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SMALL COVERS OVER CUBE

SUYOUNG CHOI

A Small cover is a closed n-dimensional manifold with a locally standard mod
2 torus Zj action over a simple convex polytope, which is defined by Davis and
Januszkiewicz in [4]. Let P be a simple convex polytope of dimension n and
F(P)={F\,...,F,} be the set of facets of P. Consider A : F(P) — Z% which sat-
isfies the non-singularity condition; {\(F;,),..., A(F;,)} is a basis of Z} whenever
the intersection F;, N---NF;  is non-empty. We call A a characteristic function. It
is well-known that one may assign a characteristic function to a small cover. Two
small covers M; and Ms are said to be weakly Z%-equivariantly homeomorphic (or
simply weakly Z%-homeomorphic) if there is an automorphism ¢ : Z5 — Z% and
a homeomorphism f : My — M; such that f(t-x) = ¢(¢) - f(z) for every t € Z%
and x € M;. If ¢ is an identity, then M; and My are Z5-homeomorphic. Follow-
ing Davis and Januszkiewicz, two small covers M; and M, over P are said to be
Davis-Januszkiewicz equivalent (or simply, D-J equivalent) if there is a weakly Z5-
homeomorphism f : My — M covering the identity on P. By [4], all small covers
over P are distinguished their characteristic function A up to Z&-homeomorphism
covering the identity on P, see [4] or [1] for details.

Let cf(P) denote the set of all characteristic functions over P. There are two nat-
ural actions on c¢f(P). One is the free left action of general linear group GL(n,Zs)
on c¢f(P) defined by ¢ x A +— oo A, where A € ¢f(P) and 0 € GL(n,Zs). An
automorphism of F(P) is a bijection from F(P) to itself which preserves the poset
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structure of all faces of P. Let Aut(F(P)) denote the group of automorphisms of
F(P). Then there is the right action of Aut(F(P)) on c¢f(P) by Ax h +— Aoh, where
A € cf(P) and h € Aut(F(P)). Note that there are two one-to-one correspondences

GL(n,Zs)\cf(P) «— {D-J classes over P}
cf(P)/Aut(F(P)) «— {Z3-homeo. classes over P}.

Thus we can count the number of small covers over P by counting the number of
orbits of each actions on c¢f(P).
When P is an n-dimensional cube 1", one may regard a D-J equivalence of small

covers as an (n X 2n)-matrix A over Zy of form
A = (E,|AL),

where E, is an identity matrix of size n and A, is an n X n matrix all of whose
principal minors are 1, see [3] or [5] for details. Let M (n) be the set of Zy-matrices
of size n all of whose principal minors are 1 and G, be the set of acyclic simple

digraphs with labeled n nodes. In [3], we have a bijection ¢ : G, — M(n) by
¢:G— AG)+ E,

where A(G) is the vertex adjacency matrix of G and E,, is an identity matrix of
size n. Since the cardinality of G,, is well-known, we have the recursive formula of
the number of D-J classes of small covers over cubes. Let R, be the number of

acyclic digraphs with labeled n nodes.

R, = Z(_l)k-H (Z) okn—k)p

k=1
By a quiet similar method, we can establish the formula of the number of D-J
classes over a product of simplices in terms of acyclic graphs. Let §D.J (Hfz1 AM)

denote the number of D-J equivalence classes over Hle A™. Then

I
ipJ([Jary = I (@ - pyeudests,
i=1 GEGr v, €V (G)
where V(G) = {v1,..., v} is the labeled vertex set of G.

On the other hand, recall the criterion for determining the orientability of small
covers in [6]; M is orientable if and only if the sum of entries of i-th column of A,
is odd for all i =1,...,n. Combining the criterion with the above bijection ¢, we
have that M is orientable if and only if $~1(A,) is the acyclic graph with labeled

n nodes all of whose vertices have even indegrees. Let O, be the number of D-J



SMALL COVERS OVER CUBE 83

equivalence classes of orientable small covers over I"”. Then

0, = Z(_l)k—H (Z) gk-D(n-kp

k=1

Note that the ratio O,,/R,, converges to 0 as n increases, see [2] for details.

Finally, we can count the Z%-homeomorphism classes over I" ([3]). Let @, be

the number of Z7-equivariant homeomorphism classes of small covers over I™. Then
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