(\left(\alpha_{1}, \alpha_{2}\right)\right.$, n), we roll the dice which form a $\beta_{1} \times \beta_{2}$ rectangular array on the torus so that we increase the number on the top face of each of them by 1 .

A Dice Rolling Game on a set of Toruses

Example: " $\left(\beta_{1}, \beta_{2}\right)$-rolling procedure"

A torus in $\mathcal{D}((19,8), 3)$ and the torus resulting from going through a $(2,4)$-rolling procedure

A Dice Rolling Game on a set of Toruses

Definition of $\left(\left(\alpha_{1}, \alpha_{2}\right) ;\left(\beta_{1}, \beta_{2}\right) ; n\right)$-DR game "Given a torus in $\mathcal{D}\left(\left(\alpha_{1}, \alpha_{2}\right), n\right)$, is it possible to have 0 appear on the top face of each of $\alpha_{1} \alpha_{2} n$-dice on the torus by repeatedly applying (β_{1}, β_{2})-rolling procedures?" We call this game the dice rolling game on $\mathcal{D}\left(\left(\alpha_{1}, \alpha_{2}\right)\right.$, n) with respect to $\left(\beta_{1}, \beta_{2}\right)$-rolling procedures or the $\left(\left(\alpha_{1}, \alpha_{2}\right) ;\left(\beta_{1}, \beta_{2}\right) ; n\right)$-DR game for short.

solution of the $\left(\left(\alpha_{1}, \alpha_{2}\right) ;\left(\beta_{1}, \beta_{2}\right) ; n\right)$-DR game

We say that a torus for which the answer to the above question is yes is a solution of the $\left(\left(\alpha_{1}, \alpha_{2}\right) ;\left(\beta_{1}, \beta_{2}\right) ; n\right)$-DR game.

$\left(\left(\alpha_{1}, \alpha_{2}\right) ;\left(\beta_{1}, \beta_{2}\right) ; n\right)$-DR game

Basic Notations

- $\mathcal{M}\left(\left(\alpha_{1}, \alpha_{2}\right), n\right)$: the set of $\alpha_{1} \times \alpha_{2}$ matrices with elements in \mathbb{Z}_{n}
- For each element $A \in \mathcal{M}\left(\left(\alpha_{1}, \alpha_{2}\right), n\right)$, we denote by $[A]_{i, j}$ the element of \mathbb{Z}_{n} in the (i, j)-entry.
- Given $A, B \in \mathcal{M}\left(\left(\alpha_{1}, \alpha_{2}\right), n\right)$,

$$
[A+B]_{i, j}=[A]_{i, j}+[B]_{i, j} \quad \text { and } \quad[c A]_{i, j}=c[A]_{i, j}
$$

for any $c \in R, 0 \leq i \leq \alpha_{1}-1,0 \leq j \leq \alpha_{2}-1$.

- $E_{i, j}: \alpha_{1} \times \alpha_{2}$ matrix with 1 in the (i, j)-entry and 0 elsewhere.

$\left(\left(\alpha_{1}, \alpha_{2}\right) ;\left(\beta_{1}, \beta_{2}\right) ; n\right)$-DR game

Basic Notations

- For positive integers m_{1}, m_{2} and integers k_{1}, k_{2} $0 \leq k_{1} \leq \alpha_{1}-1,0 \leq k_{2} \leq \alpha_{2}-1$,

$$
J_{k_{1}, k_{2}}^{\left(m_{1}, m_{2}\right)}=\sum_{i=0}^{m_{1}-1} \sum_{j=0}^{m_{2}-1} E_{k_{1}+i, k_{2}+j}
$$

(example) $\alpha_{1}=6, \alpha_{2}=8, \beta_{1}=2, \beta_{2}=2, n=5$.

$$
J_{1,2}^{(3,2)}=
$$

0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0
0	0	1	1	0	0	0	0
0	0	1	1	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

- Especially, we denote $J_{k_{1}, k_{2}}^{\left(\beta_{1}, \beta_{2}\right)}$ by $J_{k_{1}, k_{2}}^{*}$.

$\left(\left(\alpha_{1}, \alpha_{2}\right) ;\left(\beta_{1}, \beta_{2}\right) ; n\right)$-DR game

Solution Matrix

- \boldsymbol{A} is a solution matrix of the $\left(\left(\alpha_{1}, \alpha_{2}\right) ;\left(\beta_{1}, \beta_{2}\right) ; n\right)$ - $D R$ game if A can be O by adding a linear combination of $J_{.}^{*}$..
- \boldsymbol{A} is a solution matrix of the $\left(\left(\alpha_{1}, \alpha_{2}\right) ;\left(\beta_{1}, \beta_{2}\right) ; n\right)$-DR game if and only if there exist $c_{i, j} \in \mathbb{Z}$ such that $A+\sum_{j=0}^{\alpha_{2}-1} \sum_{i=0}^{\alpha_{1}-2} c_{i, j} J_{i, j}^{*}=O$. We call matrix $\left(c_{i, j}\right)$ a solving coefficient matrix of the $\left(\left(\alpha_{1}, \alpha_{2}\right) ;\left(\beta_{1}, \beta_{2}\right) ; n\right)$-DR game corresponding to A.

Main Results:

Characterizing solution matrices of the ($\left.\left(\alpha_{1}, \alpha_{2}\right) ;\left(\beta_{1}, \beta_{2}\right) ; n\right)$-DR game

Definitions for $C_{i, j}, R_{i, j}$ and $Q_{i, j}$

- $g_{i}=\operatorname{gcd}\left(\alpha_{i}, \beta_{i}\right)$ for $i=1,2$ and $\beta_{i}=s_{i} g_{i}$.
- For integers i, j,
\exists integers $t_{i}, u_{i}, v_{j}, w_{j}\left(0 \leq u_{i} \leq g_{1}-1,0 \leq w_{j} \leq g_{2}-1\right)$
s.t. $i=t_{i} g_{1}+u_{i}, j=v_{j} g_{2}+w_{j}$.
\exists positive integers ζ_{i}, η_{j}
s.t. $t_{i} g_{1} \equiv \zeta_{i} \beta_{1}\left(\bmod \alpha_{1}\right), v_{j} g_{2} \equiv \eta_{j} \beta_{2}\left(\bmod \alpha_{2}\right)$.

For integers $i, j,\left(0 \leq i \leq \alpha_{1}-1,0 \leq j \leq \alpha_{2}-1\right)$

$$
\begin{aligned}
C_{i, j} & =\sum_{m=0}^{\eta_{j}-1}\left(J_{i, w_{j}+m \beta_{2}}^{*}-J_{i, w_{j}+m \beta_{2}+1}^{*}\right) \\
R_{i, j} & =\sum_{m=0}^{\zeta_{i}-1}\left(J_{u_{i}+m \beta_{1}, j}^{*}-J_{u_{i}+m \beta_{1}+1, j}^{*}\right) \\
Q_{i, j} & =\sum_{m=0}^{\zeta_{i}-1}\left(C_{u_{i}+m \beta_{1}, j}-C_{u_{i}+m \beta_{1}+1, j}\right)
\end{aligned}
$$

Example

In the $((6,8) ;(2,4) ; 5)$-DR game, $g_{1}=2$ and $g_{2}=4$,

$$
C_{2,7}=\begin{array}{|c|c|c|c|c|c|c|c|}
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 1 & 0 & 0 & 0 & -1 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0
\end{array} .
$$

$C_{2,7}=J_{2,3}^{*}-J_{2,4}^{*}$

$=$| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 |
| 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

$-$| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
| 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

$C_{i, j}=\sum_{a=0}^{\beta_{i-1}^{1}}\left(E_{i+2, w_{i}}-E_{i+a j}\right)$
$g_{i}=\operatorname{gcd}\left(\alpha_{i}, \beta_{i}\right)$ for $i=1,2$ and $\beta_{i}=s_{i} g_{i}$.

$C_{i, j}=O$ if $0 \leq j \leq g_{2}-1$

Introduction

$$
C_{i, j}=\sum_{a=0}^{\beta_{1}-1}\left(E_{i+a, w_{j}}-E_{i+a, j}\right)
$$

$$
g_{i}=\operatorname{gcd}\left(\alpha_{i}, \beta_{i}\right) \text { for } i=1,2 \text { and } \beta_{i}=s_{i} g_{i} .
$$

$$
\begin{aligned}
C_{i, j} & =\sum_{m=0}^{\eta_{j}-1}\left(J_{i, w_{j}+m \beta_{2}}^{*}-J_{i, w_{j}+m \beta_{2}+1}^{*}\right) \\
& =\sum_{m=0}^{\eta_{j}-1}\left[\left(\sum_{a=0}^{\beta_{1}-1} \sum_{b=0}^{\beta_{2}-1} E_{i+a, w_{j}+m \beta_{2}+b}\right)-\left(\sum_{a=0}^{\beta_{1}-1} \sum_{b=0}^{\beta_{2}-1} E_{i+a, w_{j}+m \beta_{2}+b+1}\right)\right] \\
& =\sum_{m=0}^{\eta_{j}-1} \sum_{a=0}^{\beta_{1}-1} \sum_{b=0}^{\beta_{2}-1}\left(E_{i+a, w_{j}+m \beta_{2}+b}-E_{i+a, w_{j}+m \beta_{2}+b+1}\right) \\
& =\sum_{m=0}^{\eta_{j}-1} \sum_{a=0}^{\beta_{1}-1}\left(E_{i+a, w_{j}+m \beta_{2}}-E_{i+a, w_{j}+(m+1) \beta_{2}}\right) \\
& =\sum_{a=0}^{\beta_{1}-1}\left(E_{i+a, w_{j}}-E_{i+a, w_{j}+\eta_{j} \beta_{2}}\right)=\sum_{a=0}^{\beta_{1}-1}\left(E_{i+a, w_{j}}-E_{i+a, j}\right) .
\end{aligned}
$$

Example

In the $((6,8) ;(2,4) ; 5)$-DR game, $g_{1}=2$ and $g_{2}=4$,

$$
R_{5,4}=
$$

0	0	0	0	0	0	0	0
0	0	0	0	1	1	1	1
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	-1	-1	-1	-1

$R_{5,4}=\left(J_{1,4}^{*}-J_{2,4}^{*}\right)+\left(J_{3,4}^{*}-J_{4,4}^{*}\right)$

$=$| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |$-$| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 |

$R_{i, j}=\sum_{b=0}^{\beta_{2}-1}\left(E_{u_{i}, j+b}-E_{i, j+b}\right)$
$g_{i}=\operatorname{gcd}\left(\alpha_{i}, \beta_{i}\right)$ for $i=1,2$ and $\beta_{i}=s_{i} g_{i}$.

$R_{i, j}=O$ if $0 \leq i \leq g_{1}-1$

Example

In the $((6,8) ;(2,4) ; 5)$-DR game, $g_{1}=2$ and $g_{2}=4$,

$Q_{3,7}=$| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 0 | 0 | 0 | 0 | 0 | -1 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | -1 | 0 | 0 | 0 | 0 | 0 | 1 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |.

$Q_{i, j}=E_{u_{i, w_{j}}}-E_{i, w_{j}}-E_{u_{i, j}}+E_{i, j}$

$g_{i}=\operatorname{gcd}\left(\alpha_{i}, \beta_{i}\right)$ for $i=1,2$ and $\beta_{i}=s_{i} g_{i}$.

$Q_{i, j}=O$ if $0 \leq i \leq g_{1}-1$ or $0 \leq j \leq g_{2}-1$

Introduction

$Q_{i, j}=E_{u_{i, w_{j}}}-E_{i, w_{j}}-E_{u_{i, j}}+E_{i, j}$

$$
\begin{aligned}
Q_{i, j}= & \sum_{m=0}^{\zeta_{i}-1}\left(C_{u_{i}+m \beta_{1}, j}-C_{u_{i}+m \beta_{1}+1, j}\right) \\
= & \sum_{m=0}^{\zeta_{i}-1}\left[\sum_{a=0}^{\beta_{1}-1}\left(E_{u_{i}+m \beta_{1}+a, w_{j}}-E_{u_{i}+m \beta_{1}+a, j}\right)\right. \\
& \left.\quad-\sum_{a=0}^{\beta_{1}-1}\left(E_{u_{i}+m \beta_{1}+a+1, w_{j}}-E_{u_{i}+m \beta_{1}+a+1, j}\right)\right] \\
= & \sum_{m=0}^{\zeta_{i}-1}\left[\sum_{a=0}^{\beta_{1}-1}\left(E_{u_{i}+m \beta_{1}+a, w_{j}}-E_{u_{i}+m \beta_{1}+a+1, w_{j}}\right)\right. \\
& \left.\quad-\sum_{a=0}^{\beta_{1}-1}\left(E_{u_{i}+m \beta_{1}+a, j}-E_{u_{i}+m \beta_{1}+a+1, j}\right)\right] \\
= & \sum_{m=0}\left(E_{u_{i}+m \beta_{1}, w_{j}}-E_{u_{i}+(m+1) \beta_{1}, w_{j}}\right)-\sum_{m=0}\left(E_{u_{i}+m \beta_{1}, j}-E_{u_{i}+(m+1) \beta_{1}, j}\right) \\
= & E_{u_{i}, w_{j}}-E_{u_{i}+\zeta_{i} \beta_{i}, w_{j}}-E_{u_{i}, j}+E_{u_{i}+\zeta_{i} \beta_{i}, j} \\
= & E_{u_{i}, w_{j}}-E_{i, w_{j}}-E_{u_{i}, j}+E_{i, j} .
\end{aligned}
$$

Functions \mathcal{T} and \mathcal{S}

$$
Q_{i, j}=O \text { if } 0 \leq i \leq g_{1}-1 \text { or } 0 \leq j \leq g_{2}-1
$$

Definition of the function \mathcal{T}

$$
\mathcal{T}(A):=A-\sum_{j=0}^{\alpha_{2}-1} \sum_{i=0}^{\alpha_{1}-1}[A]_{i, j} Q_{i, j}
$$

$$
\mathcal{T}(A):=A-\sum_{j=0}^{a_{2}-1} \sum_{i=0}^{\alpha_{1}-1}[A]_{i, j} Q_{i, j}
$$

$[T(A)]_{i, j}=0$ if $g_{1} \leq i$ and $g_{2} \leq j$.
For example, in the $((6,8) ;(2,2) ; 5)$-DR game, $g_{1}=\operatorname{gcd}(6,2)=2$,
$g_{2}=\operatorname{gcd}(8,2)=2, s_{1}=s_{2}=1$. Let

$$
A=\begin{array}{|c|c|c|c|c|c|c|c|}
\hline 1 & 1 & 0 & 4 & 4 & 1 & 1 & 0 \\
\hline 2 & 2 & 1 & 0 & 1 & 2 & 1 & 1 \\
\hline 1 & 1 & 1 & 0 & 1 & 1 & 3 & 4 \\
\hline 0 & 2 & 1 & 0 & 1 & 1 & 3 & 4 \\
\hline 2 & 2 & 3 & 1 & 0 & 1 & 4 & 3 \\
\hline 2 & 0 & 1 & 0 & 0 & 1 & 1 & 2 \\
\hline
\end{array} .
$$

$A-[A]_{2,6} Q_{2,6}=$

1	1	0	4	4	1	1	0
2	2	1	0	1	2	1	1
1	1	1	0	1	1	3	4
0	2	2	0	0	1	4	3
2	2	3	1	0	1	1	2
2	0	1	0	4	0	0	2

1	0	0	0	0	0	-1	0
0	0	0	0	0	0	0	0
-1	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

$$
\mathcal{T}(A):=A-\sum_{j=0}^{\alpha_{2}-1} \sum_{i=0}^{\alpha_{1}-1}[A]_{i, j} Q_{i, j}
$$

$[T(A)]_{i, j}=0$ if $g_{1} \leq i$ and $g_{2} \leq j$.
For example, in the $((6,8) ;(2,2) ; 5)$-DR game, $g_{1}=\operatorname{gcd}(6,2)=2$, $g_{2}=\operatorname{gcd}(8,2)=2, s_{1}=s_{2}=1$. Let

$$
A=\begin{array}{|c|c|c|c|c|c|c|c|}
\hline 1 & 1 & 0 & 4 & 4 & 1 & 1 & 0 \\
\hline 2 & 2 & 1 & 0 & 1 & 2 & 1 & 1 \\
\hline 1 & 1 & 1 & 0 & 1 & 1 & 3 & 4 \\
\hline 0 & 2 & 1 & 0 & 1 & 1 & 3 & 4 \\
\hline 2 & 2 & 3 & 1 & 0 & 1 & 4 & 3 \\
\hline 2 & 0 & 1 & 0 & 0 & 1 & 1 & 2 \\
\hline
\end{array} .
$$

$$
T(A)=A-\sum_{j=2}^{7}[A] i, j Q_{i, j}=2 \quad \begin{array}{|l|l|l|l|l|l|l|l|}
\hline 2 & 2 & 4 & 0 & 0 & 3 & 0 & 1 \\
\hline 1 & 1 & 4 & 0 & 0 & 3 & 0 & 1 \\
\hline 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 2 & 2 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array} .
$$

Introduction

$$
\mathcal{T}(A):=A-\sum_{j=0}^{a_{2}-1} \sum_{i=0}^{\alpha_{1}-1}[A]_{i, j} Q_{i, j}
$$

Functions \mathcal{T} and \mathcal{S}

Definition of the function \mathcal{S}

$$
\mathcal{S}(A):=\mathcal{T}(A)+\sum_{i=0}^{\alpha_{1}-1}[\mathcal{T}(A)]_{i, 0} \frac{1}{s_{2}} \mathcal{T}\left(R_{i, 0}\right)+\sum_{j=0}^{\alpha_{2}-1}[\mathcal{T}(A)]_{0, j} \frac{1}{s_{1}} \mathcal{T}\left(C_{0, j}\right)
$$

$$
\mathcal{S}(A):=\mathcal{T}(A)+\sum_{i=0}^{\alpha_{1}-1}[\mathcal{T}(A)]_{i, 0} \frac{1}{s_{2}} \mathcal{T}\left(R_{i, 0}\right)+\sum_{j=0}^{\alpha_{2}-1}[\mathcal{T}(A)]_{0, j} \frac{1}{s_{1}} \mathcal{T}\left(C_{0, j}\right)
$$

$$
T(A)=\begin{array}{|l|l|l|l|l|l|l|l|}
\hline 2 & 2 & 4 & 0 & 0 & 3 & 0 & 1 \\
\hline 1 & 1 & 4 & 0 & 0 & 3 & 0 & 1 \\
\hline 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 2 & 2 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array}
$$

$$
\begin{aligned}
\mathcal{S}(A)= & A-\sum_{j=2}^{7} \sum_{i=2}^{5}[A]_{i, j} Q_{i, j} \\
& +4 \mathcal{T}\left(C_{0,2}\right)+3 \mathcal{T}\left(C_{0,5}\right)+\mathcal{T}\left(C_{0,7}\right)+\mathcal{T}\left(R_{2,0}\right) \\
& +\mathcal{T}\left(R_{3,0}\right)+\mathcal{T}\left(R_{4,0}\right)+2 \mathcal{T}\left(R_{5,0}\right) \\
= & \begin{array}{|l|l|l|l|l|l|l}
3 & 3 & 0 & 0 & 0 & 0 & 0 \\
\hline 3 & 3 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array}
\end{aligned}
$$

Characterizing the solutions

Theorem (Main)

A matrix A in $\mathcal{M}\left(\left(\alpha_{1}, \alpha_{2}\right), n\right)$ is a solution matrix of the $\left(\left(\alpha_{1}, \alpha_{2}\right) ;\left(\beta_{1}, \beta_{2}\right) ; n\right)$-DR game if and only if for some d_{i}, e_{j}, $t \in \mathbb{Z}_{n}$,

$$
\begin{aligned}
& \mathcal{T}(A)=s_{2} \sum_{i=0}^{\alpha_{1}-1} d_{i} J_{i, 0}^{\left(1, g_{2}\right)}+s_{1} \sum_{j=0}^{\alpha_{2}-1} e_{j} J_{0, j}^{\left(g_{1}, 1\right)}-s_{1} s_{2} t J_{0,0}^{\left(g_{1}, g_{2}\right)} \\
& \mathcal{S}(A)=t s_{1} s_{2} J_{0,0}^{\left(g_{1}, g_{2}\right)}
\end{aligned}
$$

Example

For example, in the $((6,8) ;(2,2) ; 5)$-DR game, $g_{1}=\operatorname{gcd}(6,2)=2$, $g_{2}=\operatorname{gcd}(8,2)=2, s_{1}=s_{2}=1$. Let

$$
\begin{gathered}
A=\begin{array}{|l|l|l|l|l|l|l|l|}
\hline 1 & 1 & 0 & 4 & 4 & 1 & 1 & 0 \\
\hline 2 & 2 & 1 & 0 & 1 & 2 & 1 & 1 \\
\hline 1 & 1 & 1 & 0 & 1 & 1 & 3 & 4 \\
\hline 0 & 2 & 2 & 0 & 0 & 1 & 4 & 3 \\
\hline 2 & 2 & 3 & 1 & 0 & 1 & 1 & 2 \\
\hline 2 & 0 & 1 & 0 & 4 & 0 & 0 & 2 \\
\hline
\end{array} \\
T(A)=A-\sum_{j=2}=2
\end{gathered}
$$

Example

$$
\begin{aligned}
& \mathcal{S}(A)= A- \\
& \sum_{j=2}^{7} \sum_{i=2}^{5}[A]_{i, j} Q_{i, j} \\
&+4 \mathcal{T}\left(C_{0,2}\right)+3 \mathcal{T}\left(C_{0,5}\right)+\mathcal{T}\left(C_{0,7}\right)+\mathcal{T}\left(R_{2,0}\right) \\
&+\mathcal{T}\left(R_{3,0}\right)+\mathcal{T}\left(R_{4,0}\right)+2 \mathcal{T}\left(R_{5,0}\right) \\
&= \begin{array}{|l|l|l|l|l|l}
3 & 3 & 0 & 0 & 0 & 0 \\
\hline & 3 & 0 & 0 & 0 & 0 \\
\hline & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 \\
\hline & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 \\
\hline & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 \\
\hline
\end{array} J_{0,0}^{*} . \\
& \hline
\end{aligned}
$$

Therefore, A is a solution matrix by Main Theorem.

Example

$$
\begin{gathered}
\mathcal{T}(A):=A-\sum_{j=0}^{\alpha_{2}-1} \sum_{i=0}^{\alpha_{1}-1}[A]_{i, j} Q_{i, j} \\
\mathcal{S}(A):=\mathcal{T}(A) \\
+\sum_{i=0}^{\alpha_{1}-1}[\mathcal{T}(A)]_{i, 0} \frac{1}{s_{2}} \mathcal{T}\left(R_{i, 0}\right)+\sum_{j=0}^{\alpha_{2}-1}[\mathcal{T}(A)]_{0, j} \frac{1}{s_{1}} \mathcal{T}\left(C_{0, j}\right) \\
A-\sum_{j=0}^{\alpha_{2}-1} \sum_{i=0}^{\alpha_{1}-1}[A]_{i, j} Q_{i, j}+\sum_{i=0}^{\alpha_{1}-1}[\mathcal{T}(A)]_{i, 0} \frac{1}{s_{2}} \mathcal{T}\left(R_{i, 0}\right)+\sum_{j=0}^{\alpha_{2}-1}[\mathcal{T}(A)]_{0, j} \frac{1}{s_{1}} \mathcal{T}\left(C_{0, j}\right)-\mathcal{S}(A)=O
\end{gathered}
$$

Computing a solving coefficient matrix

$$
\begin{aligned}
& A-\sum_{j=2}^{7} \sum_{i=2}^{5}[A]_{i, j} Q_{i, j}+4 \mathcal{T}\left(C_{0,2}\right)+3 \mathcal{T}\left(C_{0,5}\right)+\mathcal{T}\left(C_{0,7}\right)+\mathcal{T}\left(R_{2,0}\right) \\
& \quad+\mathcal{T}\left(R_{3,0}\right)+\mathcal{T}\left(R_{4,0}\right)+2 \mathcal{T}\left(R_{5,0}\right)-3 J_{0,0}^{*}=O
\end{aligned}
$$

Example

Then a solving coefficient matrix of $((6,8) ;(2,2) ; 5)$-DR game corresponding to A is

$$
\left(\begin{array}{llllllll}
4 & 0 & 2 & 1 & 0 & 4 & 0 & 0 \\
4 & 0 & 4 & 0 & 3 & 1 & 4 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 2 & 0 \\
0 & 3 & 0 & 4 & 0 & 4 & 0 & 0 \\
3 & 2 & 2 & 3 & 3 & 2 & 3 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

1-dimensional case

Circles which are solution of dice rolling game

When $\alpha_{1}=\beta_{1}=1$, a matrix in $\mathcal{M}\left(\left(\alpha_{1}, \alpha_{2}\right), n\right)$ becomes an α_{2}-tuple, which are circles on each of which $\alpha_{2} n$-dice are located.

Figure: Circles in ((1, 12); $(1,4) ; 5)$-DR game

1-dimensional case

Case that $\alpha_{1}=\beta_{1}$
$R_{i, j}=O$ if $0 \leq i \leq g_{1}-1$
$C_{i, j}=O$ if $0 \leq j \leq g_{2}-1$
$Q_{i, j}=O$ if $0 \leq i \leq g_{1}-1$ or $0 \leq j \leq g_{2}-1$

$$
\text { If } \alpha_{1}=\beta_{1}, \quad \mathcal{T}(A)=A, \quad \mathcal{S}(A)=A+\sum_{j=0}^{\alpha_{2}-1}[A]_{0, j} C_{0, j}
$$

Suppose that $\alpha_{1}=\beta_{1}$. Then $g_{1}=\operatorname{gcd}\left(\alpha_{1}, \beta_{1}\right)=\alpha_{1}$ and so $s_{1}=1$.
Case that $\alpha_{1}=\beta_{1}$
A matrix A is a solution matrix of the $\left(\left(\alpha_{1}, \alpha_{2}\right) ;\left(\alpha_{1}, \beta_{2}\right) ; n\right)$-DR game if and only if

$$
A=s_{2} \sum_{i=0}^{\alpha_{1}-1} d_{i} J_{(i, 0)}^{\left(1, g_{2}\right)}+\sum_{j=0}^{\alpha_{2}-1} e_{j} J_{0, j}^{\left(g_{1}, 1\right)}-s_{2} t J_{0,0}^{\left(\alpha_{1}, g_{2}\right)}
$$

for some $d_{i}, e_{j}, t \in \mathbb{Z}_{n}$ and $\mathcal{S}(A)=u s_{2} J_{(0,0)}^{\left(\alpha_{1}, g_{2}\right)}$ for some $u \in \mathbb{Z}_{n}$.

1-dimensional case

Case that $\alpha_{1}=\beta_{1}$
If $\mathcal{S}(A)=u s_{2} J_{(0,0)}^{\left(\alpha_{1}, g_{2}\right)}$ for some $u \in \mathbb{Z}_{n}$, then it holds that

$$
\begin{aligned}
A & =-\mathcal{S}(A)+\sum_{j=0}^{\alpha_{2}-1}[A]_{0, j} C_{0, j}=-u s_{2} J_{(0,0)}^{\left(\alpha_{1}, g_{2}\right)}+\sum_{i=0}^{\alpha_{1}-1} \sum_{j=0}^{\alpha_{2}-1}[A]_{0, j}\left(E_{i, w_{j}}-E_{i, j}\right) \\
& =\sum_{j=0}^{g_{2}-1}\left(-u s_{2}\right) \sum_{i=0}^{\alpha_{1}-1} E_{i, j}+\sum_{j=0}^{\alpha_{2}-1}[A]_{0, j} \sum_{i=0}^{\alpha_{1}-1}\left(E_{i, w_{j}}-E_{i, j}\right) \\
& =\sum_{j=0}^{g_{2}-1}\left(-u s_{2}\right) \sum_{i=0}^{\alpha_{1}-1} E_{i, j}+\sum_{j=0}^{\alpha_{2}-1}[A]_{0, j} \sum_{i=0}^{\alpha_{1}-1}\left(E_{i, w_{j}}-E_{i, j}\right)=\sum_{j=0}^{\alpha_{2}-1} f_{j} \sum_{i=0}^{\alpha_{1}-1} E_{i, j}
\end{aligned}
$$

for some $f_{j} \in \mathbb{Z}_{n}$. Therefore for some $f_{j} \in \mathbb{Z}_{n}$,

$$
A=s_{2} \sum_{i=0}^{\alpha_{1}-1}\left(0 \cdot \sum_{j=0}^{g_{2}-1} E_{i, j}\right)+\sum_{j=0}^{\alpha_{2}-1}\left(f_{j} \sum_{i=0}^{\alpha_{1}-1} E_{i, j}\right)-s_{2} \cdot 0 \cdot J_{0,0}^{\left(\alpha_{1}, g_{2}\right)}
$$

1-dimensional case

Case that $\alpha_{1}=\beta_{1}$

A matrix A is a solution matrix of the $\left(\left(\alpha_{1}, \alpha_{2}\right) ;\left(\alpha_{1}, \beta_{2}\right) ; n\right)$-DR game if and only if

$$
\mathcal{S}(A)=u s_{2} J_{(0,0)}^{\left(\alpha_{1}, g_{2}\right)}
$$

for some $u \in \mathbb{Z}_{n}$.

Circles which are solution of dice rolling game

An ordered α_{2}-tuple \mathbf{v} is a solution matrix of the $\left(\left(1, \alpha_{2}\right) ;\left(1, \beta_{2}\right) ; n\right)$-DR game if and only if
$\mathcal{S}(\mathbf{v})=(\underbrace{u s_{2}, \ldots, u s_{2}}_{g_{2}}, 0, \ldots, 0)$ for some $u \in \mathbb{Z}_{n}$.
The 2-dimensional case can be generalized to the t-dimensional case for $t \geq 1$ if we can find a way to use notations more efficiently.

1-dimensional case

Case that $\alpha_{1}=\beta_{1}$

A matrix A is a solution matrix of the $\left(\left(\alpha_{1}, \alpha_{2}\right) ;\left(\alpha_{1}, \beta_{2}\right) ; n\right)$-DR game if and only if

$$
\mathcal{S}(A)=u s_{2} J_{(0,0)}^{\left(\alpha_{1}, g_{2}\right)}
$$

for some $u \in \mathbb{Z}_{n}$.

Circles which are solution of dice rolling game

An ordered α_{2}-tuple \mathbf{v} is a solution matrix of the $\left(\left(1, \alpha_{2}\right) ;\left(1, \beta_{2}\right) ; n\right)$-DR game if and only if
$\mathcal{S}(\mathbf{v})=(\underbrace{u s_{2}, \ldots, u s_{2}}_{g_{2}}, 0, \ldots, 0)$ for some $u \in \mathbb{Z}_{n}$.
The 2-dimensional case can be generalized to the t-dimensional case for $t \geq 1$ if we can find a way to use notations more efficiently.

Thank you very much.

