Semilattice Polymorphisms on Reflexive Graphs

Mark Siggers (joint work with Pavol Hell)

Kyungpook National University

August 21, 2009

Outline

- Polymorphisms
 - why we care about them
 - what are they
- Reflexive Graphs
- Semilattice Polymorphisms
- Semilattice Polymorphisms on Reflexive Graphs
- Chordal Reducible Graphs

Polymorphisms (why we care about them)

For every relational structure H there is a computational problem CSP(H).

For every relational structure H there is a computational problem CSP(H).

CSP Dichotomy Conjecture [Feder, Vardi '99]

For any H, CSP(H) is in either P or NPC.

The CSP Dichotomy Conjecture is true ...

- for structures on two vertices. Schaefer '78
- for graphs. Hell, Nešetřil '92
- for structures on three vertices. Bulatov '02
- for conservative structures (list-colouring). Bulatov '06
- for digraphs without sources or sinks. Barto, Kozik, Niven '09

Theorem Jeavons '00

The complexity of CSP(H) is determined by the polymorphisms of H.

Polymorphisms (what are they)

$$\phi: V(H) \times \cdots \times V(H) \rightarrow V(H)$$

$$\phi: V(H) \times \cdots \times V(H) \to V(H)$$

$$\phi: \qquad (u_1, \dots, u_d) \qquad \mapsto \qquad \phi(u_1, \dots, u_d)$$

$$\phi: V(H) \times \cdots \times V(H) \to V(H)$$

$$\phi: \begin{pmatrix} (u_1, \dots, u_d) & & \phi(u_1, \dots, u_d) \\ (v_1, \dots, v_d) & & \phi(v_1, \dots, v_d) \end{pmatrix}$$

$$\phi: V(H) \times \cdots \times V(H) \to V(H)$$

$$\phi: \begin{pmatrix} u_1 & \dots & u_d \\ v_1 & \dots & v_d \end{pmatrix} \mapsto \begin{pmatrix} \phi(u_1, \dots, u_d) & \dots & \phi(v_1, \dots, v_d) \\ \phi(v_1, \dots, v_d) & \dots & \phi(v_d, \dots, v_d) \end{pmatrix}$$

$$\phi: V(H) \times \cdots \times V(H) \to V(H)$$

$$\phi: \begin{pmatrix} u_1 & \dots & u_d \\ v_1 & \dots & v_d \end{pmatrix} \mapsto \begin{pmatrix} \phi(u_1, \dots, u_d) \\ \phi(v_1, \dots, v_d) \end{pmatrix}$$

Equivalent Definition: Polymorphism

A polymorphism of H is a homomorphism of H^d to H.

Equivalent Definition: Polymorphism

A polymorphism of H is a homomorphism of H^d to H.

The categorical product H^2 :

Equivalent Definition: Polymorphism

A polymorphism of H is a homomorphism of H^d to H.

The categorical product H^2 :

Example: The 3-ary polymorphisms of K_2

Pol(K₂)

Pol(K₂)

Theorem Jeavons '00

If Pol(H) contains only projections, then CSP(H) is in NPC.

WNU (weak near-unanimity)

if

$$\phi(x, x, \dots, x, y) = \phi(x, x, \dots, y, x) = \dots$$
$$= \phi(y, x, \dots, x, x)$$

for all $x, y \in V(H)$.

WNU (weak near-unanimity)

if

$$\phi(x, x, \dots, x, y) = \phi(x, x, \dots, y, x) = \dots$$
$$= \phi(y, x, \dots, x, x)$$

for all $x, y \in V(H)$.

Conjecture: [BJK'02; MM'08]

 $\mathsf{CSP}(H)$ is in NPC if H admits no WNU polymorphisms, and is otherwise polynomial time solvable.

BJK: Bulatov, Jeavons, Krokhin

MM: Maroti, McKenzie

WNU (weak near-unanimity)

if

$$\phi(x, x, \dots, x, y) = \phi(x, x, \dots, y, x) = \dots$$
$$= \phi(y, x, \dots, x, x)$$

for all $x, y \in V(H)$.

NU (near-unanimity)

if

$$\phi(x, x, \dots, x, y) = \phi(x, x, \dots, y, x) = \dots$$
$$= \phi(y, x, \dots, x, x) = x$$

for all $x, y \in V(H)$.

NU (near-unanimity)

if

$$\phi(x, x, \dots, x, y) = \phi(x, x, \dots, y, x) = \dots$$
$$= \phi(y, x, \dots, x, x) = x$$

for all $x, y \in V(H)$.

If H admits an NU polymorphism, then CSP(H) is polynomial time solvable.

TSI (totally symmetric idempotent)

if

$$\phi(u_1,\ldots,u_d)=\phi(v_1,\ldots,v_d)$$

whenever $\{u_1,\ldots,u_d\}=\{v_1,\ldots,v_d\}$ as sets.

TSI (totally symmetric idempotent)

if

$$\phi(u_1,\ldots,u_d)=\phi(v_1,\ldots,v_d)$$

whenever $\{u_1,\ldots,u_d\}=\{v_1,\ldots,v_d\}$ as sets.

If H admits a TSI polymorphism, then CSP(H) is polynomial time solvable.

Assume all graphs are connected, reflexive and have all singleton unary relations.

We draw

to mean

Why Reflexive Graphs?

- Dichotomy is done for irreflexive graphs, and hard for digraphs. Reflexive graphs are somewhere in between.
- Dichotomy is done for MinHOM of reflexive graphs. [GHRY '07].
 (Infact for digraphs with possible loops.)
- Reflexive graphs admitting NU polymorphisms have been characterised. [BFHHM '06; LLT '06].

Why Reflexive Graphs?

- Dichotomy is done for irreflexive graphs, and hard for digraphs. Reflexive graphs are somewhere in between.
- Dichotomy is done for MinHOM of reflexive graphs. [GHRY '07].
 (Infact for digraphs with possible loops.)
- Reflexive graphs admitting NU polymorphisms have been characterised. [BFHHM '06; LLT '06].

GHRY: Gutin Hell Rafiey Yeo

Why Reflexive Graphs?

- Dichotomy is done for irreflexive graphs, and hard for digraphs. Reflexive graphs are somewhere in between.
- Dichotomy is done for MinHOM of reflexive graphs. [GHRY '07].
 (Infact for digraphs with possible loops.)
- Reflexive graphs admitting NU polymorphisms have been characterised. [BFHHM '06; LLT '06].

BFHHM: Brewster Feder Hell Huang MacGillivray; LLT: Larose Loten Tardif

Towards dichotomy on reflexive graphs, we want to know what graphs admit WNU.

[LLT06] characterised those admitting NU.

[LLT06] characterised those admitting NU.

Goals

- Characterise reflexive graphs admitting TSI of all arities.
- Characterise reflexive graphs admitting TSI.
- Characterise reflexive graphs admitting WNU.
- Prove Dichotomy for reflexive graphs.

Semilattice Polymorphisms

Let ϕ be defined by

- idempotence.
- maximality on non-primed vertices (ties t min label)
- for mix of primed and non-primed entries ignore the primed entries and do as in th previous step.
- If all entries are primed then
 - if they are i' and (i+1)', go to i+1
 - if they are (i-1)' and (i+1)', go to
 - if they are (i-1)', (i)' and (i+1)' go to i
 - ▶ otherwise, remove their primes (ie, read i' as i) and go to the min entr

Definition

A 2-ary polymorphism $\phi: H^2 \to H$ is SL (semilattice) if it is idempotent, associative and commutative.

Definition

A 2-ary polymorphism $\phi: H^2 \to H$ is SL (semilattice) if it is idempotent, associative and commutative.

Such an operation is called semilattice because the partial ordering

$$u < v$$
 if $\phi(u, v) = u$

of V(H) is a meet semilattice.

Definition

A 2-ary polymorphism $\phi: H^2 \to H$ is SL (semilattice) if it is idempotent, associative and commutative.

$$u < v$$
 if $\phi(u, v) = u$

Where \wedge is the associated meet, we have

$$\phi(u, v) = u \wedge v$$

so we will denote SL polymorphisms by \wedge .

 $11 \wedge 7$

$$11 \land 7 = 1$$

$$\phi: (v_1, \ldots, v_d) \mapsto v_1 \wedge \cdots \wedge v_d$$

$$\phi$$
(9, 11, 12)

$$\phi(9,11,12) = 9 \land 11 \land 12 = 6$$

Semilattice Polymorphisms on Reflexive Graphs

Given some vertices,

Given some vertices, a semilattice ordering,

Given some vertices, a semilattice ordering, and a reflexive graph on the vertices,

Given some vertices, a semilattice ordering, and a reflexive graph on the vertices, Is the semilattice *polymorphic?*

Polymorphism: $u \sim u', v \sim v' \Rightarrow u \wedge v \sim u' \wedge v'$

Polymorphism: $u \sim u', v \sim v' \Rightarrow u \wedge v \sim u' \wedge v'$

Consequential identities.

Consequential identities.

Consequential identities.

Types of Semilattice Polymorphisms

A semilattice polymorphism is ...

 embedded if every Hasse edge (blue edge) is a graph edge.

Types of Semilattice Polymorphisms

A semilattice polymorphism is ...

- embedded if every Hasse edge (blue edge) is a graph edge.
- tree if the Hasse edges induce a tree.

Types of Semilattice Polymorphisms

A semilattice polymorphism is ...

- embedded if every Hasse edge (blue edge) is a graph edge.
- tree if the Hasse edges induce a tree.
- skeletal if all graph edges are between comparible vertices.

Semilattice | TSI

H admits a skeletal SL

H admits an embedded skeletal tree SL

H admits a skeletal SL

H admits an embedded skeletal tree SL

H admits a skeletal SL

 \Rightarrow

H is chordal

 \Rightarrow

H admits an embedded skeletal tree SL

Proposition

H admits a tree SL,

 \Rightarrow

H admits an embedded tree SL.

Proposition

H admits a tree SL,

=

H admits an embedded tree SL.


```
path
interval =
                   embedded
chordal = Skeletal = skeletal
                      tree
      embedded
           tree
      embedded
     Semilattice
          TSI
```



```
path
interval =
                   embedded
       skeletal
                  = skeletal
                     tree
      embedded
          tree
      embedded
     Semilattice
         TSI
```

```
path
interval =
                 embedded
       skeletal
                = skeletal
                   tree
     embedded
         tree
                       Known Classes?
           #
     embedded
    Semilattice
        TSI
```

Chordal Reducible Graphs

Given a graph H,

Given a graph H, take its clique graph CL(H),

Given a graph H, take its clique graph $\mathrm{CL}(H)$,

Given a graph H, take its clique graph $\mathrm{CL}(H)$,

Given a graph H, take its clique graph CL(H), and add edges between them accoring to incidence: CR(H).

Given a graph H, take its clique graph $\mathrm{CL}(H)$, and add edges between them accoring to incidence: $\mathrm{CR}(H)$.

If we can remove edges from H such that it remains connected, and the full graph $CR^*(H)$ is chordal, then H is chordal reducible .

- Chordal graphs are chordal reducible.
- Graphs with a universal vertex are chordal reducible.
- Chordal reducible graphs have NU of some arity.

- Chordal graphs are chordal reducible.
- Graphs with a universal vertex are chordal reducible.
- Chordal reducible graphs have NU of some arity.
- Is there a poly time algorithm for recognising chordal reducible graphs?
- Are all graphs with 4-NU chordal reducible?
- Do chordal reducible graphs fit into our heirarchy?

Proposition

Chordal reducible graphs admit embedded tree polymorphisms.

A Consequence

This graph has a 4-NU but no clique-V embedded tree polymorphism, so is not chordal reducible.

What we did

- Defined heirarchy of graph classes, generalising 'chordal' according to the type of SL polymorphism admitted.
- $SL \neq NU$.

Questions

- Does admitting a clique-V SL imply a graph is Chordal Reducible?
- Does 'SL' imply 'embedded SL'?
- Is there a poly-time algorithm for recognising graphs admitting
 - SL
 - ▶ clique-V SL
- Find a class of obstructions to SL that aren't obstructions to TSI.

Proof that $NU \neq SL$

- \bigcirc For a reflexive graph H let U_H be the structure defined
 - $V(U_H) = \text{Powerset}(V(H))$
 - ▶ $(S, T) \in E(U_H)$ if for each $s \in S$ there is $t \in T$ with $(s, t) \in E(H)$, and vice versa.

H has a TSI if and only if U_H retracts to copy of H induce by singleton vertices.

- NU is preserved by retraction (NU is a variety).
- **○** U_H is in SL for any H: the semilattice T < S if $S \subset T$ is polymorphic.

If H has a NU poly, then $H \in NU \setminus SL$ and we are done. Otherwise H has no NU poly. Since H has TSI, U_H retracts to H by (1), and so by (2) U_H has no NU poly. Thus $U_H \in SL \setminus NU$.