
1 Introduction
Outline

• The definition of the Teichmüller space of 2-orbifolds

• The geometric cutting and pasting and the deformation spaces

• The decomposition of 2-orbifolds into elementary orbifolds.

• The Teichmüller spaces of 2-orbifolds
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2 The definition of the Teichmüller space of 2-orbifolds
Definition of Teichmüller spaces of 2-orbifolds

• A hyperbolic structure on a 2-orbifold is a geometric structure modeled on H2

with the isometry group PSL(2,R).

• The Teichmüller space T (M) of a 2-orbifold M is the deformation space of
hyperbolic structures on the 2-orbifold.

• As before, we reinterpret the space as

– The set of diffeomorphisms f : M → M ′ for M an orbifold and M ′ a
hyperbolic 2-orbifold.

– The equivalence relation f : M → M ′ and g : M → M” if exists a
hyperbolic isometry h : M ′ →M” so that h ◦ f is isotopic to g.

– The quotient space is same as above.



• A necessary condition for an orbifold to have a hyperbolic structure is that the
orbifold euler characteristic be negative: This follows from the Gauss-Bonnet
theorem. Here the negative of the hyperbolic area is the Euler characteristic
times 2π.

• A closed 2-orbifold with a complex structure has a unique hyperbolic structure
provided it is compact and has negative Euler characteristic.

• The deformation space of complex structures on a closed 2-orbifold is identical
with the Teichmuller space as defined here by the uniformization theorem.

3 The geometric cutting and pasting and the deforma-
tion spaces

The geometric cutting and pasting and the deformation spaces

• A compact geodesic 1-orbifold without boundary points in the interior of a 2-
orbifold Σ are either

– a closed geodesic in the interior or entirely in the boundary of |Σ| or

– a segment with two silvered points which are either at silvered edges or
cone-points of order two. The topological interior is either in the interior
or entirely in the boundary of |Σ|.

• The geometric type is classified by length and the topological type. Such a
geodesic 1-orbifold is covered by a closed geodesic in some cover of the 2-
orbifold, which is a surface.

• The Teichmüller space T (I) for a 1-orbifold I is the product of the space of
lengths R+s for each component of I .

•

Geometric constructions.

• Recall the type of topological constructions with 1-orbifolds. Suppose they are
boundary components of 2-orbifolds whose components have negative Euler
characteristics.

– (A)(I) Pasting or crosscapping along simple closed curves.

– (A)(II) Silvering or folding along a simple closed curve.

– (B)(I) Pasting along two full 1-orbifolds.

– (B)(II) Silvering or folding along a full 1-orbifold.

• Now we suppose that the simple closed curves and 1-orbifolds are geodesic and
try to obtain geometric version of the above.
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Geometric constructions.

• Suppose that the involved 1-orbifolds are geodesic boundary components of a
hyperbolic 2-orbifolds.

– (A)(I). For pasting two closed geodesics, we have a R-amount of isome-
tries to do this. They will create hyperbolic structures inequivalent in the
Teichmüller space. (Here the length of two closed geodsics have to be the same.
)

– (A)(I) For cross-capping, we have a unique isometry. The isometry has
to be a slide reflection of distance half the length of the closed geodesic.
(There is no conditions.)

–
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Geometric constructions.

• (A)(II). For folding a closed geodesics, we have a R-amount of isometries to
do this. They will create hyperbolic structures inequivalent in the Teichmüller
space. The choice depends on the choice of two fixed points of the pasting map.
The distance is the half of length of the closed geodesic. (no condition)

• (A)(II) For silvering, we have unique isometry to do this. (no condition)

•
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Geometric constructions.

• (B)(I). For pasting along two geodesic full 1-orbifolds, We have a unique way to
do this. The lengths of the orbifolds have to be the same.

• (B)(II) For silvering and folding, we have unique isometry to do this. (no condi-
tion)
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Teichmuller spaces under the geometric operations

(A)(I)(1) Let the 2-orbifold Σ′′ be obtained from pasting along two closed curves b, b′

in a 2-orbifold Σ′. The map resulting from splitting

SP : T (Σ′′)→ ∆ ⊂ T (Σ′)

is a principal R-fibration, where ∆ is the subset of T (Σ′) where b and b′ have
equal legnths.

(A)(I)(2) Let Σ′′ be obtained from Σ′ by cross-capping. The resulting map

SP : T (Σ′′)→ T (Σ′)

is a diffeomorphism.

(A)(II)(1) Let Σ′′ be obtained from Σ′ by silvering. The clarifying map

SP : T (Σ′′)→ T (Σ′)

is a diffeomorphism.

(A)(II)(2) Let Σ′′ be obtained from Σ′ by folding a boundary closed curve l′. The
unfolding map

SP : T (Σ′′)→ T (Σ′)

is a principal R-fibration.

(B)(I) Let Σ′′ be obtained by pasting along two full 1-orbifolds b and b′ in Σ′. The
splitting map

SP : T (Σ′′)→ ∆ ⊂ T (Σ′)

is a diffeomorphism where ∆ is a subset of T (Σ′) where the lengths of b and b′

are equal.

(B)(II) Let Σ′′ be obtained by silvering or folding a full 1-orbifold. The clarifying or
unfolding map

SP : T (Σ′′)→ T (Σ′)

is a diffeomorphism.
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4 The decomposition of 2-orbifolds into elementary orb-
ifolds.

Topological decomposition of hyperbolic 2-orbifolds into elementary orbifolds along
geodesic 1-orbifolds.

• Suppose that Σ is a compact hyperbolic orbifold with χ(Σ) < 0 and geodesic
boundary.

• Let c1, . . . , cn be a mutually disjoint collection of simple closed curves or 1-
orbifolds so that the orbifold Euler characteristic of the completion of each com-
ponent of Σ− c1 − · · · − cn is negative.

• Then c1, . . . , cn are isotopic to simple closed geodesics or geodesic full 1-orbifolds
d1, . . . , dn respectively where d1, . . . , dn are mutually disjoint.

Elementary 2-orbifolds.
We require the boundary components be geodesics.

(P1) A pair-of-pants.

(P2) An annulus with one cone-point of order n. (A(; n))

(P3) A disk with two cone-points of order p, q, one of which is greater than 2. (D(; p, q))

(P4) A sphere with three cone-points of order p, q, r where 1/p + 1/q + 1/r < 1.
(S2(; p, q, r))

(A1) An annulus with one boundary component a union of a singular segment and one
boundary-orbifold. (2-pronged crown andA(2, 2; ).) It has two corner-reflectors
of order 2 if the boundary components are silvered.

(A2) An annulus with one boundary component of the underlying space in a singular
locus with one corner-reflector of order n, n ≥ 2. (The other boundary compo-
nent is a closed geodesic which is the boundary of the orbifold.) (We call it a
one-pronged crown and denote it A(n; ).)

(A3) A disk with one singular segment and one boundary 1-orbifold and a cone-point
of order greater than or equal to three (D2(2, 2; n)).

(A4) A disk with one corner-reflector of order m and one cone-point of order n so
that 1/2m + 1/n < 1/2 (with no boundary orbifold). (n ≥ 3 necessarily.)
(D2(m; n).)

(D1) A disk with three edges and three boundary 1-orbifolds. No two boundary 1-
orbifolds are adjacent. (We call it a hexagon or D2(2, 2, 2, 2, 2, 2; ).)

(D2) A disk with three edges and two boundary 1-orbifolds on the boundary of the
underlying space. Two boundary 1-orbifolds are not adjacent, and two edges
meet in a corner-reflector of order n, and the remaining one a segment. (We
called it a pentagon and denote it by D2(2, 2, 2, 2, n; ).)
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(D3) A disk with two corner-reflectors of order p, q, one of which is greater than or
equal to 3, and one boundary 1-orbifold. The singular locus of the disk is a
union of three edges and two corner-reflectors. (We call it a quadrilateral or
D2(2, 2, p, q; ).)

(D4) A disk with three corner-reflectors of order p, q, r where 1/p+1/q+1/r < 1 and
three edges (with no boundary orbifold). (We call it a triangle or D2(p, q, r; ).)

The diagram for elementary orbifolds

• (D1)

(P4)

(A2) (A3)

(P1) (P2) (P3)

(A4)
(A1)

(D2) (D4)(D3)

The elementary orbifolds. Arcs with dotted arcs next to them indicate bound-
ary components. Black points indicate cone-points and white points the corner-
reflectors.

The geometric decomposition into elementary orbifolds

• Let Σ be a compact hyperbolic orbifold with χ(Σ) < 0 and geodesic boundary.

• Then there exists a mutually disjoint collection of simple closed geodesics and
mirror- or cone- or mixed-type geodesic 1-orbifolds so that Σ decomposes along
their union to a union of elementary 2-orbifolds or such elementary 2-orbifolds
with some boundary 1-orbifolds silvered additionally.

5 The Teichmüller spaces for 2-orbifolds
Thurston’s theorem

• Let Σ be a compact 2-orbifold with empty boundary and negative Euler charac-
teristic diffeomorphic to an elementary 2-orbifold.

• Then the deformation space T (Σ) of hyperbolic RP2-structures on Σ is home-
omorphic to a cell of dimension −3χ(XΣ) + 2k + l + 2n where XΣ is the
underlying space and k is the number of cone-points, l is the number of corner-
reflectors, and n is the number of boundary full 1-orbifolds.
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Strategy of proof

• Proposition A: for each elementary 2-orbifold S, T (S) is homeomorphic to
T (∂S), where T (∂S) is the product of R+ for each component of ∂S corre-
sponding to the hyperbolic-metric lengths of components of ∂S.

• Then for hyperbolic structures, to obtain a bigger orbifold, we need to use the
above result about the Teichmüller spaces under geometric decompositions.

The generalized hyperbolic triangle theorem

• A generalized triangle in the hyperbolic plane is one of following:

(a) A hexagon: a disk bounded by six geodesic sides meeting in right angles
labeled A, β,C, α,B, γ.

(b) A pentagon: a disk bounded by five geodesic sides labeled A,B, α,C, β
where A and B meet in an angle γ, and the rest of the angles are right
angles.

(c) A quadrilateral: a disk bounded by four geodesic sides labeled A,C,B, γ
where A and C meet in an angle β, C and B meet in an angle α and the
two remaining angles are right angles.

(d) A triangle: a disk bounded by three geodesic sides labeled A,B,C where
A and B meet in an angle γ and B and C meet in an angle α and C and A
meet in angle β.

The generalized hyperbolic triangles

•
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The trigonometry
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• For generalized triangles in the hyperbolic plane,

(a) coshC =
coshα coshβ + cosh γ

sinhα sinhβ

(b) coshC =
coshα coshβ + cos γ

sinhα sinhβ

(c) sinhA =
cosh γ cosβ + cosα

sinhβ sin γ

(d) coshC =
cosα cosβ + cos γ

sinα sinβ
(1)

• In (a), (α, β, γ) can be any positive numbers.

• In (b), (α, β) can be any positive numbers and γ in (0, π)

• In (c), (α, β) can be any positive real numbers in (0, π) satisfying α + β < π,
and γ any real number.

• In (d), (α, β, γ) can be any real numbers in (0, π) satisfying α+ β + γ < π.

The proof of Proposition A.

• The following lemma implies Proposition A for elementary 2-orbifolds of type
(D1), (D2), (D3), and (D4).

• Silvered edges labeled by the capital letters A,B,C. Assign to each vertex an
angle of the form π/n (where (n > 1 is an integer), for which it is a corner-
reflector of that angle. Each edge labeled by Greek letters α, β, γ is a boundary
full 1-orbifold.

• Then in cases (a), (b), (c), (d) F : T (P ) → T (∂P ) for each of the above
orbifolds P is a homeomorphism; that is, T (P ) is homeomorphic to a cell of
dimension 3, 2, 1, or 0 respectively.

• Let S be an elementary 2-orbifold of type (A1), (A2), (A3), or (A4).

• Then F : T (S)→ T (∂S) is a homeomorphism. Thus, T (S) is a cell of dimen-
sion 2, 1, 1, or 0 when S is of type (A1), (A2), (A3) or (A4) respectively. In case
(A4), T (S) is a single point.

• For elementary orbifolds of type (P1),(P2),(P3), or (P4), we simply notices that
they double covers orbifolds of type (D1),(D2),(D3), or (D4) which is realized
as isometries where each of the boundary components do the same. In fact,
the isometry can be explictly constructed by taking shortest geodesics between
boundary components.
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The steps to prove Theorem A.

• Let a 2-orbifold Σ, each component of which has negative Euler characteristic,
be in a class P if the following hold:

(i) The deformation space of hyperbolic RP2-structures T (Σ) is diffeomor-
phic to a cell of dimension

−3χ(XΣ) + 2k + l + 2n

where k is the number of cone-points, l the number of corner-reflectors, n
is the number of boundary full 1-orbifolds.

(ii) There exists a principal fibration

F : T (Σ)→ T (∂Σ)

with the action by a cell of dimension dim T (Σ)− dim T (∂Σ).

• Let Σ be a 2-orbifold whose components are orbifolds of negative Euler charac-
teristic, and it splits into an orbifold Σ′ in P .

• We suppose that (i) and (ii) hold for Σ′, and show that (i) and (ii) hold for Σ.
Since Σ eventually decomposes into a union of elementary 2-orbifolds where (i)
and (ii) hold, we would have completed the proof.

• The proof follows by going through each of the constructions....

(A)(I)(1) Let the 2-orbifold Σ′′ be obtained from pasting along two closed curves b, b′

in a 2-orbifold Σ′. The map resulting from splitting

SP : T (Σ′′)→ ∆ ⊂ T (Σ′)

is a principal R-fibration, where ∆ is the subset of C(Σ′) where b and b′ have
equal invariants.

(A)(I)(2) Let Σ′′ be obtained from Σ′ by cross-capping. The resulting map

SP : T (Σ′′)→ T (Σ′)

is a diffeomorphism.

(A)(II)(1) Let Σ′′ be obtained from Σ′ by silvering. The clarifying map

SP : T (Σ′′)→ T (Σ′)

is a diffeomorphism.

(A)(II)(2) Let Σ′′ be obtained from Σ′ by folding a boundary closed curve l′. The
unfolding map

SP : T (Σ′′)→ T (Σ′)

is a principal R-fibration.
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(B)(I) Let Σ′′ be obtained by pasting along two full 1-orbifolds b and b′ in Σ′. The
splitting map

SP : T (Σ′′)→ ∆ ⊂ T (Σ′)

is a diffeomorphism where ∆ is a subset of T (Σ′) where the invariants of b and
b′ are equal.

(B)(II) Let Σ′′ be obtained by silvering or folding a full 1-orbifold. The clarifying or
unfolding map

SP : T (Σ′′)→ T (Σ′)

is a diffeomorphism.
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