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CSP(H)

A homomorphism ¢ : G — H is a vertex map that preserves relations.
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We are interested in the computational complexity of CSP(H).
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Complexity

CSP(H) \_

CSP Dichotomy Conjecture [Feder, Vardi '99]
For any H, CSP(H) is in either P or NPC. J
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The CSP Dichotomy Conjecture is true ...
o for structures on two vertices. Schaefer '78
o for graphs. Hell, Negetfil '92
o for structures on three vertices. Bulatov '02
o for conservative structures (list-colouring). Bulatov '06
°

for digraphs without sources or sinks. Barto, Kozik, Niven '09
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Theorem Jeavons '00
The complexity of CSP(H) is determined by the polymorphisms of H. J
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Polymorphisms (what are they)
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Definition: Polymorphism
A polymorphism of H is d-ary operation on V/(H) that is compatible with
relations of H.

¢:V(H)x---x V(H) — V(H)
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Definition: Polymorphism
A polymorphism of H is d-ary operation on V/(H) that is compatible with
relations of H.

¢:V(H)x---x V(H) — V(H)

(u1,...,uq) . o(ug,. .., uq)

¢ :
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A polymorphism of H is d-ary operation on V/(H) that is compatible with
relations of H.

¢:V(H)x---x V(H) — V(H)

Qb: (ul,...,ud)

(Vl)"'avd) ¢(V1)"'>Vd)
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Equivalent Definition: Polymorphism
A polymorphism of H is a homomorphism of HY to H. J
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A polymorphism of H is a homomorphism of HY to H. J

The categorical product H?:
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A polymorphism of H is a homomorphism of HY to H.

The categorical product H?:
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Theorem Jeavons '00
If Pol(H) contains only projections, then CSP(H) is in NPC. J
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A polymorphism ¢ : HY — H is

WNU (weak near-unanimity) J
if
(X X,y x,y) = O(x, X, y,x) = ...
= ¢(y’x""’x’x)

for all x,y € V(H).
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A polymorphism ¢ : HY — H is

WNU (weak near-unanimity) ]
if
(X X,y x,y) = O(x, X, y,x) = ...
= ¢(y7X7"'7X7X)

for all x,y € V(H).

[BJK'02; MM'08]

CSP(H) is in NPC if H admits no WNU polymorphisms, and is otherwise
polynomial time solvable.

BJK: Bulatov, Jeavons, Krokhin
MM: Maroti, McKenzie
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A polymorphism ¢ : HY — H is

WNU (weak near-unanimity)

(X, X,y x,y) = d(X X, Y, X) =L

= ¢(y7x7"'7x7x)
for all x,y € V(H).
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NU (near-unanimity)

for all x,y € V(H).

DXy Xy Y, X) =
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A polymorphism ¢ : HY — H is

NU (near-unanimity) ]

(X, X,y X y) = d(X X, Y, X) =L
= ¢(y7x7"'7X7X)ZX

for all x,y € V(H).

If H admits an NU polymorphism, then
CSP(H) is polynomial time solvable.
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A polymorphism ¢ : HY — H is

TSI (totally symmetric idempotent) J

P(ur, ... uq) = ¢(vi,..., vd)
whenever {u1,...,uq} = {v1,...,vg} as
sets.
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A polymorphism ¢ : HY — H is

TSI (totally symmetric idempotent) J

P(ur, ... uq) = ¢(vi,..., vd)
whenever {u1,...,uq} = {v1,...,vg} as
sets.

If H admits a TSI polymorphism, then
CSP(H) is polynomial time solvable. J
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Reflexive Graphs
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Assume all graphs are connected, reflexive and have all singleton unary
relations.

We draw

to mean
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o Dichotomy is done for irreflexive graphs, and hard for digraphs.
Reflexive graphs are somewhere in between.
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o Dichotomy is done for MinHOM of reflexive graphs. [GHRY '07].

( Infact for digraphs with possible loops.)

GHRY: Gutin Hell Rafiey Yeo
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o Dichotomy is done for irreflexive graphs, and hard for digraphs.
Reflexive graphs are somewhere in between.

o Dichotomy is done for MinHOM of reflexive graphs. [GHRY '07].
( Infact for digraphs with possible loops.)

o Reflexive graphs admitting NU polymorphisms have been
characterised. [BFHHM '06; LLT '06].

BFHHM: Brewster Feder Hell Huang MacGillivray;
LLT: Larose Loten Tardif
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Towards dichotomy on reflexive graphs, we want to know what graphs admit
WNU.
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[LLTO6] characterised those admitting NU.
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TSI

[LLTO6] characterised those admitting NU.
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Characterise reflexive graphs admitting TSI of all arities.
Characterise reflexive graphs admitting TSI.
Characterise reflexive graphs admitting WNU.

Prove Dichotomy for reflexive graphs.
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Semilattice Polymorphisms
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Let ¢ be defined by

o

o

idempotence.

maximality on non-primed vertices (ties t
min label)

for mix of primed and non-primed entries
ignore the primed entries and do as in th
previous step.
If all entries are primed then
if they are /" and (i +1), go to i +
if they are (i — 1)’ and (i + 1), go 1
i
if they are (i —1)’, (i) and (i + 1)
gotoi
otherwise, remove their primes (ie,
read i’ as i) and go to the min entr
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Definition
A 2-ary polymorphism ¢ : H> — H is SL (semilattice) if it is idempotent,
associative and commutative.
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A 2-ary polymorphism ¢ : H> — H is SL (semilattice) if it is idempotent,
associative and commutative.

Such an operation is called semilattice because the partial ordering

u<vifp(u,v)=u J

of V(H) is a meet semilattice .
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A 2-ary polymorphism ¢ : H> — H is SL (semilattice) if it is idempotent,
associative and commutative.

u<vifp(u,v)=u J

Where A is the associated meet, we have

o(u,v) = unv,

so we will denote SL polymorphisms by A.
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Semilattice Polymorphisms are easy to represent.
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Semilattice Polymorphisms are easy to represent.
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1IA7T=1

Semilattice Polymorphisms are easy to represent.
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G (Vo Vg) VA A vy

And define TSI of every arity.
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And define TSI of every arity.

$(9,11,12)
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$(9,11,12) =9A11A12=6

And define TSI of every arity.
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And define TSI of every arity.



Semilattice Polymorphisms on Reflexive Graphs
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Given some vertices,
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Given some vertices, a semilattice ordering,
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Given some vertices, a semilattice ordering, and a reflexive graph on the
vertices,
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Given some vertices, a semilattice ordering, and a reflexive graph on the
vertices, Is the semilattice polymorphic?
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Polymorphism: u~ v v~V = uAv~d AV
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Polymorphism: u~ v v~V = uAv~d AV
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Consequential identities.
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Consequential identities.
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X—underbar

Consequential identities.
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A semilattice polymorphism is ...

@ embedded if every Hasse edge
(blue edge) is a graph edge.
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A semilattice polymorphism is ...
@ embedded if every Hasse edge
(blue edge) is a graph edge.
o tree if the Hasse edges induce a
tree.
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A semilattice polymorphism is ...

@ embedded if every Hasse edge
(blue edge) is a graph edge.

o tree if the Hasse edges induce a
tree.

o skeletal if all graph edges are
between comparible vertices.
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Semilattice

TSI
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skeletal = embedded H admits a skeletal SL
tree skeletal
T -
embedded skeletal

H admits an embedded skeletal tree SL
tree tree

embedded tree skeletal

\I/

Semilattice

TSI

August 21, 2009 29 /37



embedded
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=

H admits an embedded skeletal tree SL
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embedded
chordal = Skeletal = sketetal

‘ tree

embedded
tree

/\

embedded tree

\/

Semilattice

TSI

H admits a skeletal SL
=
H is chordal
=

H admits an embedded skeletal tree SL
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interval = path
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interval = path
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H admits a tree SL,

embedded =
tree
‘ H admits an embedded tree SL.
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interval = path
x

embedded
chordal = Skeletal = skeletal

tree
\ ==

embedded
tree

\ x
embedded

Semilattice
| =
TSI

AN

This graph admits TSI but not SL
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interval = path
x

embedded
chordal = Skeletal = skeletal

tree
\ ==

embedded
tree

\ x
embedded

Semilattice
| =
TSI

AN

This graph admits TSI but not SL

The classes SL and NU ( of reflexive
graphs) are not equal.

“— N
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Chordal Reducible Graphs
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Given a graph H,
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Given a graph H, take its clique graph CL(H),
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Given a graph H, take its clique graph CL(H), and add edges between them
accoring to incidence: CR(H).
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Given a graph H, take its clique graph CL(H), and add edges between them
accoring to incidence: CR(H).
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If we can remove edges from H such that it remains connected, and the full
graph CR*(H) is chordal, then H is chordal reducible .
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o Chordal graphs are chordal reducible.
o Graphs with a universal vertex are chordal reducible.

o Chordal reducible graphs have NU of some arity.
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Chordal graphs are chordal reducible.

Graphs with a universal vertex are chordal reducible.

Chordal reducible graphs have NU of some arity.

Is there a poly time algorithm for recognising chordal reducible
graphs?

Are all graphs with 4-NU chordal reducible?

Do chordal reducible graphs fit into our heirarchy?

August 21, 2009
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_ skeletal
o= embedded

. tree
chordal Chordal reducible graphs admit embedded
reducible tree polymorphisms.

emt;édded
tree
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oy Skeletal
% embedded
tree

interval

cligue-Vv
-\ embedded

tree

chordal
reducible

|/ clique-V
embedded? @
tree
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tree

August 21, 2009 33 /37



This graph has a 4-NU but no clique-V embedded tree polymorphism, so
is not chordal reducible.
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o Defined heirarchy of graph classes, generalising 'chordal’ according to
the type of SL polymorphism admitted.

o SL # NU.
® 4-NU # Chordal Reducible
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Does admitting a clique-V SL imply a graph is Chordal Reducible?
Does 'SL" imply 'embedded SL'?

Is there a poly-time algorithm for recognising graphs admitting

SL
clique-V SL

Find a class of obstructions to SL that aren’t obstructions to TSI.
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O For a reflexive graph H let Uy be the structure defined
V(Uy) = Powerset(V(H))
(S, T) € E(Uy) if for each s € S there is t € T with (s, t) € E(H),
and vice versa.
H has a TSI if and only if Uy retracts to copy of H induce by
singleton vertices.

Q NU is preserved by retraction (NU is a variety).
©Q Uy is in SL for any H: the semilattice T < Sif SC T is
polymorphic.

If H has a NU poly, then H € NU \ SL and we are done. Otherwise H has
no NU poly. Since H has TS/, Uy retracts to H by (1), and so by (2) Uy
has no NU poly. Thus Uy € SL\ NU.
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