Trends in Mathematics - New Series

Volume 10, Number 1, 2008, pages 69-72

Toric Topology Workshop
KAIST 2008
© 2008 ICMS in KAIST

COHOMOLOGICAL RIGIDITY OF QUASITORIC MANIFOLDS AND SIMPLE CONVEX POLYTOPES

DONG YOUP SUH

An n-dimensional convex polytope is called simple if at each vertex exactly n facets (codimension one face) intersect. The notion of quasitoric manifold was first introduced by Davis and Januszkiewicz in [4] as a topological analogue of toric variety in algebraic geometry, which is a closed $2 n$-dimensional manifold $M^{2 n}$ with a locally standard n-torus $T^{n}=\left(S^{1}\right)^{n}$ action such that its orbit space has a combinatorial structure of a simple convex polytope P^{n}. In this case we say $M^{2 n}$ is over P^{n}. Davis and Januszkiewicz named such manifold as toric manifold, but toric manifold is a well-established term for algebraic geometors as a nonsigular toric variety. So Buchstaber and Panov renamed it as quasitoric manifold in [1], and now this terminology is widely accepted among toric toopolgists.

One of the interesting questions on quasitoric manifold is the following cohomological rigidity question.

Question 0.1. Let M and N be two quasitoric manifolds with isomorphic cohomology rings. Does this imply that M and N are homeomorphic?

Masuda and Panov give a positive answer to the question for quasitoric manifolds whose cohomology rings are isomorphic to those of product of $\mathbb{C} P^{1}$'s in [5]. Namely, they show that any quasitoric manifold $M^{2 n}$ with $H^{*}\left(M^{2 n}\right) \cong H^{*}\left(\prod \mathbb{C} P^{1}\right)$ is actually homeomorphic to $\prod \mathbb{C} P^{1}$. It is proved in two steps. First they show that any quasitoric manifold $M^{2 n}$ over a cube I^{n} with $H^{*}\left(M^{2 n}\right) \cong H^{*}\left(\prod \mathbb{C} P^{1}\right)$ is homeomorphic to $\prod \mathbb{C} P^{1}$. Then they show that any quasitoric manifold $M^{2 n}$ with $H^{*}\left(M^{2 n}\right) \cong H^{*}\left(\prod \mathbb{C} P^{1}\right)$ is actually over the cube I^{n}.

[^0]The second step of their proof motivates the following definition of cohomological rigidity of simple convex polytope.

Definition 2. A simple convex polytope P is called cohomologically rigid (or simply rigid) if there exists a quasitoric manifold M over P and whenever there is another quasitoric manifold N over a simplex convex polytope Q with $H^{*}(M) \cong H^{*}(N)$ as graded rings, then P is combinatorially equivalent to Q.

Not all simple convex polytopes are rigid as the example in Section 4 of [6] shows. So the following question is reasonable to ask.

Question 0.3. Which simple convex polytopes are rigid?
By the previously mentioned work of [5], every cube are rigid.
In [3] Choi, Panov and Suh find some more rigid polytoes. Namely, the following theorem is the main result of [3]. A polytope is triangle-free if there is no triangular 2-dimensional face. For a simple convex polytope P and a vertex v of it, the vertex cut $\operatorname{vc}(P, v)$ is a polytope obtained from P by cutting out a simplex shaped neighborhood of v. If $\operatorname{vc}(P, v)$ is independent of a choice of a vertex v, then we write $\operatorname{vc}(P)$.

Theorem 4. [3] The following polytopes are cohomologically rigid.
(1) Any polygon, i.e., any 2-dimensional simple convex polytope.
(2) Any triangle-free n-dimensional simple convex polytope with facet numbers $\leq 2 n+2$.
(3) Any product of simplices, i.e., $\Pi \Delta^{n_{i}}$.
(4) Any vertex cut of a product of simplices, i.e., $\operatorname{vc}\left(\prod \Delta^{n_{i}}\right)$.
(5) Dodecahedron

The theorem is proved using Tor-algebra and bigraded betti numbers $\beta^{-i, 2 j}$ of a polytope P, see Section 3.3 and 3.4 of [1] for definition of Tor-algebra and bigraded betti numbers.

In [2] it is proved that if M is a quasitoric manifold over a product of simpleces $\Pi \Delta^{n_{i}}$ such that $H^{*}(M) \cong H^{*}\left(\prod \mathbb{C} P^{n_{i}}\right)$, then $M \cong \prod \mathbb{C} P^{n_{i}}$ (homeomorphism). Since $\prod \Delta^{n_{i}}$ is rigid by Theorem 4, we can conclude that if M is a quasitoric manifold such that $H^{*}(M) \cong H^{*}\left(\prod \mathbb{C} P^{n_{i}}\right)$ then $M \cong \prod \mathbb{C} P^{n_{i}}$ (homeomorphism), which generalizes the result in [5].

A simplicial complex of dimension $n-1$ is called Cohen-Macaulay if there is a length n regular sequence in the face ring (or Stanley-Reisner ring) $k(K)$ where k is a field. Remember that the face ring of a simpicial complex with vertices v_{1}, \ldots, v_{m} is the ring $k\left[v_{1}, \ldots, v_{m}\right] / I$ where I is the ideal generated by the set of monomials $v_{i_{1}} \cdots v_{i_{k}}$ where the vertices $v_{i_{1}}, \ldots, v_{i_{k}}$ does not form a simplex in K. Also remember that a sequence $\lambda_{1}, \ldots, \lambda_{p}$ of homogeneous elements in $k(K)$ is a regular sequence if it is algebraically independent and $k(K)$ is a free module over
$k\left(\lambda_{1}, \ldots, \lambda_{p}\right)$. It is known that for any simple convex n-polytope P, the dual $(\partial P)^{*}$ of its boundary is Cohen-Macaulay. The definition of cohomological rigidity of a simple convex polytope can be generalized to that of a Cohen-Macaulay complex as follows.

Definition 5. An $(n-1)$-dimensional Cohen-Macaulay complex K is rigid if for any $(n-1)$-dimensional Cohen-Macaulay complex K^{\prime} and for ideals $J \subset k(K)$ and $J^{\prime} \subset k\left(K^{\prime}\right)$ generated by degree 2 regular sequences of length $n, k(K) / J \cong k\left(K^{\prime}\right) / J^{\prime}$ implies $k(K) \cong k\left(K^{\prime}\right)$.

So far no example of rigid Cohen-Macaulay complex which is not a dual of the boundary of a simple convex polytope is known.

For an n-dimensional simple convex polytope P^{n} with m facets, David and Januszkiewicz constructed in [4] a T^{m}-manifold \mathcal{Z}_{P} with orbit space P^{n} such that for any quasitoric manifold $\pi: M^{2 n} \rightarrow P^{n}$ there is a principal T^{m-n}-bundle $\mathcal{Z}_{P} \rightarrow$ M whose composite map with π is the orbit map $\rho: \mathcal{Z}_{P} \rightarrow P$. This manifold is called the moment angle complex (or manifold) of P. Moment angle complex can be defined for arbitrary simplicial complex K. It is prove by Buchstaber and Panov that the cohomology $H^{*}\left(\mathcal{Z}_{K}\right)$ of \mathcal{Z}_{K} for a Cohen-Macaulay complex is isomorphic to the Tor-algebra of K, see Theorem 7.13 of [1]. Buchstaber modified Question 0.3 in terms of moment angle complex of a simplicial complex.

Question 0.6. Let K and K^{\prime} be two simplicial complexes such that $H^{*}\left(\mathcal{Z}_{k}: k\right) \cong$ $H^{*}\left(\mathcal{Z}_{k^{\prime}}: k\right)$ as bigraded k-algebra. When does this imply a combinatorial equivalence $K \approx K^{\prime}$?

It is proved in [3] that if M (resp. N) is a quasitoric manifold over P (resp. Q) such that $H^{*}(M) \cong H^{*}(N)$ as graded rings, then $H^{*}\left(\mathcal{Z}_{P}\right) \cong H^{*}\left(\mathcal{Z}_{Q}\right)$. So if P is cohomologically rigid, then it is also rigid in the sense of Question 0.6, namely if $K=(\partial P)^{*}$ and K^{\prime} is another simplicial complex such that $H^{*}\left(\mathcal{Z}_{K}: k\right) \cong H^{*}\left(\mathcal{Z}_{K^{\prime}}\right.$: k) as bigraded k-algebra, then $K \approx K^{\prime}$. Note that the moment angle complex \mathcal{Z}_{K} is completely determined by the combinatorial structure of K. So Question 0.6 is purely combinatorial question about K. On the other hand Question 0.3 is related with quasitoric manifolds over a polytope. However existence of quasitoric manifold over P is completely determined by the combinatorial structure of P. So it might be possible that two Questions 0.3 and 0.6 are equivalent, but at this moment it is not clear.

References

[1] V. M. Buchstaber and T. E. Panov. Torus Actions and Their Applications in Topology and Combinatorics. University Lecture Series, Vol. 24, Amer. Math. Soc., Providence, R.I., 2002.
[2] S. Choi, M. Masuda, and D. Y. Suh. Topological classification of generalized Bott towers. preprint; arXiv: math.AT/0807.4334
[3] S. Choi, T. Panov, and D. Y. Suh. Toric cohomological rigidity of simple convex polytopes in preprint; arXiv: math.AT/0807.4800
[4] M. W. Davis and T. Januszkiewicz. Convex polytopes, Coxeter orbifolds and torus actions. Duke Math. J., 62(2):417-451, 1991.
[5] M. Masuda and T. Panov. Semifree circle actions, Bott towers, and quasitoric manifolds. Sbornik Mathematics, 199(8):??-??, 2008; arXiv:math.AT/0607094v2.
[6] M. Masuda and D. Y. Suh. Classification problems of toric manifolds via topology, in: Toric Topology, M. Harada, Y. Karshon, M. Masuda, and T. Panov, eds., Contemporary Mathematics, Vol. 460, Amer. Math. Soc., Providence, R.I., 2007, pp. 273-286; arXiv:math.AT/0709.4579.

Department of Mathematical Sciences Korea Advanced Institute of Science and Technology Daejeon, Korea 305-701

E-mail address: dysuh@math.kaist.ac.kr

[^0]: 2000 Mathematics Subject Classification. 55Nxx, 52Bxx, 57R19, 57R20, 57S25, 14M25.
 Key words and phrases. quasitoric manifold, simple polytope, cohomolocical rigidity, StanleyReisner ring, Tor-Algebra, bigraded betti number Cohen-Macaulay complex moment angle complex.

 The author was partially supported SRC Program by Korea Science and Engineering Foundation Grant R11-2007-035-02002-0.

