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Some basic definitions

F = {S1, S2, . . . , Sm} , Si ⊂ X.

A transversal to F is a subset T ⊂ X such that
T ∩ Si 6= ∅ for all 1 ≤ i ≤ m.
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The transversal number, τ(F ), of a hypergraph F is
the minimum cardinality of a transversal of F .

A system of distinct representatives is a transversal
T = {x1, x2, . . . , xm} such that xi ∈ Si, 1 ≤ i ≤ m
and xi 6= xj whenever i 6= j.
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Hall’s marriage theorem

A family of compact convex sets in Rd has a point
transversal if and only if every subfamily of size d+ 1
members has a point transversal.

A family of compact convex sets in Rd has a point
transversal if and only if every subfamily of size d+ 1
members has a point transversal.

A family of compact convex sets in Rd has a point
transversal if and only if every subfamily of size d+ 1
members has a point transversal.

Let F = {S1, S2, . . . , Sm} be a collection of finite
sets. F has a system of distinct representatives if and
only if for every 1 ≤ i1 < i2 < · · · < ik ≤ m we have

|Si1 ∪ Si2 ∪ · · · ∪ Sik | ≥ k

Theorem. (Hall, 1935)
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Helly’s theorem

A family of compact convex sets in Rd has a point
transversal if and only if every subfamily of size d+ 1
members has a point transversal.
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most d+ 1 members has a point transversal.

Theorem. (Helly, 1913)
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Colorful Carathéodory Theorem

Let A1, A2, . . . , Ad+1 finite subsets of Rd. If
0 ∈ conv(Ai) for all 1 ≤ i ≤ d+ 1, then 0 ∈ conv(Y )
for some Y such that |Y ∩Ai| = 1. (Y is an SDR)

Theorem. (Bárány, 1982)
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d = 2, k = 4

Theorem. (Tverberg, 1966)
Let S ⊂ Rd with |S| = (d+ 1)(k − 1) + 1. Then S
can be partitioned into k non-empty parts
S = S1 ∪ · · · ∪ Sk such that
conv(S1) ∩ · · · ∩ conv(Sk) 6= ∅
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Weak ε - net theorem for convex sets

µ - probability measure on Rd.

Fε - family of all convex sets S such that µ(S) > ε.

From Helly’s theorem we have the following:

For every µ and ε ≥ d
d+1 the family Fε has a point

transversal. (Rado’s centerpoint theorem)

0 < ε < 1.
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Weak ε - net theorem for convex sets

Theorem.
For every 0 < ε < 1 and every positive integer d there
exists a minimum positive integer n(ε, d) such that the
following holds:
For any probability measure µ on Rd there exists a set
N(µ) of at most n(ε, d) points such that N(µ) is a
transversal to Fε.
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(1) For every positive integer d there exists a positive
constant cd such that for any set X of n points in Rd
there exists a point contained in at least cdn

d+1

simplices spanned by X.

The point set can be partitioned (roughly) into
n
d+1 simplices ((d+ 1)-tuples) that share a
common point, p. (Tverberg’s theorem)

For any d+ 1 simplices, there is a
(d+ 1)-tuple with one vertex from each
simplex that contains p in its convex hull.
(Colorful Carathéodory)

⇒
( n

d+1

d+ 1

)
≈ 1

(d+ 1)!(d+ 1)d+1
nd+1

distinct simplices contain p.



Weak ε - net theorem for convex sets

(2) We choose a weak ε-net greedily: Let Ni be
defined. If there exists a convex set S containing more
than εn of the points of µ, where S ∩Ni = ∅, let
Ni+1 = Ni ∪ p where p is chosen using (1).
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d+1

simplices spanned by X.



Weak ε - net theorem for convex sets

(2) We choose a weak ε-net greedily: Let Ni be
defined. If there exists a convex set S containing more
than εn of the points of µ, where S ∩Ni = ∅, let
Ni+1 = Ni ∪ p where p is chosen using (1).

The process ends in a finite number
of steps depending only on ε and d:
Each step kills at least cd(εn)d+1

simplices.

⇒ n(ε, d) ≤ O( 1
εd+1 )

(1) For every positive integer d there exists a positive
constant cd such that for any set X of n points in Rd
there exists a point contained in at least cdn

d+1

simplices spanned by X.



Line transversals: Definitions

Common transversal : A straight line that intersects
every member of F .

T (k) - family : Every subfamily of size at most k has a
common transversal.

α - transversal : A straight line that intersects at least
αn members of F (0 ≤ α ≤ 1).

F = {S1, . . . , Sn} : Family of convex sets in the
plane.



d

No Helly type theorem for line transversals
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Regular (k+ 1) - gon.For every positive
integer k there exists
a T (k)-family that
does not have a
common transversal.



No Helly type theorem for line transversals

For every positive
integer k there exists
a T (k)-family that
does not have a
common transversal.

F has a
k
k+1 - transversal.



A basic result

Theorem. (Katchalski-Liu, 1980)

For every k ≥ 3 there exists a maximal number
α(k) ∈ (0, 1) such that every T (k)-family has an
α(k)-transversal. Moreover,

lim
k→∞

α(k) = 1

Problem. Determine the function α(k).



Hadwiger’s transversal theorem

Si Sj

Sk ⇒

Theorem. (Wenger, 1990)
Let F = {S1, S2, . . . , Sn}. If for every 1 ≤ i < j < k ≤ n
we have Sj ∩ conv(Si∪Sk) 6= ∅, then F has a transversal.



Hadwiger’s transversal theorem

Si Sj

Sk ⇒

Theorem. (Arocha-Bracho-Montejano, 2008)
Let F = F1 ∪ F2 ∪ F3 = {S1, S2, . . . , Sn}. If for every
1 ≤ i < j < k ≤ n where Si, Sj , Sk belong to distinct
parts (Fp’s) we have Sj ∩ conv(Si ∪ Sk) 6= ∅, then one of
the Fp has a transversal.



Application to general T (3)-families



Application to general T (3)-families

⇒ 1
5

- transversal.



The space of transversals

Positive separating tangent

Negative separating tangent

Disjoint pairs:

Observation. Suppose F contains at
least one disjoint pair. Then F has a
transversal if and only if a positive
separating tangent of some disjoint
pair of F is transversal to F .



Lower bound for α(k)

Suppose F contains d
(
n
2

)
intersecting pairs, 0 ≤ d < 1.

X : k-tuples containing at least one disjoint pair.

Y : k-tuples containing only intersecting pairs.

|X| ≥ (1− dk/2)
(
n
k

)
|X|

(1−d)(n
2)
≥

(
n
k

)
/
(
n
2

)
⇒ α(k) ≥

(
2

k(k − 1)

) 1
k−2

1
2

1
2

α(3) ≥ 1
3 , α(4) ≥ 0.408 · · · , α(5) ≥ 0.464 · · · , α(6) ≥ 0.508 · · · , . . .

Better bounds due to Eckhoff (1973)



A problem (or perhaps an exercise?)

Show that for any embedding of the combinatorial
configuration (on the left) into R3 (on the right)
there is a line that intersects all the red triangles or
all the blue triangles. (Due to Luis Montejano)


