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Suppose Qn is a simple convex polytope of dimension n, Mn is a small cover over

Qn, i.e. Mn has a locally standard (Z2)n-action whose orbit space is Qn (see [1]).

It is shown in [2] that M is orientable if and only if the image of the characteristic

function can be turned into the set On = {ei1 + · · ·+ eik
| eij 6= eij′ , k is odd} by a

basis change of (Z2)n.

Let Fk be a k-face of Qn, the closed manifold p−1(Fk) is called the facial subman-

ifold of M with respect to the Fk. In this talk, we show how to use characteristic

function of the small cover to judge the orientability of any facial submanifold in a

small cover.

Let F be an (n−1)-facet of Qn and let F̃1, · · · , F̃s be all (n−1)-faces adjacent to

F in Qn. Then F is an (n− 1)-dimensional simple convex polytope whose (n− 2)-

faces are F ∩ F̃j, j = 1, · · · s.

Suppose λ is the characteristic function of the small cover. Let

ΦF : (Z2)n → (Z2)n/〈λ(F)〉 ∼= (Z2)n−1

be the quotient map. This induced a function on all the (n− 2)-faces F ∩ F̃j of ∂F

by: λ(F ∩ F̃j) := ΦF(λ(F̃j)) ∈ (Z2)n−1. We can prove the following statement.
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Proposition 1: π−1(F) is an orientable submanifold of Mn if and only if

λ(F ∩ F̃j) can be turned into the set On−1 by a basis change of (Z2)n−1.

Furthermore, for any k-face Fk of Qn, we can choose a descending face sequence

on Qn

Qn ⊃ Fn−1 · · · ⊃ Fk+1 ⊃ Fk(1)

where Fj is a j-face of Qn. We can inductively define λ on the facets of the boundary

of Fj. At the end, we can judge the orientability of the facial submanifold π−1(Fk)

using proposition 1.

As an application, we enumerate 3-dimensional small covers over prisms Q =

P (n)× I where P (n) is a polygon with n-edges. In particular, for those orientable

ones, we can show the following:

Proposition 2: Suppose M1,M2 are orientable small covers over prisms. If

H∗(M1) ∼= H∗(M2) as graded rings, M1 must be homeomorphic to M2.

It is very likely that similar statement holds for non-orientable small covers over

prisms too. But so far, the proof is not completed. In general, we have the following

problem (also see [3]):

Problem: If M1 and M2 are small covers over the same simple convex polytope

Q and H∗(M1) ∼= H∗(M2) as graded rings, is M1 homeomorphic to M2?

This problem is called cohomological rigidity problem in [4] and has been

confirmed to be true for all real Bott tower manifolds there.
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