Semilattice Polymorphisms on Reflexive Graphs

Mark Siggers (joint work with Pavol Hell)

Kyungpook National University

August 21, 2009
Outline

- Polymorphisms
 - why we care about them
 - what are they
- Reflexive Graphs
- Semilattice Polymorphisms
- Semilattice Polymorphisms on Reflexive Graphs
- Chordal Reducible Graphs
Polymorphisms (why we care about them)
For every relational structure H
For every relational structure H there is a computational problem $\text{CSP}(H)$.
For every relational structure H there is a computational problem $\text{CSP}(H)$.
A homomorphism $\phi : G \rightarrow H$ is a vertex map that preserves relations.
A homomorphism $\phi : G \rightarrow H$ is a vertex map that preserves relations.
A homomorphism $\phi : G \rightarrow H$ is a vertex map that preserves relations.
A homomorphism $\phi : G \rightarrow H$ is a vertex map that preserves relations.
A homomorphism $\phi : G \rightarrow H$ is a vertex map that preserves relations.
We are interested in the computational complexity of $\text{CSP}(H)$.
We are interested in the computational complexity of CSP(H).
We are interested in the computational complexity of CSP(H).
We are interested in the computational complexity of $\text{CSP}(H)$.
Complexity

CSP(H)

NPC

NP

P
CSP Dichotomy Conjecture [Feder, Vardi ’99]

For any H, $\text{CSP}(H)$ is in either P or NPC.
The **CSP Dichotomy Conjecture** is true ...

- for structures on two vertices. *Schaefer ’78*
- for graphs. *Hell, Nešetřil ’92*
- for structures on three vertices. *Bulatov ’02*
- for conservative structures (list-colouring). *Bulatov ’06*
- for digraphs without sources or sinks. *Barto, Kozik, Niven ’09*
Theorem Jeavons ’00

The complexity of $\text{CSP}(H)$ is determined by the polymorphisms of H.
Polymorphisms (what are they)
Definition: Polymorphism

A polymorphism of H is d-ary operation on $V(H)$ that is compatible with relations of H.

$$\phi : V(H) \times \cdots \times V(H) \to V(H)$$
Definition: Polymorphism

A polymorphism of H is d-ary operation on $V(H)$ that is compatible with relations of H.

$$\phi : V(H) \times \cdots \times V(H) \rightarrow V(H)$$

$$\phi : (u_1, \ldots, u_d) \mapsto \phi(u_1, \ldots, u_d)$$
Definition: Polymorphism

A polymorphism of H is d-ary operation on $V(H)$ that is compatible with relations of H.

$$
\phi : V(H) \times \cdots \times V(H) \rightarrow V(H)
$$

$$
\phi : \begin{pmatrix}
(u_1, \ldots, u_d) \\
(v_1, \ldots, v_d)
\end{pmatrix} \mapsto \begin{pmatrix}
\phi(u_1, \ldots, u_d) \\
\phi(v_1, \ldots, v_d)
\end{pmatrix}
$$
Definition: Polymorphism

A polymorphism of H is d-ary operation on $V(H)$ that is compatible with relations of H.

$$\phi : V(H) \times \cdots \times V(H) \rightarrow V(H)$$

$\phi : \begin{bmatrix} [u_1], \ldots, [u_d] \\ [v_1], \ldots, [v_d] \end{bmatrix} \mapsto \begin{bmatrix} \phi(u_1, \ldots, u_d) \\ \phi(v_1, \ldots, v_d) \end{bmatrix}$
Definition: Polymorphism

A polymorphism of H is d-ary operation on $V(H)$ that is compatible with relations of H.

$$\phi : V(H) \times \cdots \times V(H) \to V(H)$$

$$\phi : \begin{pmatrix} [u_1], \ldots, [u_d] \\ [v_1], \ldots, [v_d] \end{pmatrix} \mapsto \begin{pmatrix} \phi(u_1, \ldots, u_d) \\ \phi(v_1, \ldots, v_d) \end{pmatrix}$$
Equivalent Definition: Polymorphism

A *polymorphism of* H *is a homomorphism of* H^d *to* H.
Equivalent Definition: Polymorphism

A polymorphism of H is a homomorphism of H^d to H.

The categorical product H^2:

![Diagram of H^2]
Equivalent Definition: Polymorphism

A polymorphism of H is a homomorphism of H^d to H.

The categorical product H^2:
Example: The 3-ary polymorphisms of K_2
Example: The 3-ary polymorphisms of K_2

$\text{Pol}(K_2)$
Example: The 3-ary polymorphisms of K_2

$\text{Pol}(K_2)$

000 001 010 100

111 110 101 011

0 1
Example: The 3-ary polymorphisms of K_2
Example: The 3-ary polymorphisms of K_2
Example: The 3-ary polymorphisms of K_2

\begin{align*}
000 & \quad 001 & \quad 010 & \quad 100 \\
111 & \quad 110 & \quad 101 & \quad 011 \\
\end{align*}

$\text{Pol}(K_2)$
Example: The 3-ary polymorphisms of K_2

$Pol(K_2)$

```
000 001 010 100
  111 110 101 011
  0 1
  etc
```
Example: The 2-ary polymorphisms of K_3
Example: The 2-ary polymorphisms of K_3
Example: The 2-ary polymorphisms of K_3
Theorem Jeavons ’00

If Pol(H) contains only projections, then CSP(H) is in NPC.
A polymorphism $\phi : H^d \rightarrow H$ is

WNU (weak near-unanimity)

if

$$\phi(x, x, \ldots, x, y) = \phi(x, x, \ldots, y, x) = \ldots$$

$$= \phi(y, x, \ldots, x, x)$$

for all $x, y \in V(H)$.
A polymorphism $\phi : H^d \rightarrow H$ is

WNU (weak near-unanimity)

if

\[
\phi(x, x, \ldots, x, y) = \phi(x, x, \ldots, y, x) = \ldots = \phi(y, x, \ldots, x, x)
\]

for all $x, y \in V(H)$.

Conjecture: [BJK’02; MM’08]

CSP(H) is in NPC if H admits no WNU polymorphisms, and is otherwise polynomial time solvable.
A polymorphism \(\phi : H^d \rightarrow H \) is

WNU (weak near-unanimity)

if

\[
\phi(x, x, \ldots, x, y) = \phi(x, x, \ldots, y, x) = \ldots
\]

\[
= \phi(y, x, \ldots, x, x)
\]

for all \(x, y \in V(H) \).
A polymorphism $\phi : H^d \to H$ is

NU (near-unanimity)

if

$$\phi(x, x, \ldots, x, y) = \phi(x, x, \ldots, y, x) = \ldots = \phi(y, x, \ldots, x, x) = x$$

for all $x, y \in V(H)$.
A polymorphism $\phi : H^d \rightarrow H$ is **NU** (near-unanimity) if

$$
\phi(x, x, \ldots, x, y) = \phi(x, x, \ldots, y, x) = \ldots = \phi(y, x, \ldots, x, x) = x
$$

for all $x, y \in V(H)$.

If H admits an NU polymorphism, then $\text{CSP}(H)$ is polynomial time solvable.
A polymorphism $\phi : H^d \to H$ is

TSI (totally symmetric idempotent)

if

$$\phi(u_1, \ldots, u_d) = \phi(v_1, \ldots, v_d)$$

whenever $\{u_1, \ldots, u_d\} = \{v_1, \ldots, v_d\}$ as sets.
A polymorphism $\phi : H^d \rightarrow H$ is

TSI (totally symmetric idempotent)

if

$$\phi(u_1, \ldots, u_d) = \phi(v_1, \ldots, v_d)$$

whenever \(\{u_1, \ldots, u_d\} = \{v_1, \ldots, v_d\}\) as sets.

If H admits a TSI polymorphism, then CSP(H) is polynomial time solvable.
Reflexive Graphs
Assume all graphs are connected, reflexive and have all singleton unary relations.

We draw

\[\text{to mean} \]
Why Reflexive Graphs?

- Dichotomy is done for irreflexive graphs, and hard for digraphs. Reflexive graphs are somewhere in between.
- Dichotomy is done for MinHOM of reflexive graphs. [GHRY ’07]. (Infact for digraphs with possible loops.)
- Reflexive graphs admitting NU polymorphisms have been characterised. [BFHHM ’06; LLT ’06].
Why Reflexive Graphs?

- Dichotomy is done for irreflexive graphs, and hard for digraphs. Reflexive graphs are somewhere in between.
- Dichotomy is done for MinHOM of reflexive graphs. [GHRY ’07]. (In fact for digraphs with possible loops.)
- Reflexive graphs admitting NU polymorphisms have been characterised. [BFHHM ’06; LLT ’06].

GHRY: Gutin Hell Rafiey Yeo
Why Reflexive Graphs?

- Dichotomy is done for irreflexive graphs, and hard for digraphs. Reflexive graphs are somewhere in between.
- Dichotomy is done for MinHOM of reflexive graphs. [GHRY '07]. (Infact for digraphs with possible loops.)
- Reflexive graphs admitting NU polymorphisms have been characterised. [BFHHM '06; LLT '06].

BFHHM: Brewster Feder Hell Huang MacGillivray;
LLT: Larose Loten Tardif
Towards dichotomy on reflexive graphs, we want to know what graphs admit WNU.
[LLT06] characterised those admitting NU.

Reflexive Graphs

\[\text{WNU} \sqsubset \text{NU} \]

August 21, 2009
19 / 37
[LLT06] characterised those admitting NU.
Goals

- Characterise reflexive graphs admitting TSI of all arities.
- Characterise reflexive graphs admitting TSI.
- Characterise reflexive graphs admitting WNU.
- Prove Dichotomy for reflexive graphs.
Semilattice Polymorphisms
Let ϕ be defined by

- idempotence.
- maximality on non-primed vertices (ties to min label)
- for mix of primed and non-primed entries, ignore the primed entries and do as in the previous step.

If all entries are primed then

- if they are i' and $(i + 1)'$, go to $i + 1$
- if they are $(i - 1)'$ and $(i + 1)'$, go to i
- if they are $(i - 1)'$, $(i)'$ and $(i + 1)'$, go to i
- otherwise, remove their primes (ie, read i' as i) and go to the min entry.
Definition

A 2-ary polymorphism $\phi : H^2 \rightarrow H$ is **SL (semilattice)** if it is idempotent, associative and commutative.
Definition

A 2-ary polymorphism $\phi : H^2 \rightarrow H$ is SL (semilattice) if it is idempotent, associative and commutative.

Such an operation is called semilattice because the partial ordering

$$u < v \text{ if } \phi(u, v) = u$$

of $V(H)$ is a meet semilattice.
Definition

A 2-ary polymorphism $\phi : H^2 \rightarrow H$ is SL (semilattice) if it is idempotent, associative and commutative.

$u < v$ if $\phi(u, v) = u$

Where \land is the associated meet, we have

$\phi(u, v) = u \land v$,

so we will denote SL polymorphisms by \land.
Semilattice Polymorphisms are easy to represent.

11 ∧ 7 = 1
And define TSI of every arity.

$$\phi : (v_1, \ldots, v_d) \mapsto v_1 \land \cdots \land v_d$$
And define TSI of every arity.
And define TSI of every arity.

\[\phi(9, 11, 12) = 9 \land 11 \land 12 = 6 \]
And define TSI of every arity.
Semilattice Polymorphisms on Reflexive Graphs
Given some vertices,
Given some vertices, a semilattice ordering,
Given some vertices, a semilattice ordering, and a reflexive graph on the vertices,
Given some vertices, a semilattice ordering, and a reflexive graph on the vertices, Is the semilattice *polymorphic*?
Polymorphism: \(u \sim u', v \sim v' \Rightarrow u \land v \sim u' \land v' \)
Polymorphism: \(u \sim u', v \sim v' \Rightarrow u \wedge v \sim u' \wedge v' \)
Consequential identities.
Consequential identities.
Consequential identities.
A semilattice polymorphism is ... embedded if every Hasse edge (blue edge) is a graph edge.
A semilattice polymorphism is ...

- **embedded** if every *Hasse* edge (blue edge) is a graph edge.
- **tree** if the Hasse edges induce a tree.
Types of Semilattice Polymorphisms

A semilattice polymorphism is ...

- **embedded** if every *Hasse* edge (blue edge) is a graph edge.
- **tree** if the Hasse edges induce a tree.
- **skeletal** if all graph edges are between comparable vertices.
Semilattice

TSI
Embedded skeletal tree

Embedded tree Skeletal tree

Embedded tree Skeletal

Semilattice

TSI
\[
\begin{align*}
\text{embedded skeletal tree} & = \text{embedded skeletal tree} \\
\text{embedded tree} & \quad \text{skeletal tree} \\
\text{embedded tree} & \quad \text{skeletal tree} \\
\text{Semilattice} & \\
\text{TSI} &
\end{align*}
\]
H admits a skeletal SL

\Rightarrow

H admits an embedded skeletal tree SL
H admits a skeletal SL

\Rightarrow

H admits an embedded skeletal tree SL
H admits a skeletal SL

\Rightarrow

H is chordal

\Rightarrow

H admits an embedded skeletal tree SL
\text{interval} = \text{path} \quad }
Proposition

H admits a tree SL,

\implies

H admits an embedded tree SL.
interval = path

chordal = skeletal = skeletal tree

embedded tree

embedded

Semilattice

TSI

Proposition

H admits a tree SL,

\Rightarrow

H admits an embedded tree SL.
interval = path

chordal = skeletal

embedded tree

embedded

Semilattice

TSI
$\text{interval} = \text{path} \neq \text{chordal} = \text{skeletal} = \text{embedded tree} = \text{Semilattice} = \text{TSI}$
interval = path

chordal = skeletal
= skeletal tree

embedded tree

embedded

Semilattice

TSI
interval = path

chordal = skeletal
 = skeletal
tree

embedded

Semilattice

TSI
interval = path
| ≠
| chondal = skeletal = skeletal
| ≠
| embedded
| ≠
| embedded
tree
| ≠
| embedded
| Semilattice
| ≠
| TSI
Proposition

This graph admits TSI but not SL
Proposition

This graph admits TSI but not SL

Corollary

The classes SL and NU (of reflexive graphs) are not equal.
interval = \text{path}

\text{chordal} = \text{skeletal} = \text{embedded}

\text{embedded} = \text{skeletal} = \text{tree}

\text{embedded} = \text{tree}

\text{embedded} = \text{skeletal}

\text{Semilattice}

\text{TSI}
interval = path
| ≠

chordal = skeletal
 | ≠
 | ≠
embedded tree
| ≠
embedded
| ?
Semilattice
| ≠
TSI

Known Classes?
Chordal Reducible Graphs
Given a graph H,
Given a graph H, take its clique graph $\text{CL}(H)$,
Given a graph H, take its clique graph $CL(H)$,
Given a graph H, take its clique graph $\text{CL}(H)$,
Given a graph H, take its clique graph $CL(H)$, and add edges between them according to incidence: $CR(H)$.
Given a graph H, take its clique graph $CL(H)$, and add edges between them according to incidence: $CR(H)$.
If we can remove edges from H such that it remains connected, and the full graph $CR^*(H)$ is chordal, then H is **chordal reducible**.
- Chordal graphs are chordal reducible.
- Graphs with a universal vertex are chordal reducible.
- Chordal reducible graphs have NU of some arity.
- Chordal graphs are chordal reducible.
- Graphs with a universal vertex are chordal reducible.
- Chordal reducible graphs have NU of some arity.
- Is there a poly time algorithm for recognising chordal reducible graphs?
- Are all graphs with 4-NU chordal reducible?
- Do chordal reducible graphs fit into our hierarchy?
Proposition

Chordal reducible graphs admit embedded tree polymorphisms.
chordal = skeletal
embedded
tree

chordal reducible

embedded tree

V V V
\[\text{chordal} = \text{skeletal} = \text{reducible} \]

- embedded tree
- chordal reducible
- chordal embedded tree
chordal = skeletal
embedded

tree

chordal reducible
embedded
tree

\[\text{chordal} = \text{skeletal} \circ \text{embedded} \]

\[\text{tree} \]
reducible
chordal
embedded
tree

skeletal

chordal =
reducible
embedded
tree

Mark Siggers (KNU)
Semilattice Polymorphisms
August 21, 2009 33 / 37
chordal = skeletal
embedded tree

chordal reducible

embedded tree
chordal = skeletal embedded tree

chordal reducible

embedded tree
chordal = skeletal
embedded
tree

chordal reducible

embedded
tree

• • • • • • •

• • • • • • •

• • • • • •
Reducible chordal embedded tree = skeletal embedded tree
chordal = skeletal
embedded
tree

chordal reducible

embedded
tree
chordal =

skeletal
embedded
tree

interval
clique-V
embedded
tree

chordal
reducible

clique-V
embedded
tree

embedded
tree
A Consequence

This graph has a 4-NU but no clique-V embedded tree polymorphism, so is not chordal reducible.
What we did

- Defined hierarchy of graph classes, generalising 'chordal' according to the type of SL polymorphism admitted.
- $\text{SL} \neq \text{NU}$.
- $\text{4-NU} \not\equiv \text{Chordal Reducible}$
Questions

- Does admitting a clique-V SL imply a graph is Chordal Reducible?
- Does ’SL’ imply ’embedded SL’?
- Is there a poly-time algorithm for recognising graphs admitting
 - SL
 - clique-V SL
- Find a class of obstructions to SL that aren’t obstructions to TSI.
Proof that $\text{NU} \neq \text{SL}$

1. For a reflexive graph H let U_H be the structure defined
 - $V(U_H) = \text{Powerset}(V(H))$
 - $(S, T) \in E(U_H)$ if for each $s \in S$ there is $t \in T$ with $(s, t) \in E(H)$, and vice versa.

 H has a TSI if and only if U_H retracts to copy of H induce by singleton vertices.

2. NU is preserved by retraction (NU is a variety).

3. U_H is in SL for any H: the semilattice $T < S$ if $S \subset T$ is polymorphic.

If H has a NU poly, then $H \in \text{NU} \setminus \text{SL}$ and we are done. Otherwise H has no NU poly. Since H has TSI, U_H retracts to H by (1), and so by (2) U_H has no NU poly. Thus $U_H \in \text{SL} \setminus \text{NU}$.