Andreas F. Holmsen KAIST

Some basic definitions

$$F = \{S_1, S_2, \dots, S_m\}$$
 , $S_i \subset X$.

A transversal to F is a subset $T \subset X$ such that $T \cap S_i \neq \emptyset$ for all $1 \leq i \leq m$.

Example:

Some basic definitions

$$F = \{S_1, S_2, \dots, S_m\}$$
 , $S_i \subset X$.

A transversal to F is a subset $T \subset X$ such that $T \cap S_i \neq \emptyset$ for all $1 \leq i \leq m$.

Example:

The *transversal number*, $\tau(F)$, of a hypergraph F is the minimum cardinality of a transversal of F.

A system of distinct representatives is a transversal $T = \{x_1, x_2, \dots, x_m\}$ such that $x_i \in S_i$, $1 \le i \le m$ and $x_i \ne x_j$ whenever $i \ne j$.

$$S_1 = \{1, 3\}$$

$$S_2 = \{1, 2, 4\}$$

$$S_3 = \{2, 4\}$$

$$S_4 = \{3, 5\}$$

The *transversal number*, $\tau(F)$, of a hypergraph F is the minimum cardinality of a transversal of F.

A system of distinct representatives is a transversal $T = \{x_1, x_2, \dots, x_m\}$ such that $x_i \in S_i$, $1 \le i \le m$ and $x_i \ne x_j$ whenever $i \ne j$.

$$S_1 = \{1, 3\}$$

 $S_2 = \{1, 2, 4\}$
 $S_3 = \{2, 4\}$
 $S_4 = \{3, 5\}$
 $T = \{3, 1, 2, 5\}$

Theorem. (Hall, 1935)

Let $F = \{S_1, S_2, \dots, S_m\}$ be a collection of finite sets. F has a system of distinct representatives if and only if for every $1 \le i_1 < i_2 < \dots < i_k \le m$ we have

 $|S_{i_1} \cup S_{i_2} \cup \dots \cup S_{i_k}| \ge k$

$$F = \{S_1, S_2, \dots, S_m\}$$
, S_i convex sets in \mathbb{R}^d .

A transversal to F is a subset $T \subset \mathbb{R}^d$ such that $T \cap S_i \neq \emptyset$ for all $1 \leq i \leq m$.

$$F = \{S_1, S_2, \ldots, S_m\}$$
, S_i convex sets in \mathbb{R}^d .

A transversal to F is a subset $T \subset \mathbb{R}^d$ such that $T \cap S_i \neq \emptyset$ for all $1 \leq i \leq m$.

point transversals

$$F = \{S_1, S_2, \ldots, S_m\}$$
, S_i convex sets in \mathbb{R}^d .

A transversal to F is a subset $T \subset \mathbb{R}^d$ such that $T \cap S_i \neq \emptyset$ for all $1 \leq i \leq m$.

line transversals

Theorem. (Helly, 1913)

A family of compact convex sets in \mathbb{R}^d has a point transversal if and only if every subfamily of size at most d+1 members has a point transversal.

Theorem. (Helly, 1913)

A family of compact convex sets in \mathbb{R}^d has a point transversal if and only if every subfamily of size at most d+1 members has a point transversal.

Colorful Carathéodory Theorem

Theorem. (Bárány, 1982)

Let $A_1, A_2, \ldots, A_{d+1}$ finite subsets of \mathbb{R}^d . If $0 \in \operatorname{conv}(A_i)$ for all $1 \leq i \leq d+1$, then $0 \in \operatorname{conv}(Y)$ for some Y such that $|Y \cap A_i| = 1$. (Y is an SDR)

Colorful Carathéodory Theorem

Theorem. (Bárány, 1982)

Let $A_1, A_2, \ldots, A_{d+1}$ finite subsets of \mathbb{R}^d . If $0 \in \operatorname{conv}(A_i)$ for all $1 \leq i \leq d+1$, then $0 \in \operatorname{conv}(Y)$ for some Y such that $|Y \cap A_i| = 1$. (Y is an SDR)

Theorem. (Tverberg, 1966) Let $S \subset \mathbb{R}^d$ with |S| = (d+1)(k-1) + 1. Then S can be partitioned into k non-empty parts $S = S_1 \cup \cdots \cup S_k$ such that $\operatorname{conv}(S_1) \cap \cdots \cap \operatorname{conv}(S_k) \neq \emptyset$

Example:

Theorem. (Tverberg, 1966) Let $S \subset \mathbb{R}^d$ with |S| = (d+1)(k-1) + 1. Then S can be partitioned into k non-empty parts $S = S_1 \cup \cdots \cup S_k$ such that $\operatorname{conv}(S_1) \cap \cdots \cap \operatorname{conv}(S_k) \neq \emptyset$

Example:

Theorem. (Tverberg, 1966) Let $S \subset \mathbb{R}^d$ with |S| = (d+1)(k-1) + 1. Then S can be partitioned into k non-empty parts $S = S_1 \cup \cdots \cup S_k$ such that $\operatorname{conv}(S_1) \cap \cdots \cap \operatorname{conv}(S_k) \neq \emptyset$

Example:

Theorem. (Tverberg, 1966) Let $S \subset \mathbb{R}^d$ with |S| = (d+1)(k-1) + 1. Then S can be partitioned into k non-empty parts $S = S_1 \cup \cdots \cup S_k$ such that $\operatorname{conv}(S_1) \cap \cdots \cap \operatorname{conv}(S_k) \neq \emptyset$

Example:

Theorem. (Tverberg, 1966) Let $S \subset \mathbb{R}^d$ with |S| = (d+1)(k-1) + 1. Then S can be partitioned into k non-empty parts $S = S_1 \cup \cdots \cup S_k$ such that $\operatorname{conv}(S_1) \cap \cdots \cap \operatorname{conv}(S_k) \neq \emptyset$

Example:

Theorem. (Tverberg, 1966) Let $S \subset \mathbb{R}^d$ with |S| = (d+1)(k-1) + 1. Then S can be partitioned into k non-empty parts $S = S_1 \cup \cdots \cup S_k$ such that $\operatorname{conv}(S_1) \cap \cdots \cap \operatorname{conv}(S_k) \neq \emptyset$

Example:

$$\mu$$
 - probability measure on \mathbb{R}^d .
 $0 < \epsilon < 1$.

 F_{ϵ} - family of all convex sets S such that $\mu(S) > \epsilon$.

From Helly's theorem we have the following:

$$\mu$$
 - probability measure on \mathbb{R}^d .
 $0 < \epsilon < 1$.

 F_{ϵ} - family of all convex sets S such that $\mu(S) > \epsilon$.

From Helly's theorem we have the following:

$$\mu$$
 - probability measure on \mathbb{R}^d .
 $0 < \epsilon < 1$.

 F_{ϵ} - family of all convex sets S such that $\mu(S) > \epsilon$.

From Helly's theorem we have the following:

$$\mu$$
 - probability measure on \mathbb{R}^d .
 $0 < \epsilon < 1$.

 F_{ϵ} - family of all convex sets S such that $\mu(S) > \epsilon$.

From Helly's theorem we have the following:

$$\mu$$
 - probability measure on \mathbb{R}^d .
 $0 < \epsilon < 1$.

 F_{ϵ} - family of all convex sets S such that $\mu(S) > \epsilon$.

From Helly's theorem we have the following:

(1) For every positive integer d there exists a positive constant c_d such that for any set X of n points in \mathbb{R}^d there exists a point contained in at least $c_d n^{d+1}$ simplices spanned by X.

(1) For every positive integer d there exists a positive constant c_d such that for any set X of n points in \mathbb{R}^d there exists a point contained in at least $c_d n^{d+1}$ simplices spanned by X.

The point set can be partitioned (roughly) into $\frac{n}{d+1}$ simplices ((d+1)-tuples) that share a common point, p. (Tverberg's theorem)

(1) For every positive integer d there exists a positive constant c_d such that for any set X of n points in \mathbb{R}^d there exists a point contained in at least $c_d n^{d+1}$ simplices spanned by X.

The point set can be partitioned (roughly) into $\frac{n}{d+1}$ simplices ((d+1)-tuples) that share a common point, p. (Tverberg's theorem)

For any d + 1 simplices, there is a (d + 1)-tuple with one vertex from each simplex that contains p in its convex hull. (Colorful Carathéodory)

(1) For every positive integer d there exists a positive constant c_d such that for any set X of n points in \mathbb{R}^d there exists a point contained in at least $c_d n^{d+1}$ simplices spanned by X.

The point set can be partitioned (roughly) into $\frac{n}{d+1}$ simplices ((d+1)-tuples) that share a common point, p. (Tverberg's theorem)

For any d + 1 simplices, there is a (d+1)-tuple with one vertex from each simplex that contains p in its convex hull. (Colorful Carathéodory)

$$\Rightarrow \begin{pmatrix} \frac{n}{d+1} \\ d+1 \end{pmatrix} \approx \frac{1}{(d+1)!(d+1)^{d+1}} n^{d+1}$$

distinct simplices contain p.

(1) For every positive integer d there exists a positive constant c_d such that for any set X of n points in \mathbb{R}^d there exists a point contained in at least $c_d n^{d+1}$ simplices spanned by X.

(2) We choose a weak ϵ -net greedily: Let N_i be defined. If there exists a convex set S containing more than ϵn of the points of μ , where $S \cap N_i = \emptyset$, let $N_{i+1} = N_i \cup p$ where p is chosen using (1).

Weak ϵ - net theorem for convex sets

(1) For every positive integer d there exists a positive constant c_d such that for any set X of n points in \mathbb{R}^d there exists a point contained in at least $c_d n^{d+1}$ simplices spanned by X.

(2) We choose a weak ϵ -net greedily: Let N_i be defined. If there exists a convex set S containing more than ϵn of the points of μ , where $S \cap N_i = \emptyset$, let $N_{i+1} = N_i \cup p$ where p is chosen using (1).

The process ends in a finite number of steps depending only on ϵ and d: Each step kills at least $c_d(\epsilon n)^{d+1}$ simplices.

 $\Rightarrow n(\epsilon, d) \le O(\frac{1}{\epsilon^{d+1}})$

Line transversals: Definitions

$$F = \{S_1, \ldots, S_n\}$$
: Family of convex sets in the plane.

Common transversal : A straight line that intersects every member of F.

T(k) - family : Every subfamily of size at most k has a common transversal.

 α - *transversal* : A straight line that intersects at least αn members of F ($0 \le \alpha \le 1$).

No Helly type theorem for line transversals

For every positive integer k there exists a T(k)-family that does not have a common transversal. Regular (k+1) - gon.

No Helly type theorem for line transversals

For every positive integer k there exists a T(k)-family that does not have a common transversal.

F has a $\frac{k}{k+1}$ - transversal.

A basic result

Theorem. (Katchalski-Liu, 1980)

For every $k \geq 3$ there exists a maximal number $\alpha(k) \in (0, 1)$ such that every T(k)-family has an $\alpha(k)$ -transversal. Moreover,

$$\lim_{k \to \infty} \alpha(k) = 1$$

Problem. Determine the function $\alpha(k)$.

Hadwiger's transversal theorem

Theorem. (Wenger, 1990) Let $F = \{S_1, S_2, \dots, S_n\}$. If for every $1 \le i < j < k \le n$ we have $S_j \cap \operatorname{conv}(S_i \cup S_k) \ne \emptyset$, then F has a transversal.

Hadwiger's transversal theorem

Theorem. (Arocha-Bracho-Montejano, 2008) Let $F = F_1 \cup F_2 \cup F_3 = \{S_1, S_2, \dots, S_n\}$. If for every $1 \le i < j < k \le n$ where S_i, S_j, S_k belong to distinct parts $(F_p$'s) we have $S_j \cap \operatorname{conv}(S_i \cup S_k) \ne \emptyset$, then one of the F_p has a transversal.

Application to general T(3)-families

Application to general T(3)-families

The space of transversals

Disjoint pairs:

Observation. Suppose F contains at least one disjoint pair. Then F has a transversal if and only if a positive separating tangent of some disjoint pair of F is transversal to F.

Lower bound for $\alpha(k)$

Suppose F contains $d\binom{n}{2}$ intersecting pairs, $0 \le d < 1$.

- X : k-tuples containing at least one disjoint pair.
- Y: k-tuples containing only intersecting pairs.

$$\Rightarrow \alpha(k) \ge \left(\frac{2}{k(k-1)}\right)^{\frac{1}{k-2}}$$

 $\alpha(3) \geq \frac{1}{3}, \ \alpha(4) \geq 0.408 \cdots, \ \alpha(5) \geq 0.464 \cdots, \ \alpha(6) \geq 0.508 \cdots, \ \ldots$ $\frac{1}{2}$ Better bounds due to Eckhoff (1973)

A problem (or perhaps an exercise?)

Show that for any embedding of the combinatorial configuration (on the left) into \mathbb{R}^3 (on the right) there is a line that intersects all the red triangles or all the blue triangles. (Due to Luis Montejano)