Trends in Mathematics - New Series Information Center for Mathematical Sciences Volume 10, Number 1, 2008, pages 81–83 Toric Topology Workshop KAIST 2008 ©2008 ICMS in KAIST

SMALL COVERS OVER CUBE

SUYOUNG CHOI

A Small cover is a closed n-dimensional manifold with a locally standard mod 2 torus \mathbb{Z}_2^n action over a simple convex polytope, which is defined by Davis and Januszkiewicz in [4]. Let P be a simple convex polytope of dimension n and $\mathcal{F}(P) = \{F_1, \ldots, F_m\}$ be the set of facets of P. Consider $\lambda : \mathcal{F}(P) \to \mathbb{Z}_2^n$ which satis first the non-singularity condition; $\{\lambda(F_{i_1}), \ldots, \lambda(F_{i_n})\}$ is a basis of \mathbb{Z}_2^n whenever the intersection $F_{i_1} \cap \cdots \cap F_{i_n}$ is non-empty. We call λ a *characteristic function*. It is well-known that one may assign a characteristic function to a small cover. Two small covers M_1 and M_2 are said to be weakly \mathbb{Z}_2^n -equivariantly homeomorphic (or simply weakly \mathbb{Z}_2^n -homeomorphic) if there is an automorphism $\varphi : \mathbb{Z}_2^n \to \mathbb{Z}_2^n$ and a homeomorphism $f: M_1 \to M_2$ such that $f(t \cdot x) = \varphi(t) \cdot f(x)$ for every $t \in \mathbb{Z}_2^n$ and $x \in M_1$. If φ is an identity, then M_1 and M_2 are \mathbb{Z}_2^n -homeomorphic. Following Davis and Januszkiewicz, two small covers M_1 and M_2 over P are said to be Davis-Januszkiewicz equivalent (or simply, D-J equivalent) if there is a weakly \mathbb{Z}_2^n homeomorphism $f: M_1 \to M_2$ covering the identity on P. By [4], all small covers over P are distinguished their characteristic function λ up to \mathbb{Z}_2^n -homeomorphism covering the identity on P, see [4] or [1] for details.

Let cf(P) denote the set of all characteristic functions over P. There are two natural actions on cf(P). One is the free left action of general linear group $GL(n, \mathbb{Z}_2)$ on cf(P) defined by $\sigma \times \lambda \mapsto \sigma \circ \lambda$, where $\lambda \in cf(P)$ and $\sigma \in GL(n, \mathbb{Z}_2)$. An *automorphism* of $\mathcal{F}(P)$ is a bijection from $\mathcal{F}(P)$ to itself which preserves the poset

²⁰⁰⁰ Mathematics Subject Classification. 37F20, 57S10, 14M25.

Key words and phrases. Small cover, Cube, Acyclic digraph, Orientable Small cover, Equivariant homeomorphism.

This work was partially supported by the SRC program of Korea Science and Engineering Foundation (KOSEF) grant funded by Korea government(MOST) (No. R11-2007-035-02002-0).

structure of all faces of P. Let $\operatorname{Aut}(\mathcal{F}(P))$ denote the group of automorphisms of $\mathcal{F}(P)$. Then there is the right action of $\operatorname{Aut}(\mathcal{F}(P))$ on cf(P) by $\lambda \times h \mapsto \lambda \circ h$, where $\lambda \in cf(P)$ and $h \in \operatorname{Aut}(\mathcal{F}(P))$. Note that there are two one-to-one correspondences

$$GL(n, \mathbb{Z}_2) \setminus cf(P) \quad \longleftrightarrow \quad \{ \text{D-J classes over } P \}$$
$$cf(P)/\text{Aut}(\mathcal{F}(P)) \quad \longleftrightarrow \quad \{ \mathbb{Z}_2^n \text{-homeo. classes over } P \}.$$

Thus we can count the number of small covers over P by counting the number of orbits of each actions on cf(P).

When P is an n-dimensional cube I^n , one may regard a D-J equivalence of small covers as an $(n \times 2n)$ -matrix Λ over \mathbb{Z}_2 of form

$$\Lambda = (E_n | \Lambda_*),$$

where E_n is an identity matrix of size n and Λ_* is an $n \times n$ matrix all of whose principal minors are 1, see [3] or [5] for details. Let M(n) be the set of \mathbb{Z}_2 -matrices of size n all of whose principal minors are 1 and \mathcal{G}_n be the set of acyclic simple digraphs with labeled n nodes. In [3], we have a bijection $\phi : \mathcal{G}_n \to M(n)$ by

$$\phi: G \mapsto A(G) + E_n$$

where A(G) is the vertex adjacency matrix of G and E_n is an identity matrix of size n. Since the cardinality of \mathcal{G}_n is well-known, we have the recursive formula of the number of D-J classes of small covers over cubes. Let R_n be the number of acyclic digraphs with labeled n nodes.

$$R_n = \sum_{k=1}^n (-1)^{k+1} \binom{n}{k} 2^{k(n-k)} R_{n-k}$$

By a quiet similar method, we can establish the formula of the number of D-J classes over a product of simplices in terms of acyclic graphs. Let $\sharp DJ(\prod_{i=1}^{\ell} \Delta^{n_i})$ denote the number of D-J equivalence classes over $\prod_{i=1}^{\ell} \Delta^{n_i}$. Then

$$\sharp DJ(\prod_{i=1}^{\ell} \Delta^{n_i}) = \sum_{G \in \mathcal{G}_{\ell}} \prod_{v_i \in V(G)} (2^{n_i} - 1)^{\operatorname{outdeg}(v_i)},$$

where $V(G) = \{v_1, \ldots, v_\ell\}$ is the labeled vertex set of G.

On the other hand, recall the criterion for determining the orientability of small covers in [6]; M is orientable if and only if the sum of entries of *i*-th column of Λ_* is odd for all i = 1, ..., n. Combining the criterion with the above bijection ϕ , we have that M is orientable if and only if $\phi^{-1}(\Lambda_*)$ is the acyclic graph with labeled n nodes all of whose vertices have even indegrees. Let O_n be the number of D-J equivalence classes of orientable small covers over I^n . Then

$$O_n = \sum_{k=1}^n (-1)^{k+1} \binom{n}{k} 2^{(k-1)(n-k)} R_{n-k}.$$

Note that the ratio O_n/R_n converges to 0 as n increases, see [2] for details.

Finally, we can count the \mathbb{Z}_2^n -homeomorphism classes over I^n ([3]). Let Q_n be the number of \mathbb{Z}_2^n -equivariant homeomorphism classes of small covers over I^n . Then

$$Q_n = \frac{\sum_{k=0}^n \binom{n}{k} 2^{k(n-k)} R_k}{2^n n!} \cdot \prod_{i=0}^{n-1} (2^n - 2^i).$$

References

- Victor M. Buchstaber and Taras E. Panov. Torus actions and their applications in topology and combinatorics, volume 24 of University Lecture Series. American Mathematical Society, Providence, RI, 2002.
- [2] Suyoung Choi. Note for orientable small covers over cubes. *preprint*.
- [3] Suyoung Choi. The number of small covers over cubes. arXiv:0802.1982v1 [math.GT], 2008.
- [4] Michael W. Davis and Tadeusz Januszkiewicz. Convex polytopes, Coxeter orbifolds and torus actions. Duke Math. J., 62(2):417–451, 1991.
- [5] Mikiya Masuda and Taras Panov. Semifree circle actions, Bott towers, and quasitoric manifolds. arXiv:math.AT/0607094v2, 2007.
- [6] Hisashi Nakayama and Yasuzo Nishimura. The orientability of small covers and coloring simple polytopes. Osaka J. Math., 42(1):243–256, 2005.

DEPARTMENT OF MATHEMATICAL SCIENCES, KAIST, 335 GWAHANGNO, YUSEONG-GU, DAEJEON 305-701, REPUBLIC OF KOREA

E-mail address: choisy@kaist.ac.kr