Geometric transversal theory

Andreas F. Holmsen
KAIST

Some basic definitions

$F=\left\{S_{1}, S_{2}, \ldots, S_{m}\right\}, S_{i} \subset X$.
A transversal to F is a subset $T \subset X$ such that $T \cap S_{i} \neq \emptyset$ for all $1 \leq i \leq m$.

Example:

Some basic definitions

$F=\left\{S_{1}, S_{2}, \ldots, S_{m}\right\}, S_{i} \subset X$.
A transversal to F is a subset $T \subset X$ such that $T \cap S_{i} \neq \emptyset$ for all $1 \leq i \leq m$.

Example:

Some basic definitions

The transversal number, $\tau(F)$, of a hypergraph F is the minimum cardinality of a transversal of F.

A system of distinct representatives is a transversal $T=\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$ such that $x_{i} \in S_{i}, 1 \leq i \leq m$ and $x_{i} \neq x_{j}$ whenever $i \neq j$.

$$
\begin{aligned}
& S_{1}=\{1,3\} \\
& S_{2}=\{1,2,4\} \\
& S_{3}=\{2,4\} \\
& S_{4}=\{3,5\}
\end{aligned}
$$

Some basic definitions

The transversal number, $\tau(F)$, of a hypergraph F is the minimum cardinality of a transversal of F.

A system of distinct representatives is a transversal $T=\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$ such that $x_{i} \in S_{i}, 1 \leq i \leq m$ and $x_{i} \neq x_{j}$ whenever $i \neq j$.

$$
\begin{aligned}
& S_{1}=\{1,3\} \\
& S_{2}=\{1,2,4\} \\
& S_{3}=\{2,4\} \\
& S_{4}=\{3,5\} \\
& T=\{3,1,2,5\}
\end{aligned}
$$

Hall's marriage theorem

Theorem. (Hall, 1935)
Let $F=\left\{S_{1}, S_{2}, \ldots, S_{m}\right\}$ be a collection of finite sets. F has a system of distinct representatives if and only if for every $1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq m$ we have

$$
\left|S_{i_{1}} \cup S_{i_{2}} \cup \cdots \cup S_{i_{k}}\right| \geq k
$$

Geometric transversal theory

$F=\left\{S_{1}, S_{2}, \ldots, S_{m}\right\}, S_{i}$ convex sets in \mathbb{R}^{d}.
A transversal to F is a subset $T \subset \mathbb{R}^{d}$ such that $T \cap S_{i} \neq \emptyset$ for all $1 \leq i \leq m$.

Geometric transversal theory

$F=\left\{S_{1}, S_{2}, \ldots, S_{m}\right\}, S_{i}$ convex sets in \mathbb{R}^{d}.
A transversal to F is a subset $T \subset \mathbb{R}^{d}$ such that $T \cap S_{i} \neq \emptyset$ for all $1 \leq i \leq m$.

point transversals

Geometric transversal theory

$F=\left\{S_{1}, S_{2}, \ldots, S_{m}\right\}, S_{i}$ convex sets in \mathbb{R}^{d}.
A transversal to F is a subset $T \subset \mathbb{R}^{d}$ such that $T \cap S_{i} \neq \emptyset$ for all $1 \leq i \leq m$.

line transversals

Helly's theorem

Theorem. (Helly, 1913)
A family of compact convex sets in \mathbb{R}^{d} has a point transversal if and only if every subfamily of size at most $d+1$ members has a point transversal.

Helly's theorem

Theorem. (Helly, 1913)
A family of compact convex sets in \mathbb{R}^{d} has a point transversal if and only if every subfamily of size at most $d+1$ members has a point transversal.

Colorful Carathéodory Theorem

Theorem. (Bárány, 1982)
Let $A_{1}, A_{2}, \ldots, A_{d+1}$ finite subsets of \mathbb{R}^{d}. If
$0 \in \operatorname{conv}\left(A_{i}\right)$ for all $1 \leq i \leq d+1$, then $0 \in \operatorname{conv}(Y)$
for some Y such that $\left|Y \cap A_{i}\right|=1$. (Y is an SDR)

Colorful Carathéodory Theorem

Theorem. (Bárány, 1982)
Let $A_{1}, A_{2}, \ldots, A_{d+1}$ finite subsets of \mathbb{R}^{d}. If
$0 \in \operatorname{conv}\left(A_{i}\right)$ for all $1 \leq i \leq d+1$, then $0 \in \operatorname{conv}(Y)$
for some Y such that $\left|Y \cap A_{i}\right|=1$. (Y is an SDR)

Tverberg's theorem

Theorem. (Tverberg, 1966)
Let $S \subset \mathbb{R}^{d}$ with $|S|=(d+1)(k-1)+1$. Then S
can be partitioned into k non-empty parts
$S=S_{1} \cup \cdots \cup S_{k}$ such that $\operatorname{conv}\left(S_{1}\right) \cap \cdots \cap \operatorname{conv}\left(S_{k}\right) \neq \emptyset$

Example:
$d=2, k=4$
000

0

Tverberg's theorem

Theorem. (Tverberg, 1966)
Let $S \subset \mathbb{R}^{d}$ with $|S|=(d+1)(k-1)+1$. Then S
can be partitioned into k non-empty parts
$S=S_{1} \cup \cdots \cup S_{k}$ such that $\operatorname{conv}\left(S_{1}\right) \cap \cdots \cap \operatorname{conv}\left(S_{k}\right) \neq \emptyset$

Example:

$$
d=2, k=4
$$

Tverberg's theorem

Theorem. (Tverberg, 1966)
Let $S \subset \mathbb{R}^{d}$ with $|S|=(d+1)(k-1)+1$. Then S
can be partitioned into k non-empty parts
$S=S_{1} \cup \cdots \cup S_{k}$ such that $\operatorname{conv}\left(S_{1}\right) \cap \cdots \cap \operatorname{conv}\left(S_{k}\right) \neq \emptyset$

Example:
$d=2, k=4$

Tverberg's theorem

Theorem. (Tverberg, 1966)
Let $S \subset \mathbb{R}^{d}$ with $|S|=(d+1)(k-1)+1$. Then S
can be partitioned into k non-empty parts
$S=S_{1} \cup \cdots \cup S_{k}$ such that $\operatorname{conv}\left(S_{1}\right) \cap \cdots \cap \operatorname{conv}\left(S_{k}\right) \neq \emptyset$

Example:
$d=2, k=4$

Tverberg's theorem

Theorem. (Tverberg, 1966)
Let $S \subset \mathbb{R}^{d}$ with $|S|=(d+1)(k-1)+1$. Then S
can be partitioned into k non-empty parts
$S=S_{1} \cup \cdots \cup S_{k}$ such that $\operatorname{conv}\left(S_{1}\right) \cap \cdots \cap \operatorname{conv}\left(S_{k}\right) \neq \emptyset$

Example:
$d=2, k=4$

Tverberg's theorem

Theorem. (Tverberg, 1966)
Let $S \subset \mathbb{R}^{d}$ with $|S|=(d+1)(k-1)+1$. Then S
can be partitioned into k non-empty parts
$S=S_{1} \cup \cdots \cup S_{k}$ such that $\operatorname{conv}\left(S_{1}\right) \cap \cdots \cap \operatorname{conv}\left(S_{k}\right) \neq \emptyset$

Example:
$d=2, k=4$

Weak ϵ - net theorem for convex sets

μ - probability measure on \mathbb{R}^{d}.
$0<\epsilon<1$.
F_{ϵ} - family of all convex sets S such that $\mu(S)>\epsilon$.
From Helly's theorem we have the following:
For every μ and $\epsilon \geq \frac{d}{d+1}$ the family F_{ϵ} has a point transversal. (Rado's centerpoint theorem)

Weak ϵ - net theorem for convex sets

μ - probability measure on \mathbb{R}^{d}.
$0<\epsilon<1$.
F_{ϵ} - family of all convex sets S such that $\mu(S)>\epsilon$.
From Helly's theorem we have the following:
For every μ and $\epsilon \geq \frac{d}{d+1}$ the family F_{ϵ} has a point transversal. (Rado's centerpoint theorem)

Weak ϵ - net theorem for convex sets

μ - probability measure on \mathbb{R}^{d}.
$0<\epsilon<1$.
F_{ϵ} - family of all convex sets S such that $\mu(S)>\epsilon$.
From Helly's theorem we have the following:
For every μ and $\epsilon \geq \frac{d}{d+1}$ the family F_{ϵ} has a point transversal. (Rado's centerpoint theorem)

Weak ϵ - net theorem for convex sets

μ - probability measure on \mathbb{R}^{d}.
$0<\epsilon<1$.
F_{ϵ} - family of all convex sets S such that $\mu(S)>\epsilon$.
From Helly's theorem we have the following:
For every μ and $\epsilon \geq \frac{d}{d+1}$ the family F_{ϵ} has a point transversal. (Rado's centerpoint theorem)

Weak ϵ - net theorem for convex sets

μ - probability measure on \mathbb{R}^{d}.
$0<\epsilon<1$.
F_{ϵ} - family of all convex sets S such that $\mu(S)>\epsilon$.
From Helly's theorem we have the following:
For every μ and $\epsilon \geq \frac{d}{d+1}$ the family F_{ϵ} has a point transversal. (Rado's centerpoint theorem)

Weak ϵ - net theorem for convex sets

Theorem.

For every $0<\epsilon<1$ and every positive integer d there exists a minimum positive integer $n(\epsilon, d)$ such that the following holds:
For any probability measure μ on \mathbb{R}^{d} there exists a set $N(\mu)$ of at most $n(\epsilon, d)$ points such that $N(\mu)$ is a transversal to F_{ϵ}.

Weak ϵ - net theorem for convex sets

Theorem.

For every $0<\epsilon<1$ and every positive integer d there exists a minimum positive integer $n(\epsilon, d)$ such that the following holds:
For any probability measure μ on \mathbb{R}^{d} there exists a set $N(\mu)$ of at most $n(\epsilon, d)$ points such that $N(\mu)$ is a transversal to F_{ϵ}.

Weak ϵ - net theorem for convex sets

Theorem.

For every $0<\epsilon<1$ and every positive integer d there exists a minimum positive integer $n(\epsilon, d)$ such that the following holds:
For any probability measure μ on \mathbb{R}^{d} there exists a set $N(\mu)$ of at most $n(\epsilon, d)$ points such that $N(\mu)$ is a transversal to F_{ϵ}.

Weak ϵ - net theorem for convex sets

Theorem.

For every $0<\epsilon<1$ and every positive integer d there exists a minimum positive integer $n(\epsilon, d)$ such that the following holds:
For any probability measure μ on \mathbb{R}^{d} there exists a set $N(\mu)$ of at most $n(\epsilon, d)$ points such that $N(\mu)$ is a transversal to F_{ϵ}.

Weak ϵ - net theorem for convex sets

Theorem.

For every $0<\epsilon<1$ and every positive integer d there exists a minimum positive integer $n(\epsilon, d)$ such that the following holds:
For any probability measure μ on \mathbb{R}^{d} there exists a set $N(\mu)$ of at most $n(\epsilon, d)$ points such that $N(\mu)$ is a transversal to F_{ϵ}.

Weak ϵ - net theorem for convex sets

Theorem.

For every $0<\epsilon<1$ and every positive integer d there exists a minimum positive integer $n(\epsilon, d)$ such that the following holds:
For any probability measure μ on \mathbb{R}^{d} there exists a set $N(\mu)$ of at most $n(\epsilon, d)$ points such that $N(\mu)$ is a transversal to F_{ϵ}.

Weak ϵ - net theorem for convex sets

Theorem.

For every $0<\epsilon<1$ and every positive integer d there exists a minimum positive integer $n(\epsilon, d)$ such that the following holds:
For any probability measure μ on \mathbb{R}^{d} there exists a set $N(\mu)$ of at most $n(\epsilon, d)$ points such that $N(\mu)$ is a transversal to F_{ϵ}.

Weak ϵ - net theorem for convex sets

(1) For every positive integer d there exists a positive constant c_{d} such that for any set X of n points in \mathbb{R}^{d} there exists a point contained in at least $c_{d} n^{d+1}$ simplices spanned by X.

Weak ϵ - net theorem for convex sets

(1) For every positive integer d there exists a positive constant c_{d} such that for any set X of n points in \mathbb{R}^{d} there exists a point contained in at least $c_{d} n^{d+1}$ simplices spanned by X.

```
The point set can be partitioned (roughly) into \(\frac{n}{d+1}\) simplices \(((d+1)\)-tuples) that share a common point, \(p\). (Tverberg's theorem)
```


Weak ϵ - net theorem for convex sets

(1) For every positive integer d there exists a positive constant c_{d} such that for any set X of n points in \mathbb{R}^{d} there exists a point contained in at least $c_{d} n^{d+1}$ simplices spanned by X.

The point set can be partitioned (roughly) into $\frac{n}{d+1}$ simplices $((d+1)$-tuples) that share a common point, p. (Tverberg's theorem)
For any $d+1$ simplices, there is a
$(d+1)$-tuple with one vertex from each simplex that contains p in its convex hull. (Colorful Carathéodory)

Weak ϵ - net theorem for convex sets

(1) For every positive integer d there exists a positive constant c_{d} such that for any set X of n points in \mathbb{R}^{d} there exists a point contained in at least $c_{d} n^{d+1}$ simplices spanned by X.

The point set can be partitioned (roughly)
$\frac{n}{d+1}$ simplices ($(d+1)$-tuples) that share
common point, p. (Tverberg's theorem)
For any $d+1$ simplices, there is a
$(d+1)$-tuple with one vertex from each
simplex that contains p in its convex hull.
(Colorful Carathéodory)

$$
\Rightarrow\binom{\frac{n}{d+1}}{d+1} \approx \frac{1}{(d+1)!(d+1)^{d+1}} n^{d+1}
$$

distinct simplices contain p.

Weak ϵ - net theorem for convex sets

(1) For every positive integer d there exists a positive constant c_{d} such that for any set X of n points in \mathbb{R}^{d} there exists a point contained in at least $c_{d} n^{d+1}$ simplices spanned by X.
(2) We choose a weak ϵ-net greedily: Let N_{i} be defined. If there exists a convex set S containing more than ϵn of the points of μ, where $S \cap N_{i}=\emptyset$, let $N_{i+1}=N_{i} \cup p$ where p is chosen using (1).

Weak ϵ - net theorem for convex sets

(1) For every positive integer d there exists a positive constant c_{d} such that for any set X of n points in \mathbb{R}^{d} there exists a point contained in at least $c_{d} n^{d+1}$ simplices spanned by X.
(2) We choose a weak ϵ-net greedily: Let N_{i} be defined. If there exists a convex set S containing more than ϵn of the points of μ, where $S \cap N_{i}=\emptyset$, let $N_{i+1}=N_{i} \cup p$ where p is chosen using (1).

The process ends in a finite number of steps depending only on ϵ and d : Each step kills at least $c_{d}(\epsilon n)^{d+1}$ simplices.

$$
\Rightarrow n(\epsilon, d) \leq O\left(\frac{1}{\epsilon^{d+1}}\right)
$$

Line transversals: Definitions

$F=\left\{S_{1}, \ldots, S_{n}\right\}$: Family of convex sets in the plane.

Common transversal : A straight line that intersects every member of F.
$T(k)$ - family : Every subfamily of size at most k has a common transversal.
α-transversal : A straight line that intersects at least αn members of $F(0 \leq \alpha \leq 1)$.

No Helly type theorem for line transversals
For every positive integer k there exists a $T(k)$-family that does not have a common transversal.

Regular ($k+1$) - gon.

$d<w$

No Helly type theorem for line transversals

For every positive integer k there exists a $T(k)$-family that does not have a common transversal.

$$
\begin{aligned}
& F \text { has a } \\
& \frac{k}{k+1}-\text { transversal. }
\end{aligned}
$$

A basic result
Theorem. (Katchalski-Liu, 1980)
For every $k \geq 3$ there exists a maximal number $\alpha(k) \in(0,1)$ such that every $T(k)$-family has an $\alpha(k)$-transversal. Moreover,

$$
\lim _{k \rightarrow \infty} \alpha(k)=1
$$

Problem. Determine the function $\alpha(k)$.

Hadwiger's transversal theorem

Theorem. (Wenger, 1990)
Let $F=\left\{S_{1}, S_{2}, \ldots, S_{n}\right\}$. If for every $1 \leq i<j<k \leq n$ we have $S_{j} \cap \operatorname{conv}\left(S_{i} \cup S_{k}\right) \neq \emptyset$, then F has a transversal.

Hadwiger's transversal theorem

Theorem. (Arocha-Bracho-Montejano, 2008)
Let $F=F_{1} \cup F_{2} \cup F_{3}=\left\{S_{1}, S_{2}, \ldots, S_{n}\right\}$. If for every $1 \leq i<j<k \leq n$ where S_{i}, S_{j}, S_{k} belong to distinct parts (F_{p} 's) we have $S_{j} \cap \operatorname{conv}\left(S_{i} \cup S_{k}\right) \neq \emptyset$, then one of the F_{p} has a transversal.

Application to general $T(3)$-families

Application to general $T(3)$-families

The space of transversals

Disjoint pairs:

Observation. Suppose F contains at least one disjoint pair. Then F has a transversal if and only if a positive separating tangent of some disjoint pair of F is transversal to F.

Lower bound for $\alpha(k)$

Suppose F contains $d\binom{n}{2}$ intersecting pairs, $0 \leq d<1$. $X: k$-tuples containing at least one disjoint pair. $Y: k$-tuples containing only intersecting pairs.

$$
\begin{aligned}
& |X| \geq\left(1-d^{k / 2}\right)\binom{n}{k} \\
& \frac{|X|}{(1-d)\binom{n}{2}} \geq\binom{ n}{k} /\binom{n}{2}
\end{aligned}
$$

$$
\Rightarrow \alpha(k) \geq\left(\frac{2}{k(k-1)}\right)^{\frac{1}{k-2}}
$$

$$
\alpha(3) \geq \frac{1}{3}, \alpha(4) \geq 0495 \cdots, \alpha(5) \geq 0464 \cdots, \alpha(6) \geq 0.508 \cdots, \ldots
$$

$$
\frac{1}{2}>\frac{1}{2}
$$

Better bounds due to Eckhoff (1973)

A problem (or perhaps an exercise?)

Show that for any embedding of the combinatorial configuration (on the left) into \mathbb{R}^{3} (on the right) there is a line that intersects all the red triangles or all the blue triangles. (Due to Luis Montejano)

