Trends in Mathematics - New Series Information Center for Mathematical Sciences Volume 10, Number 1, 2008, pages 73–75 Toric Topology Workshop KAIST 2008 ©2008 ICMS in KAIST

ORIENTABILITY OF FACIAL SUBMANIFOLDS OF SMALL COVERS

LI YU

Suppose Q^n is a simple convex polytope of dimension n, M^n is a small cover over Q^n , i.e. M^n has a locally standard $(\mathbb{Z}_2)^n$ -action whose orbit space is Q^n (see [1]). It is shown in [2] that M is orientable if and only if the image of the characteristic function can be turned into the set $\mathcal{O}^n = \{e_{i_1} + \cdots + e_{i_k} \mid e_{i_j} \neq e_{i_{j'}}, k \text{ is odd}\}$ by a basis change of $(\mathbb{Z}_2)^n$.

Let F^k be a k-face of Q^n , the closed manifold $p^{-1}(F^k)$ is called the *facial submanifold* of M with respect to the F^k . In this talk, we show how to use characteristic function of the small cover to judge the orientability of any facial submanifold in a small cover.

Let F be an (n-1)-facet of Q^n and let $\widetilde{F}_1, \dots, \widetilde{F}_s$ be all (n-1)-faces adjacent to F in Q^n . Then F is an (n-1)-dimensional simple convex polytope whose (n-2)-faces are $F \cap \widetilde{F}_j, j = 1, \dots s$.

Suppose λ is the characteristic function of the small cover. Let

$$\Phi_{\mathbf{F}} : (\mathbb{Z}_2)^n \to (\mathbb{Z}_2)^n / \langle \lambda(\mathbf{F}) \rangle \cong (\mathbb{Z}_2)^{n-1}$$

be the quotient map. This induced a function on all the (n-2)-faces $F \cap \widetilde{F}_j$ of ∂F by: $\lambda(F \cap \widetilde{F}_j) := \Phi_F(\lambda(\widetilde{F}_j)) \in (\mathbb{Z}_2)^{n-1}$. We can prove the following statement.

 $^{2000\} Mathematics\ Subject\ Classification.\ 57M60,\ 57M50,\ 57S17,\ 57R85.$

Key words and phrases. Small cover, orientability, submanifolds, rigidity.

Proposition 1: $\pi^{-1}(\mathbf{F})$ is an orientable submanifold of M^n if and only if $\lambda(\mathbf{F} \cap \widetilde{\mathbf{F}}_i)$ can be turned into the set \mathcal{O}^{n-1} by a basis change of $(\mathbb{Z}_2)^{n-1}$.

Furthermore, for any k-face $\mathbf{F}^{\mathbf{k}}$ of $Q^n,$ we can choose a descending face sequence on Q^n

(1)
$$Q^n \supset F^{n-1} \cdots \supset F^{k+1} \supset F^k$$

where F^{j} is a *j*-face of Q^{n} . We can inductively define λ on the facets of the boundary of F^{j} . At the end, we can judge the orientability of the facial submanifold $\pi^{-1}(F^{k})$ using proposition 1.

As an application, we enumerate 3-dimensional small covers over prisms $Q = P(n) \times I$ where P(n) is a polygon with *n*-edges. In particular, for those orientable ones, we can show the following:

Proposition 2: Suppose M_1, M_2 are orientable small covers over prisms. If $H^*(M_1) \cong H^*(M_2)$ as graded rings, M_1 must be homeomorphic to M_2 .

It is very likely that similar statement holds for non-orientable small covers over prisms too. But so far, the proof is not completed. In general, we have the following problem (also see [3]):

Problem: If M_1 and M_2 are small covers over the same simple convex polytope Q and $H^*(M_1) \cong H^*(M_2)$ as graded rings, is M_1 homeomorphic to M_2 ?

This problem is called **cohomological rigidity problem** in [4] and has been confirmed to be true for all real Bott tower manifolds there.

Acknowledgement: I want to thank Professor D. Y. Suh for his hospitality during the workshop. Also I would like to thank Professor M. Masuda and other attendants of the workshop for many helpful discussions during my preparation for the talk.

References

 M. W. Davis and T. Januszkiewicz, Convex polytopes, Coxeter orbifolds and torus actions, Duke Math. J. 62 (1991), no.2, 417–451.

- [2] H. Nakayama and Y. Nishimura, The orientability of small covers and coloring simple polytopes, Osaka J. Math. 42 (2005), 243-256.
- [3] M. Masuda, D. Y. Suh, Classification problems of toric manifolds via topology, math.AT/arXiv:0709.4579v1
- [4] Y. Kamishima and M. Masuda, Cohomological rigidity of real Bott manifolds, math.AT/arXiv:0807.4263v1.