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Some basic definitions

F=1{S,5,....,8,},S: CcX.

A transversal to F' is a subset 1" C X such that
TNS; #0 forall 1 <i<m.

Example:




Some basic definitions

F=1{S,5,....,8,},S: CcX.

A transversal to F' is a subset 1" C X such that
TNS; #0 forall 1 <i<m.

Example:




Some basic definitions

The transversal number, 7(F'), of a hypergraph F' is
the minimum cardinality of a transversal of F'.

A system of distinct representatives is a transversal
T={x1,29,...,Zm} suchthat z; € 5;, 1 <i<m
and x; # x; whenever i # j.

S, 1 S, ={1,3}
S, - S, ={1,2,4}
Ss 3 S3 = {274}
S, ‘51 S, = {3,5}




Some basic definitions

The transversal number, 7(F'), of a hypergraph F' is
the minimum cardinality of a transversal of F'.

A system of distinct representatives is a transversal
T={x1,29,...,Zm} suchthat z; € 5;, 1 <i<m
and x; # x; whenever i # j.

S, 1 S, ={1,3}
S, - S, ={1,2,4}
Ss 3 S3 = {274}
S, ‘51 S, = {3,5}

-9
F X T =1{3,1,2,5)




Hall's marriage theorem

Theorem. (Hall, 1935)

Let ' ={51,5%,...,5,} be a collection of finite
sets. F' has a system of distinct representatives if and
only if for every 1 <41 <19 < -+ < i < m we have

S, US;, U---US; | >k




Geometric transversal theory

F=1{51,55,...,S,}, S; convex sets in R?.

A transversal to F is a subset T C R such that
TNS; #0 forall 1 <i<m.
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Helly's theorem

Theorem. (Helly, 1913)

A family of compact convex sets in R? has a point
transversal if and only if every subfamily of size at
most d + 1 members has a point transversal.
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Colorful Carathéodory Theorem

Theorem. (Bardny, 1982)

Let A1, A, ..., finite subsets of RY. If
0 € conv(A;) forall 1 <7< d+1, then 0 € conv(Y)
for some Y such that [Y N A;| =1. (Y is an SDR)
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Tverberg's theorem

Theorem. (Tverberg, 1966)

Let S C RY with |[S| = (d+1)(k—1)+1. Then S
can be partitioned into £ non-empty parts
S=5U---UJSL such that

conv(S1) N---Nconv(Sg) #£ 0

Example:
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Weak € - net theorem for convex sets

11 - probability measure on RY.
0<e<l.

F, - family of all convex sets S such that u(S) > e.

From Helly's theorem we have the following:

For every 11 and € > —“= the family F, has a point
transversal. (Rado's centerpomt theorem)
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Weak € - net theorem for convex sets

Theorem.

For every 0 < € < 1 and every positive integer d there
exists a minimum positive integer n(e, d) such that the
following holds:

For any probability measure 1 on R? there exists a set
N () of at most n(e,d) points such that N(u) is a
transversal to F..
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Weak € - net theorem for convex sets

(1) For every positive integer d there exists a positive
constant ¢4 such that for any set X of n points in R?

there exists a point contained in at least cygnt!
simplices spanned by X.
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(1) For every positive integer d there exists a positive
constant ¢4 such that for any set X of n points in R¢
there exists a point contained in at least cygnt!

simplices spanned by X.

(2) We choose a weak e-net greedily: Let N; be
defined. If there exists a convex set S containing more

than en of the points of 1, where SN N; = 0, let
N;11 = N; Up where p is chosen using (1).




Weak € - net theorem for convex sets

(1) For every positive integer d there exists a positive
constant ¢4 such that for any set X of n points in R¢
there exists a point contained in at least cygnt!

simplices spanned by X.

(2) We choose a weak e-net greedily: Let N; be
defined. If there exists a convex set S containing more

than en of the points of 1, where SN N; = 0, let
N;11 = N; Up where p is chosen using (1).

The process ends in a finite number
of steps depending only on € and d:
Each step kills at least cg(en)dt?
simplices.

= n(e,d) < O(edlﬂ)




Line transversals: Definitions

F={51,...,5,} : Family of convex sets in the
plane.

Common transversal : A straight line that intersects
every member of F'.

T'(k) - family : Every subfamily of size at most k has a
common transversal.

« - transversal . A straight line that intersects at least
an members of F' (0 < a < 1).




No Helly type theorem for line transversals

For every positive Regular (kK +1) - gon.
integer k there exists
a T'(k)-family that
does not have a
common transversal.
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A basic result

Theorem. (Katchalski-Liu, 1980)

For every k > 3 there exists a maximal number
a(k) € (0,1) such that every T'(k)-family has an
a(k)-transversal. Moreover,

lim «a(k) =1

k— 00

Problem. Determine the function a/(k).




Hadwiger's transversal theorem

Theorem. (Wenger, 1990)
Let FF = {51,52,...,5,}. Ifforevery 1 <i<j<k<n
we have S; Nconv(S; US)) # 0, then F' has a transversal.

@& - Vo




Hadwiger's transversal theorem

Theorem. (Arocha-Bracho-Montejano, 2008)

Let F'= F; U Fo U I'5 ={51,959,...,5,}. If for every

1 <1< j<k<nwhereS;, S;, S, belong to distinct
parts (F,'s) we have S; Nconv(S; U Sy) # (), then one of
the I}, has a transversal.
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Application to general T'(3)-families




Application to general T'(3)-families

= % - transversal.



The space of transversals

Disjoint pairs:
Positive separating tangent

Negative separating tangent

Observation. Suppose F' contains at
least one disjoint pair. Then F' has a
transversal if and only if a positive
separating tangent of some disjoint
pair of F'is transversal to F'.




Lower bound for (k)

Suppose F' contains d(g") intersecting pairs, 0 < d < 1.

X : k-tuples containing at least one disjoint pair.
Y : k-tuples containing only intersecting pairs.

X[ = (1—d*?)(}) - _

(1_|§)|(721) > (Z)/(g)

= a(k) > (k(kQ— 1)>kl2

a(B)Z%,a(4)20A@8’---,a(5)20)1;64’---,oz(6)20.508---,

% \ / 2
Better bounds due to Eckhoff (1973)




A problem (or perhaps an exercise?)

Show that for any embedding of the combinatorial
configuration (on the left) into R® (on the right)
there is a line that intersects all the red triangles or
all the blue triangles. (Due to Luis Montejano)




