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Preface

One aim of mathematics is to explore many objects purely defined and cre-
ated out of imaginations in the hope that they will explain many unknown
and unsolved phenomenons in mathematics. Manifolds were studied much
in 20th century. Perhaps, we mathematicians develop from here to more
abstract theories that can accommodate many things that we promised to
solve in the earlier part of 20th century. Orbifolds might be a small step
away in the right directions as orbifolds have all the notions of manifold
theory easily generalized as discovered by Satake.

The theory of orbifolds is a natural generalization of the notion of man-
ifolds. Orbifolds can be more useful tool than manifolds in many ways
involving in classification of knots, graphs imbeddings, theoretical physics
and so on. At least in two or three-dimensions, orbifolds are easy to pro-
duce and classifiable using Thurston’s geometrization program. However,
in higher dimensions, these topics are still very mysterious where many
mathematical and theoretical physicists are working.

The covering space theory is explained using both the fiber-product ap-
proach of Thurston and path-approach by Haefliger. The main part of the
book is the geometric structures on orbifolds. We define the deformation
space of geometric structures on orbifolds and prove the local homeomor-
phism theorem that the deformation spaces are locally homeomorphic to
the representation spaces of the fundamental groups. The main emphasis
are on studying geometric structures and ways to cut and paste the geo-
metric structures. These form a main topic of this book and will hopefully
aid the reader in studying many possible geometric structures on orbifolds
including affine, projective, and so on. Also, these other types of geometries
seems to be of use in Mirror symmetry and so on.

In this book, we tried to collect the theory of orbifold scattered in various
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literatures. Here we set out to write down the traditional approach to
orbifolds using charts and include the categorical definition using groupoids
and compare them. We think that understanding both theory necessary.

This book is intentionally made to be short as there are many extensive
writings on the subject already available. Instead of writing every proofs
down, we try to explain the reasonings behind the proof and pointing to
where the proofs can be found. This was done in the hope that the readers
can follow the reasonings without having to understand the full details of
the proof, and can fast-track into this field. Also, the book is also hopefully
self-sufficient for people who do not wish to delve into technical details.

This book is based on a course the author gave in the fall term of 2008
at Tokyo Institute of Technology. I thank very much the hospitality of the
Department of Mathematical and Computing Sciences.

The book was intended for the advanced undergraduates and the be-
ginning graduate students who understand some differentiable manifold
theory, Riemannian geometry, some manifold topology, algebraic topology
and Lie group actions. But we do include sketches of these theories in the
beginning of the book as a review. Unfortunately, some familiarity with
category theory is needed where the author cannot provide a sufficiently
good introduction.

Suhyoung Choi
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Chapter 1

The introduction

1.1 Introduction

This course will introduce 2-orbifolds and geometric structures on them. It
will be for senior or master level course. Some background in topology, man-
ifold theory, differential geometry, and particularly category theory would
be helpful.

As one knows, the manifold theory enjoyed a great deal of attention in
20th century mathematics enticing many talented mathematicians. Orb-
ifolds are natural generalizations of the notion of manifolds introduced by
Satake. They provide a natural setting to study discrete group actions on
manifolds. In fact, orbifolds have most notions developed from manifold
theory carried over to them although perhaps in an indirect manner, using
the language of category theory. Indeed, to make the orbifold theory most
rigorously understood, only the category theory provide the most natural
setting.

Also, it is thought that orbifolds are integral part of theoretical physics
such as string theory, and they have natural generalizations in algebraic
geometry. We also think that orbifold theory has important role in under-
standing knots, links, and graph imbeddings.

For 2-manifolds, it was known from the classical time that classical
geometry provide a sharp insight into the topology of surfaces and their
groups of automorphisms as observed by Dehn and others. In later 1970s,
Thurston proposed a program to generalize these kinds of insights to 3-
manifold theory. This program is now completed by the proof of the Ge-
ometrization conjecture as is well-known. The computer programs as ini-
tiated by Thurston and completed mainly by Weeks, Hodgson, and so on,
now compute most topological properties of 3-manifolds completely given

1
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the 3-manifold topological data.
It seems that the direction of the research in low-dimensional manifold

theory currently is perhaps to complete the understanding of 3-manifolds
by volume ordering, arithmetic properties, and group theoretical properties.
Perhaps, we should start to move to higher-dimensional manifolds and to
more applied areas.

One area which can be of possible interest to is to study the projec-
tively flat, affinely flat, or conformally flat structures on 3-manifolds. This
will complete the understanding of all classical geometric properties of 3-
manifolds. This aspect is related to understanding all representations of the
fundamental groups of 3-manifolds into Lie groups where many interesting
questions still remain, upon which we mention that we are yet to under-
stand fully the 2-orbifold or surface fundamental group representations into
Lie groups.

We will learn the 2-dimensional orbifold theory and the geometric struc-
tures on them. We will cover some of the background materials such as Lie
group theory, principal bundles and connections. The theory of orbifolds
has much to do with discrete subgroups of Lie groups but has more topolog-
ical flavors. We discuss the topology of 2-orbifolds including covering spaces
and orbifold-fundamental groups. The fundamental groups of 2-orbifolds
include many interesting infinite groups. We obtain the understanding of
the deformation space of hyperbolic structures on a 2-orbifold, which is the
space of discrete PSL(2,R)-representations of the 2-orbifold fundamental
group equivalent up to conjugations. Finally, we will survey the deforma-
tion spaces of projective structures on 2-orbifolds, which corresponds to the
spaces of PGL(3,R)-representations of the fundamental groups. Check

agree-
ment
with
con-
tent and
outline

This book has three parts. In Part I consisting of Chapters 1 and 2,
we review manifold theory with G-structures. In Part II, consisting of
Chapters 3,4, and 5, we present the topological theory of orbifolds. In Part
III, consisting of Chapters 6,7, and 8, we present the theory of geometric
structures of orbifolds.

In Chapter 2, Manifolds and differentiable structures, we will review
smooth structures on manifolds and orbifolds starting from topological
constructions, homotopy groups and covering spaces, simplicial manifolds
including examples of surfaces. Then we move onto pseudo-groups and
G-structures. Next, we review Lie groups and principal bundle theory in
terms of smooth manifold theory. Finally, we interpret the G-structures in
principal bundle theory.

In Chapter 3, Lie groups and geometry, we first review the Lie group the-
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ory in more detail. Then we review Euclidean, spherical, affine projective,
and conformal geometry reviewing their properties and Lie groups acting as
symmetries on them. Next, we go over to hyperbolic geometry. We begin
from Lorentzian hyperboloid model and move onto Beltrami-Klein model,
conformal model and the upper half-space model. Hyperbolic triangle laws
will be studied also and the isometry groups of hyperbolic spaces will be
introduced. We will also discuss the discrete group actions on manifolds
using the Poincare fundamental polyhedron theorem and discuss Coxeter
groups, triangle groups, and crystallographic groups.

In Chapter 4, Topology of orbifolds, compact group actions, we will start
reviewing compact group actions on manifolds. We will talk about the orbit
spaces and tubes, smooth actions and equivariant triangulations. Next, we
will introduce orbifolds from the classical definition by Satake using atlas
of charts. We define singular sets and suborbifolds. We will also present
orbifolds as Lie groupoids from category theory as was initiated by Hae-
fliger. We will present differentiable structures on orbifolds, bundles over
orbifolds, and Gauss-Bonnet theorem for orbifolds. To find the universal
covers of 2-orbifolds, we start from defining covering spaces of orbifolds and
discuss how to obtain a fiber-product of two covering orbifolds. This lead
us to the universal covering orbifolds and deck transformation groups and
their properties such as uniqueness. We will also present the path-approach
to the universal covering orbifolds as initiated by Haefliger.

In Chapter 5, Topological constructions of 2-orbifolds, we will present
how to compute the Euler charateristic of 2-orbifolds including Riemann-
Hurwitz formula. We will show how to topologically construct 2-orbifolds
from other 2-orbifolds using cutting and sewing methods. This will be
reinterpretted in two other manner. We also discuss good and bad orbifolds
and the classification of 2-orbifolds. Added

topic
here

In Chapter 6, Geometric structures on orbifolds, we will define geomet-
ric structures on orbifold using atlas of chart methods, developing map and
holonomy homomorphism methods, and as a cross-section to a bundle. We
will show that these definitions are equivalent. We will also show that orb-
ifolds admitting a geometric structure is always good, that is covered by a
manifold. Here, we will define the deformation spaces of geometric struc-
tures on 2-orbifolds and indicate a short proof of local homeomorphism from
the deformation space to the space of representations of the fundamental
group to the Lie group G.

In Chapter 7, The deformation spaces of hyperbolic structures on 2-
orbifolds, i.e., the Teichmuller space, we will first define the Teichmuller
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space and present geometric cutting and pasting constructions of hyperbolic
structures on 2-orbifolds. We show that any 2-orbifolds decompose into el-
ementary orbifolds. We will show how to compute the Teichmuller spaces
of elementary orbifolds using hyperbolic trigonometry and piece these to-
gether to understand the Teichmuller space of the 2-orbifold. Finally, we
study the deformation spaces of real projective structures on 2-orbifolds.
We will use the method very similar to the above chapter. We decompose
2-orbifolds into elementary 2-orbifolds and determine the deformation space
there and reassemble.

Our principal source for this lecture note is [Thurston (10)]. However,
we do not go into his generalization of Andreev theorem. Also, [Thurston
(11)] is a good source of many materials here.

Some standard text giving us preliminary viewpoint and alterna-
tive viewpoints of the foundational materials for this paper are many.
[(author?) (Kobayashi and Nomizu)] provides us a good introductions
to connections on principal bundles and [? )] and [(author?)
(Ivey and Landsberg)] give us more differential geometric view point of geo-
metric structures. [(author?) (Bredon)] is a good source for understanding
the local orbifold group actions. Finally, [(author?) (Berger)] provides us
with the knowledge of geometry that are probably most prevalent in this
book.
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Chapter 2

Manifolds and differentiable
structures

2.1 Introduction

In this chapter, we will review many notions in manifold theory that gen-
eralize to orbifold theory.

We begin by reviewing manifold and simplicial manifolds beginning with
cell-complexes, homotopy and covering theory. The following theories for
manifolds will be transfered to the orbifolds. We will briefly mention them
here as a ”review” and will develop them for orbifolds later (mostly for
2-dimensional orbifolds). We follow coordinate-free approach to differential
geometry. We do not need to actually compute curvatures and so on.

• Lie groups and group actions
• Pseudo-groups and G-structures
• Differential geometry: Riemanian manifolds.
• Principal bundles and connections, flat connections

Some of these are standard materials in differentiable manifold course
and in an advanced differential geometry course. We will not give proofs in
Chapters 2 and 3 but will indicate one when necessary.

2.1.1 Manifolds

The useful methods of topology comes from taking equivalence classes and
finding quotient topology. Given a topological space X with an equivalence
relation, the quotient topology on X/ ∼ is the topology so that for any
function f : X → Y inducing a well-defined function f ′ : X/ ∼→ Y , f ′ is
continuous if and only if f is continuous. This translates to the fact that a
subset U of X/ ∼ is open if and only if p−1(U) is open in X for the quotient

5
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map p : X → X/ ∼.
A cell is a topological space homeomorphic to an n-dimensional ball

defined in Rn.
We will mostly use cell-complexes: (See [(author?) (Hatcher)] pages

5–7.) A cell-complex is a topological space which is a union of n-skeletons
which is defined inductively. A 0-skeleton is a discrete set of points. A
n + 1-skeleton Xn+1 is obtain from n-skeleton Xn as a quotient space of
Xn∪

⋃
α∈I D

n+1
α for a collection of (n+1)-dimensional balls Dn+1

α for α ∈ I
with a collection of functions fα : ∂Dn+1

α → Xn so that the equivalence
relation is given by x ∼ fα(x) for x ∈ ∂Dn+1

α . To obtain the topology of
X, we use the weak topology that a subset U of X is open if and only if
U ∩ Xn is open for every n. Most of the times, cell-complexes will be a
finite ones, i.e., has finitely many cells.

A topological n-dimensional manifold (n-manifold) is a Hausdorff space
with countable basis and charts to Euclidean spaces En; e.g curves, surfaces,
3-manifolds. The charts could also go to a positive half-space Hn. Then
the set of points mapping to Rn−1 under charts is well-defined is said to be
the boundary of the manifold. By the invariance of domain theorem, we
see that this is a well-defined notion.

For example, Rn and Hn themselves or open subsets of Rn or Hn are
manifolds of dimension n.

The unit sphere Sn in Rn+1 is a standard example. RPn the real pro-
jective space.

An n-ball is a manifold with boundary. The boundary is the unit sphere
Sn−1.

Given two manifolds M1 and M2 of dimensions m and n respectively.
The product space M1 ×M2 is a manifold of dimension m+ n.

An annulus is a disk removed with the interior of a smaller disk. It is
also homeomorphic to a circle times a closed interval.

Example 2.1.1. The n-dimensional torus Tn is homeomorphic to the prod-
uct of n circles S1. (For 2-torus, see http://en.wikipedia.org/wiki/

Torus for its imbeddings in R3 and so on.)
Recall that a group G acts on a manifold M , if there is a differentiable

map k : G × M → M so that k(g, k(h, e)) = k(gh, e) and k(e, x) = x

for the identity e ∈ G. Given an action, there is a homomorphism G →
Diffeo(M) so that an element g ∈ G goes to a diffeomorphism g′ sending
x to k(g, x) where Diffeo(M) is the group of diffeomorphisms of M .

Given a group G acting on a manifold M , the quotient space M/ ∼
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where ∼ is given by x ∼ y if and only if x = g(y), g ∈ G is denoted by
M/G. Let Tn be a group of translations generated by Ti : x 7→ x + ei for
each i = 1, 2, .., n. Then Rn/Tn is homeomorphic to Tn.

Example 2.1.2. We define the connected sum of two n-manifolds M1 and
M2. Remove the interiors of two tamely imbedded closed balls from Mi for
each i. Then each Mi has a boundary component homeomorphic to Sn−1.
We identify the spheres. Take many 2-dimensional tori or projective plane
and do connected sums. Also remove the interiors of some disks. We can
obtain all compact surfaces in this way. http://en.wikipedia.org/wiki/
Surface

2.1.2 Some homotopy theory

Let X and Y be topological spaes. A homotopy is a map F : X×I → Y for
an interval I. Two maps f and g : X → Y are homotopic by a homotopy F
if f(x) = F (x, 0) and g(x) = F (x, 1) for all x. The homotopic property is
an equivalence relation on the set of maps X → Y . A homotopy equivalence
of two spaces X and Y is a map f : X → Y with a map g : Y → X so
that f ◦ g and g ◦ f are homotopic to IX and IY respectively. (See Hatcher
[(author?) (Hatcher)] for details of homotopy theory presented here.)

The fundamental group of a topological space X is defined as follows:
A path is a map f : [a, b] → X for an interval [a, b] in R. We will normal
use I = [0, 1]. An endpoint of the path is f(0) and f(1).

Any two path f, g : I → Rn is homotopic by a linear homotopy that is
given by F (t, s) = (1− s)f(t) + sg(t) for t, s ∈ [0, 1]2.

A homotopy class is an equivalence class of homotopic map relative to
endpoints.

The fundamental group π(X,x0) at the base point x0 is the set of ho-
motopy class of path with both endpoints x0.

The product in the fundamental group exists by joining. That is given
two paths f, g : I → X with endpoints x0, we define a path g ∗ f with
endpoints x0 by setting g ∗ f(t) = g(2t) if t ∈ [0, 1/2] and g ∗ f(t) =
f(2t− 1) if t ∈ [1/2, 1]. This induces a product [f ] ∗ [g] = [f ∗ g], which we
need to verify to be well-defined with respect to the equivalence relation of
homotopy. The constant path c0 given by setting c0(t) = x0 for all t satisfies
[c0] ∗ [f ] = [f ] = [f ] ∗ [c0]. Denote it by 1x0 . Given a path f , we can define
an inverse path f−1 : I → X by setting f−1(t) = f(1− t). We also obtain
[f−1] ∗ [f ] = 1x0 = [f ] ∗ [f−1]. By verifying [f ] ∗ ([g] ∗ [h]) = ([f ] ∗ [g]) ∗ h
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for three paths with endpoints x0, we see that the fundamental group is a
group.

If we change the base to another point y0 which is in the same path-
component of X, we obtain an isomorphic fundamental group π1(X, y0).
Let γ be a path from x0 to y0. Then define γ∗ : [f ] ∈ π1(X,x0) 7→ [γ−1∗f∗γ]
which is an isomorphism. The inverse is given by γ−1,∗. This isomorphism
does depend on γ and hence cannot produce a cannonical identification.

Theorem 2.1.3. The fundamental group of a circle is isomorphic to Z.

This has a well-known corollary, the Brouwer fixed point theorem, that
a self-map of a disk to itself always has a fixed point.

Given a map f : X → Y with f(x0) = y0, we define f∗ : π(X,x0) →
π(Y, y0) by f∗([h]) = [f ◦ h] for any path in X with endpoints x0.

Theorem 2.1.4. (Van Kampen Theorem) Given a space X covered by open
subsets Ai such that any two or three of them meet at a path-connected set,
π(X, ∗) is a quotient group of the free product ∗π(Ai, ∗). The kernel is the
normal subgroup generated by i∗j (a)i∗k(a) for any a in π(Ai ∩Aj , ∗).

For cell-complexes, these are useful for computing the fundamental
group: If a space Y is obtained from X by attaching the boundary of 2-cells.
Then π(Y, ∗) = π(X, ∗)/N where N is the normal subgroup generated by
”boundary curves” of the attaching maps.

A bouquet of circles is the quotient space of a union of n circles with one
point from each identified with one another. Then the fundamental group
at a basepoint x0 is isomorphic to a free group of rank equal n. We will
compute the fundamental group of surfaces later using this method.

2.1.3 Covering spaces and discrete group actions

Given a manifold M , a covering map p : M̃ → M from another manifold
M̃ is an onto map such that each point of M has a neighborhood O such
that p|p−1(O) : p−1(O) → O is a homeomorphism for each component of
p−1(O). Normally M̃ is assumed to be connected.

Consider S1 as the set of unit length complex numbers. The coverings
of a circle S1 can be given by f : S1 → S1 defined by sending x 7→ xn These
are finite to one covering maps. Define R→ S1 by sending t→ exp(2πti).
Then this is an infinite covering.

Example 2.1.5. Consider a disk with interiors of disjoint smaller disks
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removed. Then draw mutually disjoint arcs from the boundary of the disk
to the boundary of the smaller disk We remove mutually disjoint open
regular neighborhoods of the disjoint arcs with boundary arcs again. Take
the union of these arcs. Call these strips. Now we take the closures of each
component of the complement. Let D, I1, I2, ..., In denote the closures of
the complement of the union of the strips and the strips. Let α+

i , α
−
i the

two boundary arcs of the trip Ii in the counter-clock wise direction. We take
a product with a discrete countable set and label them by Di, Ii1, ..., I

i
n for

i ∈ F for some countable set F . Then we select a permutation kj : F → F

for each j = 1, 2, .., n. We glue Di with Ii along the arc α+
i and then we glue

Dki(i) along α−i . We do this for all arcs. Suppose we obtain a connected
space. By sending Di → D, Iji → Ii by projections, we obtain a covering.

Another good example is the join of two circles: See [(author?)
(Hatcher)] page 56–58

An important property of homotopy with respect to the covering space
is the homotopy lifting property: Let M̃ be a covering of M . Given two
homotopic maps f and g from a space X to M , if f lifts to M̃ and so does g.
If we let F : X×I →M be the homotopy, the map lifts to F : X×I → M̃ .
This is completely determined if the lift of f is specified.

For example, one can consider a path to be a homotopy for X a point.
Any path in X lifts to a unique path in X̃ once the intial point is lifted.

Moreover, if two paths f, g are homotopic, and their initial point f̃(0)
and g̃(0) of the lifts f̃ and g̃ are the same, then f̃(1) = g̃(1). Using this
idea, we can prove:

Theorem 2.1.6. Given a map f : Y → M with f(y0) = x0, f lifts to
f̃ : Y → M̃ so that f̃(y0) = x̃0 if f∗(π(Y, y0)) ⊂ p∗(π∗(M̃, x̃0)).

An isomorphism of two covering spaces X1 with a covering map p1 :
X1 → X and X2 with p2 : X2 → X is a homeomorphism f : X1 → X2 so
that p2◦f = p1. The automorphism group of a covering map p : M ′ →M is
a group of homeomorphisms f : M ′ →M ′ so that p◦f = f . We also use the
term the deck transformation group. Each element is a deck transformation
or a covering automorphism.

The fundamental group π1(M) acts on M̃ on the right by path-liftings:
For a point x0 of M , we choose an inverse image x̃0 in M̃ . For a path γ

in M with endpoint x0, we define x̃0 · γ = γ̃(1) for the lift γ̃ of γ with
initial point γ̃(0) = x̃0. This gives a right-action π1(M) × M̃ → M̃ since
x̃ · (γ ∗ δ) = (x̃ · γ) ∗ δ.
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A covering is regular if the covering map p : M ′ →M is a quotient map
under the action of a discrete group Γ acting properly discontinuously and
freely. Here M is homeomorphic to M ′/Γ.

Given a covering map p : M̃ →M , there is a subgroup p∗(π1(M̃, x̃0)) ⊂
π1(M,x0). Conversely, given a subgroup G of π1(M,x0), we can construct
a covering M̃ containing a point x̃0 and a covering map p : M̃ →M so that
p∗(π1(M̃, x̃0)) = G.

One can classify covering spaces of M by the subgroups of π(M,x0).
That is, two coverings M1 with basepoint m1 and the covering map p1 and
M2 with basepoint m2 and covering map p2 of M with p1(m1) = p2(m2) =
x0 are isomorphic with a map sending m1 to m2 if the subgroups are the
same. Thus, covering spaces can be ordered by subgroup inclusion relations.
If the subgroup is normal, the corresponding covering is regular.

A manifold has a universal covering, i.e., a covering whose space has a
trivial fundamental group. A universal cover covers every other coverings
of a given manifold.

The universal covering M̃ of a manifold M has the covering automor-
phism group Γ isomorphic to π1(M). A manifold M equals M̃/Γ for its
universal cover M̃ . Γ is a subgroup of the deck transformation group.

For example, let M̃ be R2 and T 2 be a torus. Then there is a map
p : R2 → T 2 sending (x, y) to ([x], [y]) where [x] = x mod 2π and [y] = y

mod 2π.
Let M be a surface of genus 2. M̃ is homeomorphic to a disk. The deck

transformation group can be realized as isometries of a hyperbolic plane.
We will see this in more detail later.
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Fig. 2.1 A 2-torus as a quotient space of translation group of rank two
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2.1.4 Simplicial manifolds

In this section, we will try to realize manifolds as a simplicial set.
An affine space An is a vector space Rn where we do not remember

the origin. More, formally An equals Rn as a set but has an operation
Rn×An given by sending (a, b)→ a+b for a ∈ Rn and b ∈ An and satisfies
(a + (b + c)) = (a + b) + c for a, b ∈ Rn and c ∈ An. We can define the
difference b − a of two affine vectors a, b by setting c ∈ Rn be such that
c+ a = b.

If one take a point p as the origin, we can make An into a vector space
Rn by a map a→ a− p for all a ∈ An.

An n + 1 points v1, ..., vn+1 in Rn is affinely independent if the set
vi − v1 for i = 2, ..., n+ 1 is linearly independent as vectors. An n-simplex
is a convex hull of an affinely independent n + 1-points. An n-simplex is
homeomorphic to Bn.

A simplicial complex is a locally finite collection S of simplices so that
any face of a simplex is a simplex in S and the intersection of two elements
of S is an element of S. The union is a topological set, which is said to be a
polyhedron. We can define barycentric subdivisions by taking a varicentric
subdivision for each simplex. A link of a simplex σ is the simplicial complex
made up of simplicies opposite σ in a simplex containing σ.

An n-manifold X can be constructed by gluing n-simplices by face-
identifications: Suppose X is an n-dimensional triangulated space. If the
link of every p-simplex is homeomorphic to a sphere of (n−p−1)-dimension,
then X is an n-manifold. If X is a simplicial n-manifold, we say X is
orientable if we can give an orientations on each simplex so that over the
common faces they extend each other.

2.1.4.1 Surfaces

We begin with a construction of a compact surface Given a polygon with
even number of sides, we assign identification by labeling by alphabets
a1, a2, .., ag, a

−1
1 , a−1

2 , , , , so that ai means an edge labelled by ai oriented
counter-clockwise and a−1

i means an edge labelled by ai oriented clockwise.
If a pair ai and ai or a−1

i occur, then we identify them respecting the
orientations.

Suppose we begin with a bigon.

• We divide the boundary into two edges and identify by labels
a, a−1. Then the result is a surface homeomorphic to a 2-sphere.
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• We divide the boundary into two edges and identify by labels a, a.
Then the result is homeomorphic to a projective plane.

• Suppose now we have a square, We identify the top segment with
the bottom one and the right side with the left side. The result is
homeomorphic to a 2-torus.

Any closed surface can be represented in this manner.
Let us be given a 4n-gon. We label edges

a1, b1, a
−1
1 , b−1

1 , a2, b2, a
−1
2 , b−1

2 , ...an, bn, a
−1
n , b−1

n .

The result is a connected sum of n tori and is orientable. The genus of such
a surface is n.

Suppose we are given a 2n-gon. We label edges a1a1a2a2....anbn. The
result is a connected sum of n projective planes and is not orientable. The
genus of such a surface is n.

The results are topological surfaces and a 2-dimensional simplicial man-
ifold. We can remove the interiors of disjoint closed balls from the surfaces.
The results are surfaces with boundary.

The fundamental group of a surface can now be computed using this
identification. A surface is a cell complex starting from a 1-complex which
is a bouquet of circles and attached with a cell.

π(S) = {a1, b1, ..., ag, bg|[a1, b1][a2, b2]...[ag, bg]}

for orientable S of genus g.
An Euler characteristic of a simplicial complex is given by F − E +

V where F denotes the number of 2-dimensional cells E the number of
1-dimensional cells, and V the number of 0-dimensional cells This is a
topological invariant. We can count from the above identification picture
that the Euler characteristic of an orientable compact surface of genus g
with n boundary components is 2− 2g − n.

By a simple curve in a surface, we mean an imbedded interval. A simple
closed curve in a surface is an imbedded circle. There play important roles
in studying surfaces as Dehn and Nielson first discovered.

Let a 2-sphere be given a triangulation. A pair of pants is a complement
of interior of three simplicial 2-cells in the sphere. It has three boundary
components homeomorphic to circles. Moreover, a pair of pants can be
obtained by identifying two hexagons in their alternating segments in pairs.

In fact, a closed orientable surface contains 3g−3 disjoint simple closed
curves so that the complement of its union is a disjoint union of open pairs
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of pants, i.e., spheres with three holes. Hence, the surface can be obtained
as an identifying boundary components of the pairs of pants.

A pair of pants can have a simple closed curve imbedded in it but such a
circle always bounds an annuli with a boundary component. Hence, a pair
of pants can be built from a pair of pants and annuli by identification. One
cannot build a pair of pants from a surface other than annuli and a single
pair of pants. A pair of pants is an ”elementary” surface in that any closed
surface can be built from this piece by identifying boundary components.
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Fig. 2.2 A genus 2 surface as a quotient space of a disk

Fig. 2.3 A genus 2-surface patched up
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Fig. 2.4 A genus n surface as a double of unions of hexagons

2.2 Lie groups

2.2.1 Lie groups

A Lie group can be thought of as a space of symmetries of some space. More
formally, a Lie group is a manifold with a group operation ◦ : G×G→ G

that satisfies

• ◦ is smooth.
• the inverse ι : G→ G is smooth also.

From ◦, we form a homomorphism G→ Diff(G) given by g 7→ Lg and
Lg : G→ G is a diffeomorphism given by a left-multiplication Lg(h) = gh.
Since we have L(gh) = Lg ◦ Lh, this is a homomorphism.

As example, we have:

• The permutation group of a finite set form a 0-dimensional man-
ifold, which is a finite set, and a countable infinite group with
discrete topology.

• R,C with + as an operation. (R+ with + is merely a Lie semi-
group.)

• R− {O},C− {O} with ∗ as an operation.
• Tn = Rn/Γ with + as an operation and O as the equivalence class

of (0, 0, ..., 0) and Γ is a group of translations by integeral vectors.
(The three are abelian ones.)

We go to the noncommutative groups.

• The general linear group is given by GL(n,R) = {A ∈
Mn(R)|det(A) 6= 0}: Here, GL(n,R) is an open subset of Mn(R) =
Rn2

. The multiplication is smooth since the coordinate product has
a polynomial expressions.
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• The special linear group is given as SL(n,R) = {A ∈
GL(n,R)|det(A) = 1}: The restriction by a polynomial gives us
smooth submanifold of GL(n,R). The multiplication are also the
restrictions.

• The orthogonal group is given by O(n,R) = {A ∈ GL(n,R)|ATA =
I}. This is another submanifold formed by polynomials.

• The Euclidean isometry group is given by Isom(Rn) = {T : Rn →
Rn|T (x) = Ax+ b for A ∈ O(n,R), b ∈ Rn}. This is a semiproduct
group.

Let us state some needed facts.

• A products of Lie groups form a Lie group.
• A covering space of a connected Lie group form a Lie group.
• A Lie subgroup of a Lie group is a subgroup that is a Lie group

with the induced operation and is a submanifold. For example ,
consider

– O(n) ⊂ SL(n,R) ⊂ GL(n,R).
– O(n) ⊂ Isom(Rn).

A homomorphism f : G → H of two Lie groups G and H is a smooth
map that is a group homomorphism. The above inclusion maps are homo-
morphisms. The kernel of a homomorphism is a closed normal subgroup.
Hence it is a Lie subgroup also. If G and H are simply connected, f induces
a unique homomorphism of Lie algebra of G to that of H which equals Df
and conversely. (See Subsection 2.2.2 for the definition of the Lie algebras
and their homomorphsms.)

2.2.2 Lie algebras

A Lie algebra is a real or complex vector space V with an operation [, ] :
V × V → V that satisfies:

• [x, x] = 0 for every x ∈ V . (Thus, [x, y] = −[y, x].)
• the Jacobi identity [x, [y, z]]+[z, [x, y]]+[y, [z, x]] = 0 for all x, y, z ∈
V .

Examples:

• Sending V × V to the zero-element O is a Lie algebra. This is
defined to be the abelian Lie algebras.
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• The direct sums of Lie algebras is a Lie algebra.
• A subalgebra is a subspace closed under [, ].
• An ideal K of V is a subalgebra such that [x, y] ∈ K for x ∈ K

and y ∈ V .

A homomorphism of a Lie algebra is a linear map preserving [, ]. The
kernel of a homomorphism is an ideal.

2.2.3 Lie groups and Lie algebras

Let G be a Lie group. For an element g ∈ G, a left translation Lg : G→ G

is given by x 7→ g(x). A left-invariant vector field of G is a vector field
so that the left translation leaves it invariant, i.e., dLg(X(h)) = X(gh) for
g, h ∈ G.

• The set of left-invariant vector fields form a vector space under
addition and scalar multiplication and is vector-space isomorphic
to the tangent space at I. Moreover, [, ] is defined as vector-fields
brackets. This forms a Lie algebra.

• The Lie algebra of G is the the Lie algebra of the left-invariant
vector fields on G.

A Lie algebra of an abelian Lie group is abelian.
Let gl(n,R) denote the Mn(R) with [, ] : Mn(R) ×Mn(R) → Mn(R)

given by [A,B] = AB−BA for A,B ∈Mn(R). The Lie algebra of GL(n,R)
is isomorphic to gl(n,R):

• For X in the Lie algebra of GL(n,R), we can define a flow generated
by X and a path X(t) along it where X(0) = I.

• We obtain an element of gl(n,R) by taking the derivative of X(t)
at 0 seen as a matrix.

• Now, we show that the brackets are preserved. That is, a vector-
field bracket becomes a matrix bracket by the above map.

Given X in the Lie algebra g of G, there is an integral curve X(t)
through I. We define the exponential map exp : g → G by sending X

to X(1). The exponential map is defined everywhere, smooth, and is a
diffeomorphism near O. With some work, we can show that the matrix
exponential defined by

A 7→ eA =
∞∑
i=0

1
k!
Ak
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is the exponential map exp : gl(n,R) → GL(n,R). (See in for example [?
)])

2.2.4 Lie group actions

A left Lie group G-action on a smooth manifold X is given by a smooth map
k : G×X → X so that k(e, x) 7→ x and k(gh, x) = k(g, k(h, x)). Normally,
k(g, x) is simply written g(x). In other words, denoting by Diffeo(X)
the group of diffeomorphisms of X, k gives us a homomorphism k′ G →
Diffeo(X) so that k′(gh)(x) = k′(g)(k′(h)h(x)) and k′(I) = IX . This is
said to be the left-action. (We will not use notations k and k′ in most
cases.)

• A right action satisfies (x)(gh) = ((x)g)h or more precisely,
(gh)(x) = (h(g(x)).

• Each Lie algebra element correspond to a vector field on X by using
a vector field.

• The action is faithful if g(x) = x for all x, then g is the identity
element of G. This means that only g that correspond to the
identity on X is e.

• The action is transitive if given two points x, y ∈ X, there is g ∈ G
such that g(x) = y.

As examples, consider

• GL(n,R) acting on Rn.
• PGL(n+ 1,R) acting on RPn.

2.3 Pseudo-group and G-structures

In this section, we introduce pseudo-groups. Topological manifolds and
its submanifolds are very wild and complicated objects to study as the
topologist in 1950s and 1960s found out. The pseudo-groups will be used
to put “calming” structures on manifolds.

Often the structures will be modelled on some geometries. We are
mainly interested in classical geometries, Clifford-Klein geometries. We
will be concerned with Lie group G acting on a manifold M . Most obvious
ones are euclidean geometry where G is the group of rigid motions acting
on the euclidean space Rn. The spherical geometry is one where G is the
group O(n+1) of orthogonal transformations acting on the unit sphere Sn.
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Topological manifolds form too large category to handle. To restrict the
local property more, we introduce pseudo-groups. A pseudo-group G on a
topological space X is the set of homeomorphisms between open sets of X
so that

• The domains of g ∈ G cover X.
• The restriction of g ∈ G to an open subset of its domain is also in
G.

• The composition of two elements of G when defined is in G.
• The inverse of an element of G is in G.
• If g : U → V is a homeomorphism for U, V open subsets of X. If
U is a union of open sets Uα for α ∈ I for some index set I such
that g|Uα is in G for each α, then g is in G.

Let us give some examples:

• The trivial pseudo-group is one where every element is a restriction
of the identity X → X.

• Any pseudo-group contains a trivial pseudo-group.
• The maximal pseudo-group of Rn is TOP , the set of all homeo-

morphisms between open subsets of Rn.
• The pseudo-group Cr, r ≥ 1, of the set of Cr-diffeomorphisms

between open subsets of Rn.
• The pseudo-group PL of piecewise linear homeomorphisms between

open subsets of Rn.
• A (G,X)-pseudo group is defined as follows. Let G be a Lie group

acting on a manifold X. Then we define the pseudo-group as the
set of all pairs (g|U,U) for g ∈ G where U is the set of all open
subsets of X. (See Subsection ?? and Chapter 3 for details on Lie
groups and their actions.)

• The group isom(Rn) of rigid motions acting on Rn or orthogonal
group O(n+ 1,R) acting on Sn give examples.

2.3.1 G-manifold

A G-manifold is obtained as a manifold glued with special type of gluings
only in G: Let G be a pseudo-group on Rn. A G-manifold is a n-manifold
M with a maximal G-atlas.

A G-atlas is a collection of charts (imbeddings) φ : U → Rn where U is
an open subset of M such that whose domains cover M and any two charts
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are G-compatible.

• Two charts (U, φ), (V, ψ) are G-compatible if the transition map
γ = ψ ◦ φ−1 : φ(U ∩ V )→ ψ(U ∩ V ) ∈ G.

A set of G-atlases is a partially ordered set under the ordering relation
given by inclusion relation. Two G-atlases are compatible if any two charts
in the atlases are G-compatible. In this case, the union is another G-atlas.
One can choose a locally finite G-atlas from a given maximal one and con-
versely. By Zorn’s lemma, the set of compatible G-atlases has a unique
maximal G-atlas.

Under compatibility relation, the set of all G-structures is partitioned
into equivalence classes. We define the G-structure on M as a maximal
G-atlas or as an equivalence class in the above partition.

The manifold X is trivially a G-manifold if G is a pseudo-group on X. A
topological manifold has TOP-structure. A Cr-manifold is a manifold with
a Cr-structure. A differentiable manifold is a manifold with C∞-structure.
A PL-manifold is a manifold with a PL-structure.

A G-map f : M → N for two G-manifolds is a local homeomorphism so
that if f sends a domain of a chart φ into a domain of a chart ψ, then

ψ ◦ f ◦ φ−1 ∈ G.
That is, f is an element of G locally up to charts.

Given two manifolds M and N , let f : M → N be a local homeomor-
phism. If N has a G-structure, then so does M so that the map is a G-map.
A G-atlas is given on M by taking open sets so that it maps into charts in
N under f and then use the induced chart. The G-structure is said to be
the induced G-structure. (A class of examples such as θ-annuli and π-annuli
that arises in the study of complex projective and real projective surfaces.)

Let Γ be a discrete group of G-homeomorphisms of M acting properly
and freely. Then M/Γ has a G-structure. The charts will be the charts
of the lifted open sets. The G-structure here is said to be the quotient
G-structure.

The torus Tn has a Cr-structure and a PL-structure since so does Rn
and the each element of the group of translations all preserve these struc-
tures.

Given a pair (G,X) of Lie group G acting on a manifold X, a (G,X)-
structure is a G-structure and a (G,X)-manifold is a G-manifold where G
is the (G,X)-pseudo group.

A euclidean manifold is a (isom(Rn),Rn)-manifold.
A spherical manifold is a (O(n+ 1),Sn)-manifold.
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2.4 Differential geometry and G-structures

We wish to understand geometric structures in terms of differential geo-
metric setting; i.e., using bundles, connections, and so on. since such an
understanding help us to see the issues in different ways. Actually, this
is not central to the lectures. However, we should try to relate to the
traditional fields where our subject can be studied in another way.

2.4.1 Riemannian manifolds

A differentiable manifold has a Riemannian metric, i.e., inner-product at
each tangent space smooth with respect coordinate charts. Such a manifold
is said to be a Riemannian manifold.

An isometric immersion (imbedding) of a Riemannian manifold to an-
other one is a (one-to-one) map that preserve the Riemannian metric. We
will be concerned with isometric imbedding of M into itself usually. A
length of an arc is the value of an integral of the norm of tangent vectors to
the arc. This gives us a metric on a manifold. An isometric imbedding of
M into itself is an isometry always. A geodesic is an arc minimizing length
locally.

A sectional curvature of a Riemannian metric along a 2-plane is given
as the rate of area growth of disks (An exact formula exists.) To

be filled
in!!!

A constant curvature manifold is one where the sectional curvature is
identical to a constant in every planar direction at every point.

• A euclidean space En with the standard norm metric has a constant
curvature = 0.

• A sphere Sn with the standard induced metric from Rn+1 has a
constant curature = 1.

• Given a discrete torsion-free subgroup Γ of the isometry group of
En (resp. Sn). Then En/Γ (resp. Sn/Γ) is a manifold with a
constant curvature = 0 (resp. 1).

2.4.2 Principal bundles and connections, flat connections

Let M be a manifold and G a Lie group. A principal fiber bundle P over
M with a group G is the object satisfying

• P is a manifold.
• G acts freely on P on the right given by a smooth map P ×G→ P .
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• M = P/G and the map π : P →M is differentiable.
• P is locally trivial. That is, there is a diffeomorphism φ : π−1(U)→
U ×G for at least one neighborhood U of any point of M .

We say that P the bundle space, M the base space. π−1(x) a fiber which
also equals π−1(x) = {ug|g ∈ G} for any choice of u ∈ π−1(x). G is said to
be the structure group.

As an example, consider: L(M) the set of all frames of the tangent
bundle T (M). One can give a topology on L(M) so that sending a frame
to its base point the smooth quotient map L(M) → M . GL(n,R) acts
freely on L(M). We can verify that π : L(M)→M is a principal bundle.

Given a collection of open subsets Uα covering M , a bundle can be
constructed by a collection of mappings

{φβ,α : Uα ∩ Uβ → G|Uα, Uβ}

satisfying

φγ,α = φγ,β ◦ φβ,α
for any triple Uα, Uβ , Uγ . Then form Uα × G. For any pair Uα × G and
Uβ ×G, identify by φ̃β,α : Uα×G→ Uβ ×G given by (x, g) 7→ (x, φβ,α(g)).
The quotient space is a principal bundle over M .

A principal bundle over M with the structure group G is often de-
noted by P (G,M). Given two Lie groups G and G′, and a monomor-
phism f : G′ → G, a map f : P (G′,M) → P (G,M) inducing identity
M →M is called a reduction of the structure group G to G′. There maybe
many reductions for given G′ and G. We say that P (G,M) is reducible to
P (G′,M) if and only if φα,β can be taken to be in G′. (See [(author?)
(Kobayashi and Nomizu)] and [(author?) (Bishop)] for details.)

2.4.2.1 Associated bundles

Let F be a manifold with a left-action of G. G acts on P × F on the right
by

g : (u, x)→ (ug, g−1(x)), g ∈ G, u ∈ P, x ∈ F.

Form the quotient space E = P ×G F . with a map πE is induced and we
can verify that π−1

E (U) is identifiable with U×F up to making some choices
of sections U to P . The space E is said to be the associated bundle over M
with M as the base space. The structure group is the same G. Again there
is a induced quotient map π : E → M with fiber π−1(x) diffeomorphic to
F for any x ∈M .
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Here E can also be built from a cover Uα of M by taking Uα × F and
pasting by appropriate diffeomorphisms of F induced by elements of g as
above.

The tangent bundle T (M) is an example. GL(n,R) acts on Rn on the
left. Let F = Rn. We obtain T (M) as L(M)×GL(n,R) Rn. A tensor bundle
T rs (M) is another example. GL(n,R) acts on T rs (Rn). Let F = T rs (R).
Then we obtain T rs (M) as L(M)×GL(n,R) T

r(Rn).

2.4.2.2 Connections

Let P (M,G) be a principal bundle. A connection is a decomposion of each
Tu(P ) for each u ∈ P

• Tu(P ) = Gu⊕Qu where Gu is a subspace tangent to the fiber. (Gu
is said to be the vertical space and Qu the horizontal space.)

• Qug = (Rg)∗Qu for each g ∈ G and u ∈ P .
• Qu depend smoothly on u.

Let g denote the Lie algebra of G. More formally, we define a connection
as a g-valued form ω on P is given as Tu(P ) → Gu given by taking the
vertical component of each tangent vector of P : We can define a connection
as a smooth g-valued form ω.

• ω(A∗) = A for every A ∈ g and A∗ the fundamental vector field
on P generated by A, i.e., the vector field tangent to the one pa-
rameter group of diffeomorphisms on P generated by the action of
exp(tA) ∈ G at t = 0.

• (Rg)∗ω = ad(g−1)ω.

A horizontal lift of a piecewise-smooth path τ on M is a piecewise-
smooth path τ ′ lifting τ so that the tangent vectors are all horizontal. A
horizontal lift is determined once the initial point is given.

• Given a curve on M with two endpoints, the lifts defines a parallel
displacement between fibers above the two endpoints. (commuting
with the right G-actions).

• Fixing a point x0 on M , this defines a holonomy group.
• The curvature of a connection is a measure of how much a horizon-

tal lift of small loop in M differ from a loop in P .
• For the flat connections, we can lift homotopically trivial loops in
Mn to loops in P . Thus, the flatness is equivalent to local lifting
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of a small coordinate chart of M to horizontal sections in P .
• A flat connection on P gives us a smooth foliation of dimension n

transversal to the fibers.

Check
G acts
on E on
the left?
Connec-
tion
now left
invari-
ant?
Some
check-
ing to
do.. Jul
17

The associated bundle E also inherits a connection, i.e., a splitting of
the tangent space E into vertical space and horizontal space. Here again,
the vertical space is obtained as G-orbits. Again given a curve on M ,
horizontal lifings to E make sense and parallel displacements between fibers.
The flatness is also equivalent to the local lifting property, and The flat
connection on E gives us a smooth foliation of dimension n transversal to
the fibers.

An affine frame in a vector (or affine) space An is a set of n+ 1 points
a0, a1, ..., an so that a1 − a0, a2 − a0, ..., an − a0 form a linear frame. This
assignments gives us the canonical map from the space of affine frames
A(An) to linear frames L(An). An affine group A(n,R) acts on A(An) also
by sending (a0, a1, .., an) to (L(a0), L(a1), ..., L(an)) for an affine automor-
phism L : An → An.

An affine connection on a manifold M is defined as follows. An affine
frame over M is an affine frame on a tangent space of a point of M , treating
as an affine space. The set of all affine frames over a manifold form a
manifold of higher dimension. Let A(M) be the space of affine frames over
M with the affine group A(n,R) acting on it fiberwise on the left.

• The Lie algebra a(n,R) is a semi-direct sum of M(n,R) and Rn.
• There is a natural map A(M) → L(M) where L(M) is the set of

linear frames over M which is given by the natural map A(En)→
L(En).

• An affine connection on M is a linear connection plus the canonical
Rn-valued 1-form. The curvature of the affine connection is the sum
of the curvature of the linear connection and the torsion.

A nice example is when M is a 1-manifold, say an open interval I. Then
P is I×G and the associated bundle is I×X. A connection is simply given
as an infinitesimal way to connect each fiber by a left multiplication by an
element of G. In this case, a connection is flat always and I ×G and I ×X
are fibered by open intervals transversal to the fibers.

If M is a circle, this gives P becomes a mapping circle with fiber G and
E a mapping circle with fiber E. Now, such space can be classified by a
map π1(S1)→ G.
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For the affine connection, for M = I, we use G = A(1,R) and X = R.
Then E is now an annulus I ×R. An affine connection gives a foliation on
annulus transversal to R and is invariant under translation in R-direction.

Even for higher-dimensional manifolds, we can think of connection as
1-dimensional ones over each paths. The local dependence on paths is
measured by the curvature.

Summary: A connection gives us a way to identify fibers given paths on
X-bundles over M . The flatness gives us locally consistent identifications.

2.4.2.3 The principal bundles and G-structures.
I need
to elab-
orate on
this
more..

Given a manifold M of dimension n, a Lie group G acting on a manifold
X of dimension n. We form a principal bundle P over a manifold M and
then the associated bundle E fibered by X with a flat connection. Suppose
we can choose a section f : M → E which is transverse everywhere to the
foliation given by the flat connection. This gives us a (G,X)-structure. The
main reason is that the section f sends an open set of M to a transversal
submanifold to the foliation. Locally, the foliation gives us a projection to
X. The composition gives us charts. The charts can are compatible since
E has left-action.

Coversely a (G,X)-structure gives us P,E, f and the flat connection.
We will elaborate this later when we are studying orbifolds and geomet-

ric structures.

2.5 Notes to Chapter 1

Course home page: math.kaist.ac.kr/~schoi/dgorb.htm and http://

www.is.titech.ac.jp/~schoi/dgorb.htm

Chapter 0 and 1 of [(author?) (Hatcher)] and [(author?) (Munkres)]
and [(author?) (Warner)] are good source of preliminary knowledges
here. [(author?) (Do Carmo)], [(author?) (Kobayashi and Nomizu)],
and [(author?) (Bishop)] give us good knowledge of connections, curva-
ture, and Riemannian geometry.
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Lie groups and geometry

3.1 Introduction

In this section, we will introduce basic materials in Lie group theory and
geometry and discrete group actions on the geometric spaces.

Geometry will be introduced as in Klein’s Erlangen program. Hyper-
bolic geometry will be given empasis by detailed descriptions of models.
Finally, we discuss the discrete group actions, Poincare polyhedron theo-
rem and the crystallographic group theory.

• Euclidean geometry
• Spherical geometry
• Affine geometry
• Projective geometry
• Conformal geometry: Poincare extensions
• Hyperbolic geometry

– Lorentz group
– Geometry of hyperbolic space
– Beltrami-Klein model
– Conformal ball model
– The upper-half space model

• Discrete groups.

3.2 Geometries

We will now describe classical geometries from Lie group action perspec-
tives.

25
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3.2.1 Euclidean geometry

The Euclidean space is Rn and the group Isom(Rn) of rigid motions is
generated by O(n) and Tn the translation group. In fact, we have an inner-
product giving us a metric.

A system of linear equations gives us a subspace (affine or linear).
Hence, we have a notion of points, lines, planes, and angles. Notice that
these notions are invariantly defined under the group of rigid motions.
These give us the set theoretical model for the Euclidean axioms.

3.2.2 Spherical geometry

Let us consider the unit sphere Sn in the Euclidean space Rn+1. The
transformation group is O(n+ 1).

Many great sphere exists and they are subspaces as they are given by
homogeneous system of linear equations in Rn+1. The lines are replaced by
great circles and lengths and angles are also replaced.

Many spherical triangle theorems exist... http://mathworld.wolfram.
com/SphericalTrigonometry.html Such a triangle is classified by their
angles θ0, θ1, θ2 satisfying

θ0 + θ1 + θ2 > π (3.1)

θi < θi+1 + θi+2 − π, i ∈ Z3. (3.2)

(!/2,!/2,0)
(!,!/2,!/2)

(!/2,0,!/2) (0,!/2,!/2)

(!/2, !/2, !)

New di-
agrams
for two.3.2.3 Affine geometry

A vector space Rn becomes an affine space by forgetting about the previliges
of the origin. An affine transformation of Rn is one given by x 7→ Ax + b

for A ∈ GL(n,R) and b ∈ Rn. This notion is more general than that of
rigid motions.
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The Euclidean space Rn with the group Aff(Rn) = GL(n,R) · Rn
of affine transformations form the affine geometry. Of course, angles and
lengths do not make sense. But the notion of lines exists. Also, affine
subspaces that is a linear space translated by a vector make sense.

The set of three points in a line has an invariant based on ratios of
lengths.

3.2.4 Projective geometry

Projective geometry was first considered from fine art. Desargues (and
Kepler) first considered points at infinity from mathematical point of view.
Poncelet first added infinite points to the euclidean plane.

Here, the transformations are generated by perspectives, i.e., transfor-
mation of projecting one plane to another plane by light ray from a point
source. Projective transformations are compositions of perspectivities. Of-
ten, they send finite points to infinite points and vice versa. (i.e., two planes
that are not parallel). Therefore, we need to add infinite points while the
added points are same as ordinary points up to projective transformations.

Lines have well defined infinite points and are really circles topo-
logically because we added infinite point at each direction. Some
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notions such as angles and lengths lose meanings. However, many
interesting theorems can be proved. Also, theorems always come
in dual pairs by switching lines to points and vice versa. Dual-
ity of theorems plays an interesting role. (See for an interactive
course: http://www.math.poly.edu/courses/projective_geometry/

and http://demonstrations.wolfram.com/TheoremeDePappusFrench/,
http://demonstrations.wolfram.com/TheoremeDePascalFrench/,
http://www.math.umd.edu/~wphooper/pappus9/pappus.html, http://

www.math.umd.edu/~wphooper/pappus/)
A formal definition with topology is given by Felix Klein using ho-

mogeneous coordinates. The projective space RPn is Rn+1 − {O}/ ∼
where ∼ is given by v ∼ w if v = sw for s ∈ R. Each point is given a
homogeneous coordinates: [v] = [x0, x1, ..., xn] where two homogeneous
coordinates are equal if they differ only by a nonzero scalar. That is
[x0, x1, ..., xn] = [λx0, λx1, ..., λxn] for λ ∈ R − {0}. The projective trans-
formation group PGL(n+ 1,R) is defined as GL(n+ 1,R)/ ∼ where g ∼ h
for g, h ∈ GL(n + 1,R) if g = ch for a nonzero constant c. We can also
see that the group eqauls the quotient group SL±(n+ 1,R)/{I,−I}. of the
group SL±(n+ 1,R) of determinant ±1. Now PGL(n+ 1,R) acts on RPn
by each element sending each ray to a ray using the corresponding general
linear maps. Each element of g of PGL(n + 1,R) acts by [v] 7→ [g′(v)] for
a representative g′ in GL(n+ 1,R) of g.

That is, given a basis B of n+1 vectors v0, v1, ..., vn of Rn+1 for a point
v, we let [v]B = [λ0, λ1, ..., λn]B if we can write v = λ0v0 +λ1v1 +· · ·+λnvn.
Here, [λ0, ..., λn]B = [cλ0, cλ1, ..., cλxn]B for c ∈ R− {0}.

Also any homogeneous coordinate change can be viewed as induced by a
linear map: That is, [v]B has same homogeneous coordinates as [Mv] where
M is the coordinate change linear map so that Mvi = ei for i = 0, 1, .., n.

• For us n = 2 is important. Here we have a familiar projective
plane as topological type of RP 2, which is a Mobius band with a
disk filled in at the boundary. See http://www.geom.uiuc.edu/

zoo/toptype/pplane/cap/.
• The affine geometry can be ”imbedded”: Rn can be identified with

the set of points in RPn where x0 is not zero, i.e., the set of points
{[1, x1, x2, ..., xn]}. This is called an affine patch. The subgroup of
PGL(n + 1,R) fixing Rn is precisely Aff(Rn) = GL(n,R) · Rn as
can be seen by computations.

• The subspace of points {[0, x1, x2, ..., xn]} is the complement home-
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omorphic to RPn−1. This is the set of infinities, i.e., directions in
RPn.

• From affine geometry, one can construct a unique projective ge-
ometry and conversely using this idea. (See Berger [? )] for the
complete abstract approach.)

• The independence of points are defined. The dimension of a sub-
space is the maximal number of independent set minus 1.

• A subspace is the set of points whose representative vectors sat-
isfy a homogeneous system of linear equations. The subspace in
Rn+1 corresponding to a projective subspace in RPn in a one-to-
one manner while the dimension drops by 1.

• A hyperspace is given by a single linear equation. The complement
of a hyperspace can be identified with an affine space.

• A line is the set of points [v] where v = sv1 + tv2 for s, t ∈ R for
the independent pair v1, v2. Acutally a line is RP 1 or a line R1

with a unique infinity. A point on a line is given a homogeneous
coordinates [s, t] where [s, t] ∼ [λs, λt] for λ ∈ R− {O}.

The projective geometry has well-known invariant called cross ratios
eventhough lengths of immersed geodesics and angles between smooth arcs
are not invariants. (However, we do note that the properties of angles or
length < π,= π, or > π are invariant properties.)

• The cross ratio of four points x, y, z, and t on a line is defined as
follows. There is a unique coordinate system so that x = [1, 0], y =
[0, 1], z = [1, 1], t = [b, 1]. Thus b = b(x, y, z, t) is the cross-ratio.
Thus, it is necessary that at least three points x, y, z are mutually
distinct.

• If the four points are on R1, the cross ratio is given as

(x, y; z, t) =
(z1 − z3)(z2 − z4)
(z1 − z4)(z2 − z3)

if we write

x = [1, z1], y = [1, z2], z = [1, z3], t = [1, z4]

by a some coordinate change.
• One can define cross ratios of four hyperplanes meeting in a pro-

jective subspace of codimension 2. By duality, they correspond to
four points on a line.
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3.2.4.1 Oriented projective geometry

Note that Sn double covers RPn. Moreover, the group SL±(n+ 1,R), i.e.,
linear maps of Rn+1 with determinant ±1, maps to PGL(n + 1,R) with
discrete kernels in the center. Then (Sn,SL±(n + 1, )

¯
) defines a geometry

said to be oriented projective geometry.
This is an old idea actually, and there are number of advantages working

in this spaces.
Each point is given a homogeneous coordinates: [v] = [x0, x1, ..., xn]

where two homogeneous coordinates are equal if they differ only by a
nonzero scalar, i.e., [x0, x1, ..., xn] = [λx0, λx1, ..., λxn] for λ ∈ R, λ > 0.

Two points are antipodal if their homogeneous coordinates are minus of
each other.

Subspaces are defined by linear equations as above. A great circle is
a subspace of dimension 1. A set of a point is not a subspace. A pair of
antipodal points is a subspace. Independence is defined as above.

Again a great circle has a homogeneous coordinate: A great circle is the
set of points [v] where v = sv1 + tv2 for s, t ∈ R for the independent pair
v1, v2. A point on a great circle is given a homogeneous coordinates [s, t]
where [s, t] ∼ [λs, λt] for λ ∈ R, λ > 0. Cross ratio can be defined on four
distinct points (x, y, z, t) on a great circle with say the first homogeneous
coordinates positive. There is a unique coordinate system so that x =
[1, 0], y = [0, 1], z = [1, 1], t = [b, 1]. Then b = b(x, y, z, t) is the cross-ratio.

3.2.5 Conformal geometry

We can introduce two symmetries of Rn. The first class is the set of re-
flections of Rn. Let the hyperplane P (a, t) given by a · x = b. Then the
reflection about P (a, t) is given by ρ(x) = x+2(t−a ·x)a. The second class
is the set of inversions. Let the hypersphere S(a, r) be given by |x−a| = r.
Then the inversion about S(a, r) is given by σ(x) = a+ ( r

|x−a| )
2(x− a).

We compactify Rn to R̂n = Sn by adding infinity. This can be accom-
plished by a stereographic projection from the unit sphere Sn in Rn+1 from
the northpole (0, 0, ..., 1). Taking the inverse image of Rn in Sn, we obtain
a copy of Rn in Sn. The usual differentiable structure of Sn extends that of
imbedded Rn. Since the stereographic map preserves angles, the angles of
Rn agree with those of the copy in Sn with the standard metric. The reflec-
tions and inversions of Rn become diffeomorphisms of the copy in Sn, which
extend to unique real analytic diffeomorphisms of Sn respectively, that is,
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their Jacobians are nowhere zero. Since the maps preserve angles almost
everywhere, they are do so everywhere by a limiting argument. Thus, these
reflections and inversions induce conformal homeomorphisms of R̂n = Sn;
that is, they preserve angles.

• The group of transformations generated by these homeomorphisms
is called the Mobius transformation group.

• They form the conformal transformation group of R̂n = Sn.
• For n = 2, R̂2 is the Riemann sphere Ĉ and a Mobius transforma-

tion is a either a fractional linear transformation of form

z 7→ az + b

cz + d
, ad− bc 6= 0, a, b, c, d ∈ C

or a fractional linear transformation pre-composed with the conju-
gation map z 7→ z̄.

• In higher-dimensions, a description as a sphere of positive null-
lines and the special Lorentizian group exists in the Lorentzian
space R1,n+1.

3.2.5.1 Poincare extensions

We can identify En−1 with En−1 × {O} in En and extend each Mobius
transformation of Ên−1 to Ên that preserves the upper half space U : We
extend reflections and inversions in the obvious way: by extending a reflec-
tion in En−1 about a hyperplane to a reflection in En about a hyperplane
containing the hyperplane and perpendicular to En−1, and extending the
inversion in En−1 about a sphere of radius r with center x ∈ En−1 to the
inversion in En with the same radius and center.

Each Mobius transformation m of Ên−1 is a compositon of reflections
and inversions, say r1r2...rn. Denoting r̂i the extension. Let the extension
m̂ of m be given by r̂1r̂2...r̂n.

• The Mobius transformation of Ên that preserves the open upper
half spaces are exactly the extensions of the Mobius transforma-
tions of Ên−1. Therefore, M(Un) = M(Ên−1).

• We can put the pair (Un, Ên−1) to (Bn,Sn−1) by a Mobius trans-
formation η of Ên. Thus, M(Un) is isomorphic to M(Sn−1) for
the boundary sphere by a conjugation by η.
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3.2.6 Hyperbolic geometry

A hyperbolic space Hn is defined as a Riemannian manifold of constant
curvature equal to −1. Such a space cannot be realized as a submanifold
in a Euclidean space of even very large dimensions. But it is realized as
a ”sphere” in a Lorentzian space. A Lorentzian space is the vector space
R1+n with an inner product

x · y = −x0y0 + x1y1 + · · ·+ xn−1yn−1 + xnyn.

We will denote it by R1,n.

• A Lorentzian norm ||x|| = (x · y)1/2 is a positive, zero, or positive
imaginary number. The vector is said to be space-like, null, or
time-like depending on its norm being positive, zero, or positive
imaginary number.

• The null vectors form a light cone divided into positive, negative
cone, and 0.

• The subspace of time-like vectors also has two components where
x0 > 0 and x0 < 0 respectively. A time-like vector is also positive
or negative depending on which component it lies in.

• Ordinary notions such as orthogonality can be defined by
Lorentzian inner product. A basis is orthornormal if its vectors
have norms of 1 or i and mutually orthogonal.

• A subspace of R1,n is either space-like where all vectors in it are
space-like is null where at least one nonzero-vector is null, or finally
time-like where at least one vector is time-like: This can be seen by
looking at the restriction of the Lorentz inner product on subspaces
where it can be either positive-definite, semi-definite, or definite
with at least one vector with imaginary norm.

• A pair of space-like vectors v and w spanning a space-like sub-
space have an angle between them given by the formula cos θ =
vẇ/||v||||w||. This can be generalized to the situations where they
do not span a space-like subspace and span a null-space or time-like
subspaces. (For details, see Ratcliffe [(author?) (Ratcliffe)]).

3.2.6.1 Lorentz group

A Lorentzian transformation is a linear map preserving the inner-product.
A Lorentzian matrix is a matrix corresponding to Lorentzian transformation
under a standard coordinate system. For J the diagonal matrix with entries
−1, 1, ..., 1, AtJA = J if and only if A is a Lorentzian matrix.
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The set of Lorentzian transformations form a Lie group O(1, n) given
by {A ∈ GL(n,R1+n|AtJA = J}, which is a subgroup of GL(n,Rn+1).
A Lorentzian transformation sends time-like vectors to time-like vectors.
Thus, by continuity, it either preserves both components of the subspace of
positive time-like vectors or switches the components. It is either positive
or negative if it sends positive time-like vectors to positive time-like ones
or negative time-like ones. The set of positive Lorentzian transformations
form a Lie subgroup PO(1, n).

We note here that PO(1, n) can be considered a subgroup of PGL(n+
1,R) simply since the quotient map GL(n+1,R)→ PGL(n+1,R) maps the
subgroup diffeomorphic to its image subgroup. Hence, there is an inclusion
map PO(1, n)→ PGL(n+ 1,R).

3.2.6.2 Hyperbolic space

Given two positive time-like vectors, the subspace spanned by them is time-
like and the Lorentzian inner product restricts to an inner product of signa-
ture −1, 1. Using a new coordinate system s, t, the inner product becomes
−s2 + t2. Since the absolute values of second components of the two vec-
tors are larger than those of the first components, the inner-product of
the two vectors is a negative number, Their norms are positive imaginary
numbers, and the absolute value of the inner-product is greater than the
product of the absolute values of their norms as can be verified by simple
computations. Therefore, there is a time-like angle η(x, y) defined by

x · y = ||x||||y||coshη(x, y).

A hyperbolic space is an upper component of the submanifold defined
by ||x||2 = −1 or x2

0 = 1 +x2
1 + · · ·+x2

n. This is a subset of a positive cone.
Topologically, it is homeomorphic to Rn since one can realize it as a graph of
the function. http://www.geom.uiuc.edu/~crobles/hyperbolic/hypr/

modl/mnkw/ Need to
do
some-
thing
about
the
internet
stuff....

One induces a metric from the Lorentzian space which is positive def-
inite: for two tangent vectors x, y to the hyperboloid, we define x · y by
the Lorentzian inner product. Since the tangent vectors at a point u of the
hyperbolic is orthogonal to u, the tangent space is space-like and the norms
are always positive. This gives us a Riemannian metric of constant curva-
ture −1. (The computation of curvature is very similar to the computations
for the sphere.)

A hyperbolic line is an intersection of Hn with a time-like two-
dimensional vector subspace. A triangle is given by three segments meeting
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at three vertices. Denote the vertices by A,B, and C and the opposite seg-
ments by a, b, and c. By denote thing their angles and lengths again by
A,B,C, a, b, and c respectively. We obtain

• Hyperbolic law of sines:

sinA/ sinh a = sinB/ sinh b = sinC/ sinh c

• Hyperbolic law of cosines:

cosh c = cosh a cosh b− sinh a sinh b cosC

cosh c = (coshA coshB + cosC)/ sinhA sinhB
A
picture
needed

One can assign any interior angles to a hyperbolic triangle as long as
the sum is less than π. One can assign any lengths to a hyperbolic triangle
as long as the lengths satisfy the triangle inequality.

We note that the triangle formula can be generalized to formula for
quadrilateral, pentagon, hexagon with some right angles. Basic philoso-
phy here is that one can push the vertex outside and the angle becomes
distances between lines. (See Ratcliffe, http://online.redwoods.cc.ca.
us/instruct/darnold/staffdev/Assignments/sinandcos.pdf)

Since PO(1, n) includes O(n,R) acting on the subspace given by x0 = 0
and PO(1, 1) acting transitively on the hyperbolic line through e0 and e1,
PO(1, n) acts transitively on Hn. Given any isometry k, we can find an
element g ∈ PO(1, n) so that g ◦ k fixes e0 and the tangent space at e0.
By analyticity of the isometry group, it follows that k = g−1. Therefore,
the Lie group PO(1, n) is the isometry group of Hn and acts faithfully and
transitively.

3.2.7 Beltrami-Klein models of hyperbolic geometry

The hyperboloid model is a bit complicated in that we have to see one-
dimension higher to realize its meaning. We will give more intrinsic defini-
tions which are obtainable from the hyperboloid model easily.

Beltrami-Klein model is directly obtained from the hyperboloid model.
Recall that an affine patch Rn in RPn is identifiable with a complement of
a subspace. A standard one is given by x0 6= 0. The standard affine patch
has coordinate system x1, ..., xn. There is an imbedding from Hn onto an
open unit ball B in the standard affine patch Rn of RPn:

[x0, x1, x2, ..., xn]→ (x1/x0, x2/x0, ..., xn/x0)
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induced from a standard radial projection Rn+1 − {O} → RPn.
We regard B as a ball of radius 1 with center at O in Rn. The hy-

perboloid has a distance metric induced from the Riemannian metric. By
the projection, we obtain a distance metric dk on B. We compute that
dk(P,Q) = 1/2 log |(AB,PQ)| where A,P,Q,B are on a segment with end-
points A,B and

(AB,PQ) =
∣∣∣∣APBP BQ

AQ

∣∣∣∣ :

We can verify this as follows: The metric is induced on B. This
is precisely the metric given by the log of the cross ratio. Note that
λ(t) = (cosh t, sinh t, 0, ..., 0) define a unit speed geodesic in Hn. Under the
Riemannian metric, we have d(e1, (cosh t, sinh t, 0, ..., 0)) = t for t positive.
Under dk, we obtain the same. Since any geodesic segment of same length
is congruent under the isometry, we see that the two metrics coincide.

The isometry group PO(1, n) also maps injectively to a subgroup of
PGL(n+1,R) that preserves B. Since the isometry corresponds to a linear
map in R1+n and it preserve Hn, it follows that an isometry corresponds
to a projective automorphism of B. Converesely, we see that a projective
automorphism of B preserves dk because it preserves the cross-ratios and
hence, it must come from the isometry. The projective automorphism group
of B is precisely PO(1, n).

(See http://www.math.uncc.edu/~droyster/math3181/notes/

hyprgeom/node57.html)

• Beltrami-Klein model is nice because you can see outside in RPn.
The outside is the anti-de Sitter space http://en.wikipedia.org/
wiki/Anti_de_Sitter_space We can treat points outside and in-
side together.

• Each line (hyperplane) in the model is dual to a point outside. (i.e.,
orthogonal by the Lorentzian inner-product) A point in the model
is dual to a hyperplane outside. Infact any subspace of dimenstion
i is dual to a subspace of dimension n− i− 1 by orthogonality.

• For n = 2, the duality of a line is given by taking tangent lines to
the disk at the endpoints and taking the intersection.

• The distance between two hyperplanes can be obtained by two dual
points. The two dual points span an orthogonal plane to the both
hyperperplanes and hence provide a shortest geodesic.
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3.2.7.1 The conformal ball model (Poincare ball model)

The stereo-graphic projection Hn to the subspace P in R1+n given by
x0 = 0 from the point (−1, 0, ..., 0).

The formula for the map κ : Hn → P is given by

κ(x) =
(

y1

1 + y0
, ...,

yn
1 + y0

)
,

where the image lies in an open ball of radius 1 with center O in P . The
inverse is given by

ζ(x) =
(

1 + |x|2

1− |x|2
,

2x1

1− |x|2
, ...,

2xn
1− |x|2

,

)
.

Since this is a diffeomorphism, B has an induced Riemannian metric of
constant curvature −1. We show

cosh dB(x, y) = 1 +
2|x− y|2

(1− |x|2)(1− |y|2)
,

and inversions acting on B preserves the metric. Thus, the group of Mo-
bius transformations of B preserve metric. The corresponding Rieman-
nian metric is gij = 2δij/(1 − |x|2)2. It follows that the group of Mobius
transformations acting on B is precisely the isometry group of B. Thus,
Isom(B) = M(Sn−1). Geodesics would be lines through O and arcs on
circles perpendicular to the sphere of radius 1.

3.2.7.2 The upper-half space model.

Let U be the upper half-space in Rn. Then U is homeomorphic to an open
ball in the compactification R̂n = Sn. Since B is an open ball, we can find
a Mobius transformation sending B to U by a reflection. Now we put B to
U by a Mobius transformation. This gives a Riemannian metric constant
curvature −1 on U .

We have by computations cosh dU (x, y) = 1+|x−y|2/2xnyn and the Rie-
mannian metric is given by gij = δij/x

2
n. Then I(U) = M(U) = M(En−1).

Geodesics would be arcs on lines or circles perpendicular to En−1.
Since Ê1 is a circle and Ê2 is the complex sphere, we obtain

Isom+(B2) = PSL(2,R) and Isom+(B3) = PSL(2,C) respectively. In
this model, it is easier to classify isometries.

• Orientation-preserving isometries of hyperbolic plane can have at
most one fixed point. An elliptic isometry is one fixing a unique
point. A hyperbolic isometry is one preserving a unique line. The
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remaining one is a parabolic isometry or is the idenity map. The
elliptic, hyperbolic, and parabolic isometries are ones conjugate to

z 7→ eiθz, z 7→ az, a 6= 1, a ∈ R+, z 7→ z + 1

in the Mobius group.
• Orientation-preserving isometries of a hyperbolic space is classified

as loxodromic, hyperbolic, elliptic, or parabolic. Up to conjuga-
tions, they are represented as Mobius transformations which has
forms

– z 7→ αz, Imα 6= 0, |α| 6= 1.
– z 7→ az, a 6= 1, a ∈ R+.

– z 7→ eiθz, θ 6= 0.
– z 7→ z + 1.

3.3 Discrete group actions

Here, we will let X be generally a manifold with some Lie group G acting
on it transitively. In order for most of the developed theory to work, we
need that X be a sphere Sn or RPn with Lie groups such as O(n + 1,R),
U(n), the Mobius group, or Rn with O(n) ·Rn or Aff(Rn) = GL(n,R) ·Rn
acting, or Hn with PO(1, n) acting on it. Sometimes, we cannot let X be
a symmetric spaces with its isometry group even or a complex hyperbolic
space. The reason is that there seems to be no good notion of m-planes,
m-dimensional subspaces with nice intersection properties, exists. It is a
hope of geometric topologists that we can overcome these difficulties.

We will present facts for X that will be useful in many cases with some
additional assumptions on X. However, the reader may wish to see X as
one of the above. These will be most sufficient. Mention

inci-
dence
geom-
etry and
Klein
geome-
try: Do
some re-
search????.
Mill-
man’s
book...
This
should be
earlier....
Should write
some of
this....???

3.3.1 Discrete groups and discrete group actions

Let X be a manifold. A discrete group is a group with a discrete topology.
(Usually a finitely generated subgroup of a Lie group.) Any group can
be made into a discrete group. We have many notions of a group action
Γ×X → X which induces a homomorphism Γ→ Diff(X) where Diff(X)
denotes the group of diffeomorphisms of X with the C1-topology:

• The action is effective if an element g of Γ correspond to IX if and
only if g is the identity in Γ. The action is free if an element g fixes
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a point of X if and only if g is the identity in Γ.
• The action is discrete if Γ is discrete in the group of homeomor-

phisms of X with compact open topology. (We used the fact that
Diff(X) is a subgroup of the group of homeomorphisms.)

• The action has discrete orbits if every x has a neighborhood U so
that the orbit points in U is finite.

• The action is wandering if every x has a neighborhood U so that
the set of elements γ of Γ so that γ(U) ∩ U 6= ∅ is finite.

• The action is properly discontinuous if for every compact subset K
the set of γ such that K ∩ γ(K) 6= ∅ is finite.

We can show that the conditions of discrete action, discrete orbit action,
wandering action, and properly discontinuous are strictly stronger accord-
ing to the order presented here as long as X is a manifold. The proof of
this fact without the strictness is not very involved by showing that the
later condition implies the given condition.

• If the action is wandering and free, then the action gives manifold
quotient which is possibly non-Hausdorff.

• The action of Γ is free and properly discontinuous if and only if
X/Γ is a manifold quotient (Hausdorff) and X → X/Γ is a covering
map.

• Suppose that Γ a discrete subgroup of a Lie group G acting on
X with compact stabilizer. Then X has G-invariant Riemannian
metric. Any (X,G)-manifold now has induced Riemannian metric.
Suppose that Γ acts properly discontinuously on X. Let us call
this standard discrete action.

• A complete (X,G) manifold is one isomorphic to X/Γ. (Notions
of completeness agree with that of the induced Riemannian metric
for G acting with compact stabilizers. Hence, this is a natural
generalization.)

• Suppose X is simply-connected. Given a manifold M the set of
complete (X,G)-structures on M up to (X,G)-isotopies are in one-
to-one correspondence with the discrete faithful representations of
π(M)→ G up to conjugations.

We remark that if we allow G to act on X without the compact stabilizer
condition, then we call this standard flexible type action.

As examples, we give:
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• R2−{O} with the group generated by g1 : (x, y)→ (2x, y/2). This
is a free wondering action but not properly discontinuous.

• R2 − {O} with the group generated by g : (x, y)→ (2x, 2y). (free,
properly discontinuous.)

• The modular group PSL(2,Z) the group of Mobius transforma-
tions or isometries of hyperbolic plane given by z 7→ az+b

cz+d for in-
teger a, b, c, d and ad− bc = 1. http://en.wikipedia.org/wiki/
Modular_group. This is not a free action but a properly discontin-
uous action as the action is a standard discrete one.

3.3.1.1 Convex polyhedrons

Suppose that X is a space where a Lie group G acts effectively and tran-
sitively. Furthermore, suppose X has notions of m-planes. An m-plane is
an element of a collection of submanifolds of X of dimension m so that
given generic m + 1 point, there exists a unique one containing them. We
require also that every 1-plane contains geodesic between any two points in
it. Obviously, we assume that elements of G sends m-planes to m-planes.
(For complex hyperbolic spaces, such notion seemed to be absent.)

We also need to assume that X satisifes the increasing property that
given an m-plane and if the generic m + 1-points in it, lies in an n-plane
for n ≥ m, then the entire m-plane lies in the n-plane. Check

KapovichFor example, any geometry with models in RPn and G a subgroup
of PGL(n + 1,R) has a notion of m-planes. Thus, hyperbolic, euclidean,
spherical, and projective geometries has notions of m-planes. Conformal
geometry may not have such notions since generic pair of points have in-
finitely many circles through them.

A convex subset of X is a subset such that for any pair of points, there
is a unique geodesic segment between them and it is in the subset. For
example, a pair of antipodal point in Sn is convex.

Assume that X is either Sn, Rn, Hn, or RPn with Lie groups acting on
X. Let us state some facts about convex sets:

• The dimension of a convex set is the least integer m such that C
is contained in a unique m-plane Ĉ in X.

• The interior Co, the boundary ∂C are defined in Ĉ.
• The closure of C is in Ĉ. The interior and closures are convex.

They are homeomorphic to an open ball and a contractible domain
of dimension equal to that of Ĉ respectively.

• A side C is a nonempty maximal convex subset of ∂C.



October 29, 2009 13:37 World Scientific Book - 9in x 6in mjsbook

40 Geometric structures on 2-orbifolds: Exploration of discrete symmetry

• A convex polyhedron is a nonempty closed convex subset such that
the set of sides is locally finite in X.

3.3.1.2 Convex polytopes

Using the Beltrami-Klein model, the open unit ball B, i.e., the hyperbolic
space, is a subset of an affine patch Rn. In Rn, one can talk about convex
hulls.

• A convex polytope in B = Hn is a convex polyhedron with finitely
many vertices and is the convex hull of its vertices in B = Hn.

• A polyhedron P in B = Hn is a generalized convex polytope if its
closure is a polytope in the affine patch. A generalized polytope
may have ideal vertices.

• For X = RPn or Sn, a convex polytope is given as a convex polyhe-
dron in an affine patch or an open hemisphere with finitely many
vertices and is a convex hull of its vertices.

• In general, for X with m-planes, we can define a convex polytope
as above.

A compact simplex which convex hull of n+ 1 points in B = Hn is an
example of a convex polytope.

Take an origin in B, and its tangent space TOB. Start from the origin O
in TOB expand the infinitesimal euclidean polytope from an interior point
radially. That is a map sending x → sx for s > 0 and x is the coordinate
vector of an affine patch using in fact any vector coordinates. Now map the
vertices of the convex polytope by an exponential map to B. The convex
hull of the vertices is a convex polytope. Thus for any Euclidean polytope,
we obtain a one parameter family of hyperbolic polytopes.

3.3.1.3 The fundamental domains of discrete group action

Let X be Sn, En or Hn or more generalty a geometrical space with m-
planes. Let Γ be a group acting on X. A fundamental domain for Γ is an
open domain F so that {gF |g ∈ Γ} is a collection of disjoint sets and their
closures cover X. The fundamental domain is locally finite if the above
closures are locally finite.

Suppose that X is either a hyperbolic, euclidean, or spherical space.
Then Dirichlet domain for u ∈ X is the intersection of all Hg(u) = {x ∈
X|d(x, u) < d(x, gu)}. Then D(u) is a convex fundamental polyhedron. If
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Fig. 3.1 Regular icosahedron with all edge angles π/2 as seen from inside (Geometry
center).

X/Γ is compact, and Γ acts discretely and properly discontinously, D(u) is
a convex polytope. (If X is some other types of geometries, this is somewhat
only vaguely understood.)

The regular octahedron example of hyperbolic surface of genus 2 is an
example of a Dirichlet domain with the origin as u. (See Figure ??.)

3.3.1.4 Side pairings and Poincare fundamental polyhedron theo-
rem

A tessellation of X is a locally-finite collection of polyhedra covering X

with mutually disjoint interiors.
Convex fundamental polyhedron provides examples of exact tessel-

lations. For such a convex fundamental polyhedron P , X is a union⋃
g∈Γ g(P ).

If P is an exact convex fundamental polyhedron of a discrete group
Γ of isometries acting on X, then Γ is generated by Φ = {g ∈ Γ|P ∩
g(P ) is a side of P}: To see this, let g be an element of Γ, and let us choose
a frame at a point of P and consider its image in g(P ). Then we choose
a path of frames from the intial from to the terminal frame. We perturb
the path so that it meets only the interiors of the sides of the tessellating
polyhedrons. Each time the path crosses a side S, we take the side-pairing
gS obtained as below. Then multiplying all such side-pairings in the reverse
order to what occured, we obtain an element g′ ∈ Γ so that g′(P ) = g(P )
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as hgSh−1 moves h(P ) to the image of P adjacent in the side h(S) for every
h ∈ Γ. Since P is a fundamental domain, g−1g′ is the identity element of
Γ.

• Given a side S of an exact convex fundamental domain P , there is
a unique element gS such that S = P ∩ gS(P ). And S′ = g−1

S (S)
is also a side of P .

• gS′ = g−1
S since S′ = P ∩ g−1

S (P ).
• Γ-side-pairing is the set of gS for sides S of P .
• The equivalence class at P is generated by x ∼= x′ if there is a

side-pairing sending x to x′ for x, x′ ∈ P .
• [x] is finite and [x] = P ∩ Γ.

• Cycle relations:

– Let S1 = S for a given side S. Choose the side R of S1. Obtain
S′1. Let S2 be the side adjacent to S′1 so that gS1(S′1∩S2) = R.

– Let Si+1 be the side of P adjacent to S′i such that gSi(S
′
i ∩

Si+1) = S′i−1 ∩ Si.
• Then we obtain

– There is an integer l such that Si+l = Si for each i.
–
∑l
i=1 θ(S

′
i, Si+1) = 2π/k.

– gS1gS2 ....gSl
has order k.

• The period l is the number of sides of codimension one coming into
a given side R of codimension two in X/Γ.

We comment that the angle condition is equivalent to the order condition
below. If X does not have a G-invariant metric, we can only state the
order condition. Thus, if Γ has a convex fundamental polytope, Γ is finitely
presented.

The Poincare fundamental polyhedron theorem is the converse. We
claim that the theorem holds for geometries (X,G) with notions of m-
planes. (See Kapovich P. 80–84): Check

Kapovich
more...Theorem 3.3.1. Let (X,G) be a geometry of notions of m-planes and

convexity. Given a convex polyhedron P in X with side-pairing isometries
satisfying the above relations, then P is the fundamental domain for the
discrete subgroup of G generated by the side-pairing isometries.

If every k equals 1, then the result of the face identification is a manifold.
Otherwise, we obtain orbifolds. The results are always complete. (See
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Fig. 3.2 Example: the octahedron in the hyperbolic plane giving genus 2-
surface. There are the cycle (a1, D), (a1′,K), (b1′,K), (b1, B), (a1′, B), (a1, C), (b1, C),

the cycle (b1′, H), (a2, H), (a2′, E), (b2′, E), (b2, F ), (a2′, F ), (a2, G), and the cycle
(b2, G), (b2′, D), (a1, D), (a1′,K), ....

Jeff Weeks http://www.geometrygames.org/CurvedSpaces/index.html

for an examples of hyperbolic or spherical manifold as seen from “inside”.)
We will be particularly interested in reflection groups. Suppose that

X has notions of angles between m-planes. A discrete reflection group is a
discrete subgroup in G generated by reflections in X about sides of a convex
polyhedron. Then all the dihedral angles are submultiples of π. Then the
side pairing such that each face is glued to itself by a reflection satisfies the
Poincare fundamental theorem.

The reflection group has presentation {Si : (SiSj)kij} where kii = 1 and
kij = kji. which are examples of Coxeter groups.

The triangle groups are examples of discrete reflection groups.

• Find a triangle in X with angles submultiples of π. This exists
always for X = S2, E2, or H2.

• We divide into three cases π/a+π/b+π/c > 0,= 0, < 0. The trian-
gles are then spherical, euclidean, or hyperbolic ones respectively.
They exist and are uniquely determined up to isometry.

– > 0 cases: (2, 2, c), (2, 3, 3), (2, 3, 4), (2, 3, 5) corresponding to
dihedral group of order 2c, a tetrahedral group, octahedral
group, and icosahedral group.

– = 0 cases: (3, 3, 3), (2, 4, 4), (2, 3, 6). The reflections generate
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Fig. 3.3 The icosahedral reflection group as seen by an insider: One has a regular
icosahedron with all edge angles π/2 and hence it is a fundamental domain of a hyperbolic

reflection group. From Geometry center

the corresponding wall paper group.
– < 0 cases: Infinitely many hyperbolic tessellation groups. See

http://egl.math.umd.edu/software.html.

Fig. 3.4 (2, 4, 8)-triangle group.

Can
this
be made
bigger?
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Fig. 3.5 The ideal example.

3.3.1.5 Higher-dimensional examples

To construct a 3-dimensional examples, obtain a Euclidean regular dodec-
ahedron and expand it and decrease the dihedral angles until we achieve
that all dihedral angles are π/3 and then to dihedral angles π/2. There are
nice pictures of these in Geometry Center archives.

One can also achieve Regular octahedron with angles π/2. These are
ideal polytope examples.

Higher-dimensional examples were analyzed by Vinberg and so on. For
example, there are no hyperbolic reflection group of compact type above
dimension ≥ 30.

3.3.1.6 Crystallographic groups

A crystallographic group is a discrete group of the rigid motions on Rn
whose quotient space is compact.

Bieberbach theorem states that

Theorem 3.3.2.

• A group is isomorphic to a crystallographic group of Rn if and only
if it contains a subgroup of finite index that is free abelian of rank
equal to n.

• The crystallographic groups are isomorphic as abstract groups if
and only if they are conjugate by an affine transformation.



October 29, 2009 13:37 World Scientific Book - 9in x 6in mjsbook

46 Geometric structures on 2-orbifolds: Exploration of discrete symmetry

Once we have this theorem, then the classification of crystallographic
group is reduced to studying the finite group extension of abelian crys-
tallographic groups, which are simple lattices. There are only finitely
many crystallographic group for each dimension since once the abelian
group action is determined, its symmetry group can only be finitely many.
There are 17 wallpaper groups for dimension 2. http://www.clarku.edu/
~djoyce/wallpaper/ and see Kali by Weeks ttp://www.geometrygames.
org/Kali/index.tml. There are 230 space groups for dimension 3. See
Conway, Friedrichs, Huson and Thurston [(author?) (Conway)] These
groups have extensive applications in molecular chemistry. Further infor-
mations: http://www.ornl.gov/sci/ortep/topology.html

3.4 Notes

A good introduction to Euclidan, affine, and projective geometry can be
found in [? )] and some early chapters of [Thurston (11)]. The book
[? )] gives us extensive descriptions of models of hyperbolic geometry.
Discrete group actions and Poincare fundamental polyhedron theorems are
described well in [? )] and [(author?) (Kapovich)].
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Chapter 4

Topology of orbifolds

4.1 Introduction

This section begins by reviewing the theory of the compact group actions
on manifolds. Then we move onto define orbifold and their maps. We
also cover the groupoid definition. Further we cover the covering space
theory. We exposed the covering theory using paths following Haefliger.
Thus, both concrete and abstract approach covered here. We tried to make
the abstract definitions into more concrete form here. In many respect,
the abstract definition gives a more accurate sense of what orbifold is.
Finally, we discussed the topological operations of cutting and pasting along
suborbifolds that can be done on orbifolds.

• Compact group actions

– Compact group actions
– Orbit spaces.
– Tubes and slices.
– Path-lifting, covering homotopy
– Locally smooth actions
– Smooth actions
– Equivariant triangulations
– Newman’s theorem

• Topology of 2-orbifolds

– Definitions,
– Orbifold maps, singular set,
– Examples
– Abstract definitions using groupoid.
– Smooth structures, fiber bundles, and Riemannian metrics

47
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– Gauss-Bonnet theorem (due to Satake)
– Smooth 2-orbifolds and triangulations

• Covering spaces

– Fiber-product approach
– Path-approach by Haefliger

• Topological operations on 2-orbifolds: constructions and decompo-
sitions

4.2 Compact group actions

Although, we only need the result for finite group actions, we will study
when G is a compact Lie group.

A group action G × X → X with e(x) = x for all x and gh(x) =
g(h(x)). That is, G→ Diffeo(X) so that the product operation becomes
compositions.

An equivariant map φ : X → Y between G-spaces is a map so that
φ(g(x)) = g(φ(x)). An isotropy subgroup Gx = {g ∈ G|g(x) = x}. We note
that Gg(x) = gGxg

−1 and Gx ⊂ Gφ(x) for an equivariant map φ.

Theorem 4.2.1. (Tietze-Gleason Theorem) Let G be a compact group act-
ing on X with a closed invariant set A. Let G also act linearly on Rn. Then
any equivariant smooth map φ : A→ Rn extends to a smooth φ : X → Rn.

An orbit of a point x of X is G(x) = {g(x)|g ∈ G}. Then we see that
G/Gx → G(x) is one-to-one and onto continuous function. Therefore, an
orbit type is given by the conjugacy class of Gx in G. The orbit types form
a partially ordered set induced by the reversing the inclusion ordering of
the conjugacy classes of subgroups of G. Denote by X/G the space of orbits
with quotient topology.

For A ⊂ X, define G(A) =
⋃
g∈G g(A) is the saturation of A.

• π : X → X/G is an open, closed, and proper map.
• X/G is Hausdorff. (as G is compact.)
• X is compact iff X/G is compact.
• X is locally compact iff X/G is locally compact.

We list some examples:

• Let X = G × Y and G acts as a product. Then every orbit is
homeomorphic to G and the centralizers are all trivial groups.
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• For k, q relatively prime, the action of Zk on the unit sphere S3 in
the complex space C2 generated by a matrix[

e2πi/k 0
0 e2πqi/k

]
giving us a Lens space.

• We can also consider S1-actions given by[
e2πkiθ 0

0 e2πqiθ

]
Then it has three orbit types.

• Consider in general the action of torus Tn-action on Cn given by

(c1, ..., cn)(y1, ..., yn) = (c1y1, ..., cnyn), |ci| = 1, yi ∈ C.
Then there is a homeomorphism h : Cn/Tn → (R+)n given by
sending

(y1, ..., yn) 7→ (|y1|2, ..., |yn|2).

The interiors of sides represent different orbit types.
• Let H be a closed subgroup of Lie group G. Let H act on G by

the left action. The left-coset space G/H is the orbit space where
G acts on the right also.

• G/Gx → G(x) is given by gGx 7→ g(x) is a homeomorphism if G is
compact.

• Twisted product: X a right G-space, Y a left G-space. A left action
is given by g(x, y) = (xg−1, gy). The twisted product X ×G Y is
the quotient space.

• Let p : X → B is a principal bundle with G acting on the left. F
a right G-space. Then F ×G X is the associated bundle.

Example 4.2.2. Let G be the the rotation group SO(3), and let X be the
vector space of symmetric matrices of trace 0 (hence orthogonally diagonal-
izable). Suppose we act by conjugation g(m) = gmg−1. By linear algebra,
we prove that two symmetric marices are in the same orbit if they have the
same eigenvalues with multiplicities. Hence the orbit space is in one-to-one
correspondence with of triples (a, b, c) so that a ≥ b ≥ c and a+ b+ c = 0.
The second space is a 2-dimensional cone in R3. This is homeomorphic to
X/G. The isotropy group of a diagonal matrix with all eigenvalues different
is the group of diagonal matrices with entries ±1 which is isomorphic to
Z2 ⊕ Z2. The isotropy group of a diagonal matrix with two eigenvalues
equal is the group of matrices decomposing into an orthogonal 2×2-matrix
and ±1.
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Example 4.2.3. The Conner-Floyd example: There is an action of Zr for
r = pq,p, q relatively prime, on an Euclidean space of large dimensions
without stationary points. That is the stabilizers of every point is a trivial
group. This is accomplished in following steps:

• Find a simplicial action Zpq on S3 = S1 ? S1 without stationary
points obtained by joining action of Zp on the first factor circle and
Zq on the second factor circle.

• Find an equivariant simplicial map h : S3 → S3 which is homo-
topically trivial.

• Build the infinite mapping cylinder using h infinitely often which is
contactible and imbed it in an Euclidean space of high-dimensions
where Zpq acts orthogonally.

• Find the contractible neighborhood. Taking the product with the
real line makes it into a Euclidean space.

Define
station-
ary...4.2.1 Tubes and slices

For a compact group action, we need to establish the notion of tubes and
slices. These are modeled on twisted product action: Let G be a compact
subgroup, X a right G-space, and Y a left G-space. Then X ×G Y is
defined as the quotient space of X × Y where [xg, y] ∼ [x, gy] for g ∈
G. Let H be a closed subgroup of G. G ×H Y is a left G-space by the
action g[g′, a] = [gg′, a] as this sends equivalence classes to themselves. The
inclusion A→ G×H A induces a homeomorphism A/H → (G×H A)/G.

The isotropy subgroup at [e, a] is computed as follows: [e, a] = g[e, a] =
[g, a] = [h−1, h(a)]. Thus, G[e,a] = Ha.

As an example, letG = S1 and A be the unit-disk andH = Z3 generated
by e2π/3. G and H acts in a standard way in A. Then consider G ×H A.
The result is homeomorphic to a solid torus fibered with circles. Each
noncentral circle goes around the solid torus three times and the central
circle goes around once.

Let X be a G-space and P an orbit of type G/H. A tube about the orbit
P is a G-equivariant imbedding G×H A→ X onto an open neighborhood
of P where A is a some space where H acts on so that

• Every orbit passes the image of e×A.
• P equals G(x) for x = [e, a] where a is the stationary point of H

in A.
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• In general Gx = Ha ⊂ H for x = [e, a].

Let x ∈ X. Suppose S is a set containing x such that Gx(S) = S,i.e.,
the stablizer of x acts on S. Then S is said to be a slice if G ×Gx

S → X

so that [g, s]→ g(s) is a tube about Gx.
It is easy to see that S is a slice if and only if S is the image of e × A

for some tube.
Let x ∈ S and H = Gx. Then the following are equivalent:

• There is a tube φ : G×H A→ X about G(x) such that φ([e,A]) =
S.

• S is a slice at x.
• G(S) is an open neighborhood of G(x) and there is an equivariant

retraction f : G(S)→ G(x) with f−1(x) = S.

Theorem 4.2.4. (Mostow) Let X be a completely regular G-space. There
is a tube about any orbit of a complete regular G-space with G compact.

Proof. Let x0 have an isotropy group H in G. Find an orthogonal
representation of G in Rn with a point v0 whose isotropy group is H,
which always exists by a compact group representation theory. There is an
equivalence of orbits G(x0) and G(v0). We extend this to a neighborhood
smoothly. For Rn, we can find the equivariant retraction. Transfer this on
X. �

If G is a finite group acting on a manifold, then a tube is a union of
disjoint open sets and a slice is an open subset where Gx acts on.

Theorem 4.2.5. (Path-lifting and covering homotopy theorem)

• Let X be a G-space, G a compact Lie group, and f : I → X/G any
path. Then there exists a lifting f ′ : I → X so that π ◦ f ′ = f .

• Let f : X → Y be an equivariant map. Let f ′ : X/G → Y/G

be an induced map. Let F ′ : X/G × I → Y/G be a homotopy
preserving orbit types that starts at f ′. Then there is an equivariant
F : X × I → Y lifting F ′ starting at f .

• If G is finite and X a smooth manifold with a smooth G-action and
if the functions are smooth, then the lifts can be chosen to be also
smooth.
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4.2.1.1 Locally smooth actions

Let M be a G-space with G a compact Lie group, and let P be an orbit of
type G/H. and V a vector space where H acts orthogonally. Then a linear
tube in M is a tube of the form φ : G×H V →M .

Let S be a slice. S is a linear slice if G×Gx
S →M given by [g, s]→ g(s)

is equivalent to a linear tube. (If Gx-space S is equivalent to the orthogonal
Gx-space.)

If there is a linear tube about each orbit, then M is said to be locally
smooth.

Lemma 4.2.6. There exists a maximum orbit type G/H for G. (That is,
H is conjugate to a subgroup of each isotropy group.)

Proof. In each tube, there is a maximal orbit type in it and we find
the maximal orbit in it has to be dense and open. For intersection of two
tubes, the maximal orbit has to be dense and open in both tubes. Thus,
the maximal orbit of a tube is of the maximal orbit type in M . �

The maximal orbits so obtained in a tube are called principal orbits. If
M is a smooth manifold and compact Lie G acts smoothly, this is true.

4.2.1.2 Manifolds as quotient spaces.

Finally, we wish to understand about the quotient spaces.

Theorem 4.2.7. Let M be a smooth manifold, and G a compact Lie group
acting smoothly on M . If G is finite, then this is equivalent to the fact
that each ig : M → M given by x 7→ g(x) is a diffeomorphism. Let n
be the dimension of M and d the dimension of the maximal orbit. Then
M∗ = M/G is a manifold with boundary if n− d ≤ 2.

Proof. Let k = n−d be the codimension of the principal orbits. Consider
a linear tube G×K V . The orbit space (G×K V )∗ ∼= V ∗. Let S be the unit
sphere in V . Then V ∗ is a cone over S∗. We have that dimM∗ = dimV ∗ =
dimS∗ + 1.

If k = 0, then M∗ is discrete. If M is a sphere, then M∗ is one or two
points.

If k = 1, then M∗ is locally a cone over one or two points. Hence M∗

is a 1-manifold. If k = 2, then M∗ is locally a cone over an arc or a circle.
(as S∗ is a 1-manifold by the previous step.) �
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Example: Z2 action on R3 generated by the antipodal map. The result
is not a manifold.

4.2.1.3 Smooth actions are locally smooth

Recall smooth actions. Let G be a compact Lie group acting smoothly on
M . Then there exists an invariant Riemannian metric on M . Then G(x)
is a smooth manifold where G/Gx → G(x) is a diffeomorphism. Recall
the exponential map for Riemannian manifolds: For any vector X ∈ TpM ,
there is a unique geodesic γX with tangent vector at p equal to X. The
exponential map exp : TpM →M is defined by X 7→ γX(1).

If A is an invariant smooth submanifold, then A has an open invariant
tubular neighborhood. This follows by using the normal bundle to A and
the exponential map restricted to the normal bundle NA. Then this map
is a local diffeomorphism in a neighborhood N of A in NA. By taking
the same radius open balls in the normal bundle, we obtain the invariant
tubular neighborhood as its image.

Prop 4.1. The smooth action of a compact Lie group is locally smooth.

Proof. Use the fact that orbits are smooth submanifolds and the above
statements. �

We will need the following facts:

• The subspace M(H) of same orbit type G/H is a smooth locally-
closed submanifold of M .

• A a closed invariant submanifold. Then any two open (resp. closed)
invariant tubular neighborhoods are equivariantly isotopic.

Theorem 4.2.8. (Newman’s theorem) Let M be a connected topological
n-manifold. Then there is a finite open covering U of the one-point com-
pactification of M such that there is no effective action of a compact Lie
group with each orbit contained in some member of U .

The proof follows from algebraic topology.

Corollary 4.2.9. If G is a compact Lie group acting effectively on M , then
the set of fixed points MG is nowhere dense.

4.2.1.4 Equivariant triangulations

Sören Illman proved:
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Theorem 4.2.10. Let G be a finite group. Let M be a smooth G-manifold
with or without boundary. Then we have:

• There exists an equivariant simplicial complex K and a smooth
equivariant triangulation h : K →M .

• If h : K → M and h1 : L → M are smooth triangulations of
M , there exist equivariant subdivisions K ′ and L′ of K and L,
respectively, such that K ′ and L′ are G-isomorphic.

This result was widely used once a proof by Yang (1963) was given. But
an error was discovered by Siebenmann (1970) and proved in 1977. I don’t

think I
need
this...4.3 Definition of orbifolds

Let X be a Hausdorff second countable topological space. Let n be fixed.
Consider an open subset Ũ in Rn with a finite group G acting smoothly
on it and a G-invariant map Ũ → O for an open subset O of X inducing
a homeomorphism Ũ/G → O. An orbifold chart is such a triple (Ũ , G, φ).
An embedding i : (Ũ , G, φ) → (Ṽ ,H, ψ) is a smooth imbedding i : Ũ → Ṽ

with φ = ψ ◦ i which induces the inclusion map U → V for U = φ(Ũ) and
V = φ(Ṽ ).

• Equivalently, i is an imbedding inducing the inclusion map U → V

and inducing an injective homomorphism i∗ : G → H so that
i ◦ g = i∗(g) ◦ i for every g ∈ G. i∗(G) will act on the open set that
is the image of i.

• Note here i can be changed to h ◦ i for any h ∈ H. The images of
h ◦ i will be disjoint for representatives h for H/i∗(G). Conversely,
any i′ : Ũ → Ṽ lifting an inclusion U → V equals h ◦ i for h ∈ H.
(See Proposition A.1 [? )].)

Two charts (Ũ , φ) and (Ṽ , ψ) are compatible if for every x ∈ U ∩ V ,
there is an open neighborhood W of x in U ∩V and a chart (W̃ ,K, µ) such
that there are embeddings to (Ũ , φ) and (Ṽ , ψ). (One can assume W is a
component of U ∩ V .)

If we allow Ũ to be an open subset of the closed upper half space, then
the orbifold has boundary.

• Since G acts smoothly, G acts freely on an open dense subset of Ũ .
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• An orbifold atlas on X is a family of compatible charts {(Ũ , φ)}
covering X.

• Two orbifold atlases are compatible if charts in one atlas are com-
patible with charts in the other atlas.

• Atlases form a partially ordered set by inclusion relation. It has a
maximal element.

• Given an atlas, there is a unique maximal atlas containing it.
• An orbifold is a topological space X with a maximal orbifold atlas.
• One can obtain an atlas of linear charts only: that is, charts where
Ũ is Rn and G ⊂ O(n). That is, for each point x ∈ Ũ , one can find
a finite subgroup Gx stablizing the point and suitable Gx-invariant
neighborhood in Ũ . Then Gx acts linearly up to a choice Ox of
coordinate charts since smooth action is locally smooth (linear).
We call such a chart (Ox, Gx) a linear chart. Therefore, given an
orbifold atlas, there is a compatible orbifold atlas consisting of only
linear charts.

• If we have Ũ with G acting freely, we can drop this from the atlas
and replace with many charts with trivial group.

• A map f : (X,U) → (Y,V) where U and V are maximal charts
is smooth if for each point x ∈ X, there is a chart (Ũ , G, φ) with
x ∈ U and a chart (Ṽ ,H, ψ) with f(x) ∈ V so that f(V ) ⊂ U and
f lifts to f̃ : Ũ → Ṽ as a smooth map.

• Two orbifolds are diffeomorphic if there is a smooth orbifold-map
with a smooth inverse orbifold-map.

4.3.1 Local group and the singular set

Let x ∈ X. A local group Gx of x is obtained by taking a chart (Ũ , G, φ)
around x and finding the stabilizer Gy of y for an inverse image point y of
x.

• This is independently defined up to conjugacy for any choice of y.
• Smaller charts will give you the same conjugacy class. Thus, one

can take a linear chart. Once a linear chart is achieved, Gx is
well-defined up to conjugacy (Thus, as an abstract group with an
action.)

The singular set is a set of points where Gx is not trivial. In each chart,
the set of fixed points of each subgroup of Gx is a closed submanifold.
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Let (Ox, Gx) and (Oy, Gy) be two charts. Subgroups H of Gx and H ′

of Gy are strictly topologically conjugate if there is a chart (Uz, Gz) with
morphisms into (Ox, Gx) and (Oy, Gy) in the orbifold atlas so that H and
H ′ correspond to an identical subgroup in Gz. H and H ′ are topologically
conjugate if there exists a sequence H1 = 0, H1, · · · , Hn = H ′ where Hi

and Hi+1 are strictly topologically conjugate.
The subset of the singular set where the conjugacy class ofGx is constant

is a relatively closed submanifold. Thus X becomes a stratified smooth
topological space where the strata is given by the smooth topological con-
jugacy classes of subgroups of local groups Gx for x ∈ X.

A suborbifold Y of an orbifold X is an imbedded subset such that for
each point y in Y and and a chart (Ṽ , G, φ) of X for a neighborhood V of y
there is a chart for y given by (P,G|P, φ) where P is a closed submanifold of
Ṽ where G acts on and G|P is the image of the restriction homomorphism
of G to P .

Compared to the definition of Adem et al [? )], our definition is stronger.
The basic reason is so that we can do surgeries along the suborbifolds.

Clearly, manifolds are orbifolds. But as an orbifold, it carries more
charts. For example RPn will have a chart with Z2 action on it. By an
abuse of notations, a manifold in this paper will mean a manifold with the
extended collection of charts as orbifolds. In general, let G be a finite group
acting on a manifold M smoothly. Then M/G is a topological space with
an orbifold structure with an atlas of charts based on H-invariant open set
in M and a subgroup H of G as a model.

Let M = Tn and Z2 act on it with generator acting by −I. For n = 2,
M/Z2 is topologically a sphere and has four singular points. For n = 4, we
obtain a Kummer surface with sixteen singular points.

Let X be a smooth surface. Take a discrete subset. For each point,
take a disk neighborhood D with a chart (D′, Zn, q) where D′ is a disk and
Zn acts as a rotation with O as a fixed point and q : D′ → D as a cyclic
branched covering.

In general, a regular branched covering of a surface by another surface
gives us an orbifold structure.

Given a manifold M with boundary. A doubled M̂ is obtained by M ×
Z2/ ∼ where (x, 0) ∼ (y, 1) if and only if x = y ∈ ∂M . A Z2-action M̂ is
induced by (x, 0) 7→ (x, 1) and (x, 1) 7→ (x, 0) for x ∈M . We can double M
as a manifold M̂ and obtain Z2-action. Thus, M can be given an orbifold
structure of M̂/Z2.
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We can modify this a little bit. Take a surface and make the boundary
be a union of piecewise smooth curves with corners.

• The interiors of some selected arcs are given Z2 as groups but not
all. If the end point of the arc is not in another selected arc,
then our model open set is a half open set and Z2 acts on it as a
reflection. This is a silvering.

• If two such arcs meet at a point, then the vertex is given a dihedral
group as a group.

• Then the union of the interiors of the remaining arcs is the bound-
ary of the orbifold.

• A nicely imbedded arc ending at a corner may not be a suborbifold
unless it is in the boundary of the surface.

4.3.2 Triangulation of orbifolds

In general, a smooth orbifold has a smooth topological stratification and
a triangulation so that each open cell is contained in a single strata of
same dimension. Smooth topological triangulations satisfying certain weak
conditions have a triangulation. One should show that the stratification of
orbifolds by orbit types satisfies this condition. Verona [? )] provides a
complete reference. We will treat this in more detail in Appendix A.

4.3.2.1 Triangulation of the stratified spaces

A manifold M with corner is a topological manifold with boundary with
atlas of charts to R+,n = {(x1, ..., xn)|x1 ≥ 0, ..., xn ≥ 0}, the boundary of
which is a union of open subspaces of dimension i for i = 0, ..., n− 1. The
boundary of M is divided into an open i-dimensional submanifolds of points
with neighborhood a neighborhood of a point of one of the i-dimensional
submanifolds in ∂R+,n.

A face of a topological space A is a closed subset of A with a smooth
imbedding FB : UB → B × R+ for a neighborhood UB of B sending B to
B×{0}. FB and UB are said to be the collar and the collar neighborhood.
We write FB = (pB , rB).

A Hausdorff, locally compact, paracompact space with countable basis
is said to be a nice space. Let A be a nice topological space and X ⊂ A be
a locally closed set. A tube TX of X is a neighborhood of X in A with a
retraction πX : TX → X and a function ρX : TX → R.

Given two strata X,Y , if X ⊂ Cl(Y ), then we write X < Y . The
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dimension of a strata is a dimension as a manifold. The depth of a stratified
space is a maximal number of a chain X0 < X1 < · · · < Xn of strata Xi.

Define T εX = {a ∈ TX |ρ(a) < ε(πX(a))} for a function ε : X → R. If
X ⊂ U ⊂ A for an open U , then T εX ⊂ U for some ε. (πX , ρX)|T εX is a
proper map into X × [0, ε) = {(x, t)|x ∈ X, 0 ≤ t ≤ ε(x)}.

A abstract stratification A consists of a nice space A and a locally closed
subsets A′ (strata) of A so that A is a disjoint union of A′ with the following
properties:

• If X,Y ∈ A′ with X ∩ Cl(Y ) 6= ∅, then X < Y .
• Each stratum is a manifold with empty or nonempty boundary
• For any X, X has εX so that T εX ∩Y 6= ∅ for Y ∈ A′ implies X < Y

and (πX , ρX) : T εX ∩ Y → X × (0, ε) is a submersion.
• For any X,Y ∈ A′, X ⊂ Cl(Y ), εX and εY satisfy a ∈ T εX ∩ T εY

implies πY (a) ∈ TX , πX(πY (a)) = πX(a) and ρX(πY (a)) = ρX(a).

We now add the notion of faces to a abstract stratificationA. In addition
to above, we have a family of faces Ai of A called faces with property:

• For each face Ai, there is a collar neighborhood UAi . For any
X ∈ A′, X ∩ UAi

is the collar neighborhood of Ai ∩X in X.
• Each stratum X ∈ A′ is a manifold with faces Ai ∩X.
• π−1

X (Ai∩X) = Ai∩TXi
and the collar FXi

is induced from a collar
FAi

and ρX = ρX ◦ pAi
in a neighborhood of Ai ∩X.

A relative manifold (with corners) is a pair of topological spaces (V, δV )
so that δV is a closed subset of V and V − δV is a manifold with corners.
A smooth triangulation of a relative manifold (V, δV ) is a map φ form a
complex K with a subcomplex δK such that φ(δK) = δV and K − δK is a
homeomorphism onto V − δV and for any simplex σ, σ − δV is a smooth
imbedding.

A smooth triangulation of an abstract stratification A is a triangulation
(K,φ) of A satisfying for each stratum X, there is a subcomplex KX so
that KX , φ|KX is a smooth triangulation of (Cl(X),Cl(X)−X).

A stratification has a finite depth if the dimension of the stratas are
finite and if X ⊂ Cl(Y ) for a strata, then the dimension of X is strictly less
than that of Y .

Theorem 4.3.1. (Verona) Let A be an abstract stratification of finite
depth. Then there exists a smooth triangulation of A.
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4.3.2.2 Orbifold as stratified space

Lemma 4.3.2. Let V be a euclidean vector space or a half space given by
xn ≥ 0. Let ∂V denote xn = 0.

• The fixed point set FG of a linear finite group G action is a closed
subspace of a vector space.

• The subset FG′ of points fixed exactly by a subgroup G′ of G is a
vector subspace with a finite number of closed subspaces removed.
FG′ is dense open in the subspace of fixed points of G′.

• For distinct subgroups G′ and G′′, FG′ and FG′′ are disjoint.
• If G′′ ⊂ G′ properly, then FG′ is in the closure of FG′′ .
• The components of FG′ for subgroups G′ of G form a stratification

of V with faces FG′ ∩ ∂V . and their images under V → V/G also
form a stratification of V/G with faces images of FG′ ∩ ∂V .

Proof. The first item is clear.
The second follows from the fact that the fixed point set of any subgroup

is a subspace. One has to remove subspaces fixed by a larger group from
inside. The third item is also clear. For the fourth item, the closure of FG′′

contains the closure of FG′ .
For the final item, we prove by induction on the dimension n of V . If

n = 1, G can only be a reflection group of order two and the statements
are clear.

Suppose that the item is true for n ≤ i. Let V have dimension i + 1.
If there are subgroups G′ with a different fixed set from G, then we are
done. If there is such a subgroup G′, then the subspace of fixed points of
G′ is of lower dimension then V . There can be finitely many nontrivial
such minimal subgroups. These subspaces meet transversally forming a
stratification. The common intersection subspace will have different local
group containing the both groups. Each of the subspaces will be stratified
by induction.

The map V → V/G preserves stratification. �

Prop 4.2. The singularity x of an orbifold O with a local group Gx always
lies in a submanifold of the local group locally conjuguate to Gx. This
forms an abstract stratification of the underlying space of the orbifold O

with face ∂O, the boundary of O. Hence, O with the stratification is smooth
triangulated.

Proof. First, let Gx be a nontrivial local subgroup. Then the set of
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points with locally conjugate local group form a locally closed connected
manifold by the existence of linear charts and Lemma 4.3.2

Thus, the underlying space X of O is a disjoint union of connected
submanifolds determined by the local conjugacy classes of the local groups.
Let us call the collection of connected submanifolds A. X satisfies the
topological conditions. The set A form a stratification:

Suppose X∩Cl(Y ) 6= ∅ for two strata X,Y . Given the local linear chart
for x ∈ X, Gx is the maximal local group in the chart. Then X ∩ U ⊂
Cl(Y ) ∩ U for each linear chart neighborhood U of X. Hence X ⊂ Cl(Y ).

First, we put a Riemannian metric with totally geodesic boundary by
Theorem ???. Done

this?To show that these form an abstract stratification, we do induction
on the dimension. For n = 1, this is clear. Suppose that the abstract
stratification property holds for dimension i. Suppose that O has dimension
i+ 1.

Let Oj be the union of j-dimensional strata for 0 ≤ j ≤ i.
For each point of Oo, we can find a chart and a equivariant regular

neighborhood of it in the chart. We call the union No of the image of
the regular neighborhoods. Remove No from X. Consider O1 −No. This
is a union of disjoint 1-dimensional strata. For each component, we can
cover it by linear charts. The local group actions extend each other in
each linear chart. Thus for a component l, there is a manifold Ul with a
group Gl acting on it with the set of fixed points l and Ul/Gl maps into
X homeomorphically to a neighborhood of l. We can take a Gl-equivariant
regular neighborhood Vl in Ul. We call N1 the union of the images of the
regular neighborhoods for each component.

Suppose we defined N j for a fixed j. Then we define N j+1: We look
at all j + 1-dimensional strata of X −N j . Take a component l. The local
group of each points are conjugate and they extend each other. Thus, we
form a manifold Ul with a group Gl acting on it. Form a Gl-equvariant
regular neighborhood Vl of l in Ul. Again, we let N j+1 denote the union
of the images of the regular neighborhoods. We can consider each covering
manifold as h-dimensional manifold times a n− h-dimensional ball with a
linear action. (This is verified again by induction.)

After constructing all N js. We go to the underlying set δX of the
orbifold boundary ∂O inX. ThenX−

⋃j
k=0N

k is a manifold with boundary
δX−

⋃j
k=0N

k. Thus, we define ρX , εX , and the tubular neighborhoods TδX
easily.

Now we go to the top dimensional N j . Then we define ρj , εj , and Tj eas-
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ily since the j-dimensional strata is a manifold with topological boundary
in X −

⋃j−1
k=0N

k. Then the result on X −
⋃j−1
k=0N

k is an abstract complex
with faces in δX.

Next, we go to N j−1 so on. Suppose we constructed for Nh+1 for some
h and defined functions and tubular neighborhoods so that X−

⋃h
k=0N

k is
an abstract complex with faces in δX. Now, we go to h-dimensional strata.
In X−

⋃h
k=0N

k, the h-dimensional strata is a union of h-dimensional mani-
folds. Nh−

⋃h
k=0N

k is regularly covered by a manifold Vj with finite group
actions in each component. Nh ∩

⋃j
k=h+1N

k is an abstract stratification.
We consider Nh ∩

⋃j
k=h+1O

k. Then ∂Nh−
⋃h−1
k=0 N

k is an abstract strati-
fied space. Since each component of Nh is covered by a manifold by a finite
group action, we can consider each covering manifold as h-dimensional man-
ifold times a n− h-dimensional ball with a linear action and it follows that
we can extend the stratified space radially. The extension agrees with Xk

for k ≥ h.
This proves that O has an abstract stratification. Finally, we obtain the

smooth triangulation by Theorem 4.3.1. �

4.4 Definition as a groupoid

We will try to avoid the definitions using the category theory as related to
the theory of stacks in algebraic geometry as much as possible and use the
more concrete set theoretic approach. However, there are many reasons to
learn orbifolds as groupoids since this framework provides us with much
more tools and insights from category theory and even from smooth mani-
fold theory in categorical setting. These definitions are mainly introduced
to study sheaf theoretic considerations and to pull back bundles and so on.

Here, we will try to minimize the theoretical aspect. In spite of the
technical nature, once readers are somewhat aquainted with category the-
ory will recognize these definitions are very concrete. Only the abstract
nature of category theory comes when discussing the equivalences of these
structures.

4.4.1 Groupoids

A topological groupoid consists of a space G0 of objects and a space G1 of
arrows with five continuous maps: the source map s : G1 → G0, target
map t : G1 → G0, an associative composition map m : G1s ×t G1 → G1 a
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unit map u : G0 → G1 so that su(x) = x = tu(y) and gu(x) = g = u(x)g
and an inverse map i : G1 → G1 so that if g : x→ y, then i(g) : y → x and
i(g)g = u(x) and gi(g) = u(y).

It will be a convenient to think of these arrows as points as restrictions
of smooth maps to points.

A Lie groupoid is one where G0 and G1 are smooth manifolds.
Let M be a smooth manifold. Let G0 = G1 = M and all maps identity,

then this is a unit groupoid.
As a simple example, let a Lie group K act smoothly on a smooth

manifold M . The action Lie groupoid L is given by L0 = M and L1 =
K ×M with s projection to M factor and t the action K ×M →M . The
unit map is the inclusion map g 7→ (e, g) for the unit element e of K. The
inverse map K ×M → K ×M is given by (g, x) 7→ (g−1, g(x)).

If K is the trivial group, we obtain the unit Lie groupoid.

• The isotropy group at x is the set of all arrows from x to itself.
• A homomorphism of Lie groupoids φ : H → G is a pair of smooth

maps φ0 : H0 → G0 and φ1 : H1 → G1 commuting with all struc-
ture maps.

• The fiber-product: φ : H → G,ψ : K → G the fiber product H ×G
K is the Lie groupoid whose objects are (y, g, z) for y ∈ H0, z ∈ K0,

and arrow φ(y)→ ψ(z) and whose arrows (y, g, z)→ (y′, g′, z′) are
pairs (h, k) of arrows h : y → y′, k : z → z′ so that g′φ(h) = ψ(h)g.

An etale map of a Lie groupoid is a homomorphism φ : G → H so
that φ0 : G0 → H0 is a local homeomorphism. A homomorphism of Lie
groupoids φ : H → G is an equivalence if it is an etale map and

• If φ0 induces an isomorphism of the isotropy group from x to that
of φ0(x).

• If φ induces a bijection of orbit spaces.

If G and G′ are differentiable etale groupoid, then φ : G→ G′ is a dif-
ferentiable equivalence if φ0 is an equivalence and is a local diffeomorphism.
This generates an equivalence relation on groupoids.

We can show that two groupoids are equivalent if and only if they are
Morita equivalent: i.e., there exists another groupoid and an equivalence
map from it to the two groupoids. This essentially means that there are
larger groupoid containing both.
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4.4.1.1 A nerve of a groupoid

Let G be a Lie groupoid. Define

Gn = {(g1, ..., gn)|gi ∈ G1, s(gi) = t(gi+1)}

as a fiber product. The face operator di : Gn → Gn−1 by sending (g1, ..., gn)
to (g1, ..., gigi+1, ..., gn). This forms an abstract simplicial manifold. This
is said to be the nerve of the groupoid G.

The classifying space BG is defined to be the geometric realization as a
simplicial complex. Later...

not de-
fined
yet

We define the fundamental group πn of an orbifold X with G as defined
as πn(BG).

4.4.2 An abstract definition

• An orbifold groupoid is a proper etale Lie groupoid.
• A groupoid is proper if s× t : G1 → G0 ×G0 is proper.
• A groupoid is etale if s and t are local diffeomorphisms.
• A groupoid is foliation if each isotropy group Gx is discrete.

If G is an etale groupoid, then any arrow g : x → y in G induces a
well-defined germ of a diffeomorphism g̃ : Ux → Vy for neighborhoods Ux
of x and Vy of y, defined as g̃ = t ◦ ĝ, where ĝ : Ux → G1 is a section of the
source map s : G1 → G0 with ĝ(x) = g. (By etale property, such sections
exist) We call G effective (or reduced) if the assignment g 7→ g̃ is faithful;
or equivalently, if for each point x ∈ G0 this map g 7→ g̃ defines an injective
group homomorphism Gx → Diffx(G0).

Theorem 4.4.1. Let G be a proper effective etale groupoid. Then its orbit
space |G| can be given the structure of an orbifold.

We do not prove this theorem; however, Read
more
here....
Com-
pare
with
Moer ’s
defini-
tion, It
is differ-
ent
from
Adem’s..
Check
this again.....

We show below that the orbifold give rise to proper effective etale
groupoid.

Example 4.4.2. Let M be a smooth orbifold with an locally finite atlas U .
Let M0 be the disjoint union

∐
U∈U U and M1 be

∐
U,V ∈U U ×X V . Here U

and V could be equal and the identification by X is one given by the local
group action on U . Then the space of orbits is X and M0 and M1 contains
all the information of the atlas. The fact that this is a proper effective etale
groupoid follows by checking the above definitions.
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One complication of using definition like this is that an equivalent
groupoid to orbifold groupoid may not be an orbifold groupoid. However,
it can be verified that given an equivalence class there exists a unique orb-
ifold isomorphic up to topological orbifold equivalences. (See the book [?
)]). Moreover, the following groupoid equivalence is a topological orbifold
equivalence. Precise

loca-
tion???Definition 4.4.3. An orbifold structure on a paracompact Hausdorff space

X consists of orbifold groupoid G and a homeomorphism f : |G| → X. Two
orbifold structures (G, f) and (H, g : |H| → X) are equivalent if φ : H → G
is a groupoid equivalence inducing the homeomorphism |φ| : |H| → X = |G|
so that f ◦ |φ| = g.

4.4.2.1 Action of a Lie groupoid

Let G be an orbifold groupoid. A left G-space is a manifold E equipped
with an action by G: Such an action is given by two maps: an anchor
π : E → G0 and an action µ : G1 ×G0 E → E.

• This map is defined on (g, e) with π(e) = s(g) and written µ(g, e) =
g.e.

• It satisfies the action identity: π(g.e) = t(g), 1x.e = e, and
g.(h.e) = (gh).e for h : x → y and g : y → z and e ∈ E with
π(e) = x.

A right G-space is left Gop-space obtained by switching the source and
target map.

4.5 Differentiable structures on orbifolds

Now, we go back to the original definition of orbifolds using charts.
Suppose we are given smooth structures on each (Ũ , G, φ), i.e., Ũ is

given a smooth structure and G is a smooth action on it. We assume that
all embeddings in the atlas is smooth. Then M is given a smooth structure.

Given a chart (Ũ , G, φ), the space of smooth forms is the space of smooth
forms in Ũ invariant under the G-action. A smooth form on the orbifold is
the collection of smooth forms on each of the charts so that under embed-
dings they correspond.

One can define an integral of smooth singular simplices into charts.
This can be extended to any smooth simplex using partition of unity and
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varicentric subdivisions of the simplex. Given a locally finite covering of
X, then we can define a smooth partition of unity (in the same way as in
the manifold case. See Munkres.)

• We refine to obtain a cover whose closures are invariant compact
subsets.

• The idea is to find smooth functions on each chart which vanishes
outside the invariant compact subsets.

• The images of compact subsets can be chosen to cover X.
• Thus, these functions become functions on X which sums to a

positive valued function.
• We divide by the sum.

An orbifoldX is orientable if one can choose an atlas of charts where Ũ is
given an orientation with G acting in an orientation-preserving manner and
each imbedding of charts to another charts is orientation-preserving. For
example, a reflection about a hypersurface is excluded and hence silvered
boundary is excluded. (However, one can use densities to replace n-forms
and can integrate.)

An n-form can be integrated on an orientable orbifold.∫
Ũ

ω =
1
|G|

∫
U

ω′

where (Ũi, G, φ) is the chart for U . (Otherwise, one can define n-density
to integrate.) Then any n-form can be integrated by using a partition of
unity.

• Poincare duality pairing: For a compact orbifold X∫
: Hp(X)⊗Hn−q

c (X)→ R.

This is nondegenerate if X has a finite good cover.
• A cover of an orbifold is good if each U is of form Rn/G and all of its

intersections is of the form. In this case, the standard differentiable
form arguments work (See Bott-Tu). A compact orbifold has a
finite good cover. (Note the confusing terminology here.)

4.5.1 Bundles over orbifolds

An orbifold-bundle (or V -bundle) E over an orbifold X is given by a smooth
orbifold E and a smooth map π : E → X so that
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• Let F be a smooth manifold with a Lie group G acting on it
smoothly.

• Pair of defining families F for X and F ′ for E so that (U,G, φ) of X
corresponds to (U∗, G∗, φ∗) so that U∗ = U ×F and π ◦φ∗ = φ◦π.

• Given (U,G, φ), (U∗, G∗, φ∗), and (U ′, G′, φ), (U∗.
′
, G∗.

′
, φ∗,

′
) there

is a correspondence of embeddings λ : (U,G, φ) → (U ′, G′, φ)
and λ∗ : (U∗, G∗, φ∗) → (U∗.

′
, G∗.′, φ∗.′) where λ∗(p, q) =

(λ(p), gλ(p)q) for (p, q) ∈ U∗ = U × F with gλ(p) ∈ G.
• We have

gµλ(p) = gµ(λ(p)) ◦ gλ(p)

for embeddings (U,G, φ)→ (U ′, G′, φ′)→ (U ′′, G′′, φ′′).
• If F = G, then this is a principle orbifold bundle.

4.5.2 Tangent bundles, Tensor bundles

Given an orbifold, we can build a tangent orbifold-bundle by taking F = Rn
G = GL(n,R) and gλ(p) be the Jacobian of λ at p. We can build any tensor
bundles in this way by letting F = T rs (Rn) and G = GL(n,R) and gλ(p)
be the induced map T rs (Rn)→ T rs (Rn) of λ at p.

A reduction of Lie group to H means an injective homomorphism H →
G which induces a bundle morphism of the principal bundle with Lie group
H to the principal bundle with Lie group G.

An affine frame bundle is given by taking F = An(Rn) the space of
affine frames and G = A(R)n, the Lie group of affine autormorphisms. An
affine tangent bundle is given by taking F = Rn with the same Lie group.

A frame bundles is obtained by taking F = Fn(Rn) the space of frames
in Rn and G = GL(n,R) and gλ(p) be the induced map Fn(Rn)→ Fn(Rn)
of λ at p.

Orthogonal frame bundles can be built in this way. We let F = On(Rn)
the space of orthonormal frames and let G = O(n,R) and gλ(p) be the
induced map On(Rn)→ On(Rn) of λ at p.

A Riemannian metric on an orbifold is given by equivariant Riemannian
metric on each chart which matches up under imbeddings or simply as a
smooth section of symmetric covariant tensor bundle ST 2(M) whose image
lie in the positive definite forms. A Riemannian metric can be built us-
ing partition of unity again from any given Riemannian metrics on charts.
Another way is to see this as a smooth map s from the orbifold O to the
tensor bundle T 2(O) so that each values lies in positive definite tensors so
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that p ◦ s : O → O is the identity orbifold map.
Given a principle bundle P , one defines connection to be equivariant con-

nections on each (U∗, G∗, φ∗) corresponding to (U,G, φ) of X and which are
consistently defined under the embeddings. The curvature is also defined
as G-valued 2-form on O which comes from the curvature of each orbifold
charts. Torsion is defined similarly.

A linear connection is a connection on a frame bundle or a tangent
bundle with Lie group GL(n,R). An affine connection is a connection on
an affine frame bundle or an affine tangent bundle with Lie group GL(n,R).
Given an affine connection on an affine tangent bundle, a geodesic is defined
as a smooth map from an open arc to O so that in each chart it lifts to a
geodesic under the connection. As usual, a connection of a tangent bundle
or a frame bundle is also considered an affine connection since we can always
construct a canonical affine connection from a linear connection. The set
of geodesics do not change here.

We can also replace the group with O(n,R) by reduction of the group.
This correspond to choosing a section to T 2(O). Then the connections on
the reduced tangent bundles are also called affine connections.

Finally, one can define an exponential map Exp : TO → O: one defines
the exponential map using the linear or affine connection and then patching
up the consistent results.

Finally, using the groupoid language, we can define:
A principle L-bundle for a Lie group L over a Lie groupoid is a G-space

P with a left action L × P → P which maps π : P → G0 into a principle
L-bundle and (l.p).g = l.(p.g) for p ∈ P, l ∈ L and g : x→ y.

One can see easily that this is an equivalent definition to above.

4.5.3 Existence of locally finite good covering

Prop 4.3. Let X be an orbifold. There exists a good covering: each open
set is connected and charts have cells as cover and the intersection of any
finite collection again has such properties.

Proof. Give X a Riemannian metric. Each point has an open neighbor-
hood with an orthogonal action. Now choose sufficiently small ball centered
at the origin so that it has a convexity property. (That is, any path can
be homotoped into a geodesic.) Find a locally finite subcollection. Then
intersection of any finite collection is still convex and hence has cells as
cover. �
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4.5.4 Gauss-Bonnet theorem

Assuming that X admits a finite smooth triangulation so that interior of
each cell lies in singularity with locally constant isotopy groups, then we
define the Euler characteristic to be

χ(X) =
∑
k

(−1)dim sk1/Nsk

where sk denotes the kth-cell and Nsk
the order of the isotropy group.

We note that such a triangulation always seem to exist always. (Proved
in Verona [? )].)

Theorem 4.5.1. (Allendoerfer-Weil, Hopf) Let M be a compact Rieman-
nian orbifold of even dimension m. Then

(2/Om)
∫
M

Kdw = χ(M),

where Om is the volume of the m-sphere.

The proof essentially follows that of Chern for manifolds.

4.6 Covering spaces of orbifolds

Let X be an orbifold. Let X ′ be an orbifold with a smooth map p : X ′ → X

so that for each point x of X, there is a connected model (U,G, φ) and the
inverse image of p(ψ(U)) is a union of open sets with models isomorphic to
(U,G′, π) where π : U → U/G′ is a quotient map and G′ is a subgroup of
G. Then p : X ′ → X is a covering and X ′ is a covering orbifold of X.

Abstract monoid definition: If X ′ is a (X1, X0)-space and p0 : X ′0 → X0

is a covering map, then X ′ is a covering orbifold.
We can see it as an orbifold bundle over X with discrete fibers. We can

choose the fibers to be acted upon by a discrete group G (usually on the
right), and hence a principal G-bundle. This gives us a regular (Galois)
covering.

4.6.1 Fiber product construction by Thurston

Let us first review the fiber product constructions for ordinary covering
space theory.

Let be Y a manifold. Ỹ a regular covering map p̃ with the automorphism
group Γ. Let Γi, i ∈ I be a sequence of subgroups of Γ.
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• The projection p̃i : Ỹ × Γi\Γ → Ỹ induces a covering pi : (Ỹ ×
Γi\Γ)/Γ→ Ỹ /Γ = Y where Γ acts by

γ(x̃,Γiγi) = (γ(x̃),Γiγiγ−1)

• This is same as Ỹ /Γi → Y since Γ acts transitively on both spaces.
• Fiber-products Ỹ ×

∏
i∈I Γi\Γ→ Ỹ . Define left-action of Γ by

γ(x̃, (Γiγi)i∈I) = (γ(x̃), (Γiγiγ−1)), γ ∈ Γ.

We obtain the fiber-product

(Ỹ ×
∏
i∈I

Γi\Γ)/Γ→ Ỹ /Γ = Y.

Then this construction give us coverings with perhaps many com-
ponents in the covering spaces. To understand this, suppose that
Γ is a properly discontinuous and free action.

4.6.1.1 Developable orbifold

We can let Γ be a discrete group acting on a manifold Ỹ properly discon-
tinuously but maybe not freely.

One can find a collection Xi of coverings so that

• Γi = {γ ∈ Γ|γ(Xi) = Xi} is finite and if γ(Xi) ∩Xi 6= ∅, then γ is
in Γi.
• The images of Xi cover Ỹ /Γ.

Then Y = Ỹ /Γ has an orbifold quotient of Ỹ and Y is said to be developable.
In the above example, we can let Γ be a discrete group acting on a

manifold Ỹ properly discontinuously but maybe not freely. Y f is then the
fiber product of orbifold maps Ỹ /Γi → Y .

4.6.1.2 The doubling orbifolds

A mirror point or silvered point is a singular point with the stablizer group
Z2 acting as a reflection group. One can double an orbifold M with mirror
points so that mirror-points disappear. (The double covering orbifold is
orientable.)

• Let Vi be the neighborhoods of M with charts (Ui, Gi, φi).
• Define new charts (Ui×{−1, 1}, Gi, φ∗i ) where Gi acts by (g(x, l) =

(g(x), s(g)l) where s(g) is 1 if g is orientation-preserving and −1 if
not and φ∗i is the quotient map.
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• For each embedding, i : (W,H,ψ) → (Ui, Gi, φi) we define a lift
(W × {−1, 1}, H, ψ∗) → (Ui × {−1, 1}, Gi, φ∗i . This defines the
gluing.

• The result is the doubled orbifold and the local group actions are
orientation preserving.

• The double covers the original orbifold with Galois group Z2.

Prop 4.4. A doubled orbifold has no reflection with a hypersurface fixed
set. Hence the set of regular points is dense open and connected.

Proof. Since there are no orientation reversing elements in the local
group, the first statement is clear. If there are no reflections, then the
singularity is of codimension two or greater and hence the set of regular
points is dense open and path connected locally. Thus, the second state-
ment follows. �

In the abstract groupoid definition, we simply let X ′0 be the orientation
double cover of X0 where G-acts on X ′ preserving the orientation.

For example, if we double a corner-reflector, it becomes a cone-point.

• Clearly, manifolds are orbifolds. Manifold coverings provide exam-
ples.

• Let Y be a tear-drop orbifold with a cone-point of order n. Then
this cannot be covered by any other type of an orbifold and hence
is a universal cover of itself.

• A sphere Y with two cone-points of order p and q which are rela-
tively prime.

• Choose a cyclic action of Y of order m fixing the cone-point. Then
Y/Zm is an orbifold with two cone-points of order pm and qm.

4.6.2 Universal covering by fiber-product

A universal cover of an orbifold Y is an orbifold Ỹ covering any covering
orbifold of Y . We will now show that the universal covering orbifold exists
by using fiber-product constructions. For this we need to discuss elementary
neighborhoods. An elementary neighborhood is an open subset with a chart
components of whose inverse image are open subsets with charts.

We can take the model open set in the chart to be simply connected.
Then such an open set is elementary.
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4.6.2.1 Fiber-product for Dn/Gi

If V is an orbifold Dn/G for a finite group G.

• Any covering is Dn/G1 for a subgroup G1 of G.
• Given two covering orbifolds Dn/G1 and V/G2, a covering mor-

phism is induced by g ∈ G so that gG1g
−1 ⊂ G2.

• The covering morphism is in one-to-one correspondence with the
double cosets of form G2gG1 for g such that gG1g

−1 ⊂ G2.
• The covering automorphism group of Dn/G′ is given by N(G1)/G1.

Given coverings pi : V/Gi → V/G for Gi ⊂ G for V homeomorphic to
a cell, we form a fiber-product.

V f = (V ×
∏
i∈I

Gi\G)/G→ V/G

If we choose all subgroups Gi of G, then any covering of V/G is covered by
V f induced by projection to Gi-factor (universal property)

4.6.2.2 The construction of the fiber-product of a sequence of orb-
ifolds

Let Yi, i ∈ I be a collection of the orbifold-coverings of Y . We cover Y
by elementary neighborhoods Vj for j ∈ J forming a good cover. We take
inverse images p−1

i (Vj) which is a disjoint union of V/Gk for some finite
group Gk. Fix j and we form one fiber product by V/Gk by taking one
from p−1

i (Vj) for each i. We form a fiber-product of p−1
i (Vj), which will

essentially be the disjoint union of the above fiber products indiced by the
product of the component indices for each i. Over regular points of Vj ,
this is the ordinary fiber-product. Now, we wish to patch these up using
imbeddings. Let U → Vj ∩ Vk. We can assume U = Vj ∩ Vk which has a
convex cell as a cover.

• We form the fiber products of p−1
i (U) as before which can be real-

ized in Vj and Vk.
• Over the regular points in Vj and Vk, they are isomorphic. Then

they are isomorphic.
• Thus, each component of the fiber-product can be identified.

By patching, we obtain a covering Y f of Y with the covering map pf . Note
that Y f is not necessarily connected.
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4.6.2.3 Thurston’s example of fiber product

Let I be the unit interval. Make two endpoints into silvered points. Then
I1 = I is double covered by S1 with the deck transformation group Z2.
Let p1 denote the covering map. I2 = I is also covered by I by a map
x 7→ 2x for x ∈ [0, 1/2] and x 7→ 2− 2x for x ∈ [1/2, 1]. Let p2 denote this
covering map. Then we determine the fiber product of p1 and p2: Cover I
by A1 = [0, ε), A2 = (ε/2, 1− ε/2), A3 = (ε, 1].

• Over A1, I1 has an open interval and I2 has two half-open intervals.
The fiber-product is a union of two copies of open intervals.

• OverA2, the fiber product is a union of four copies of open intervals.
• Over A3, the fiber product is a union of two copies of open intervals.
• By pasting considerations, we obtain a circle mapping 4-1 almost

everywhere to I.

Fig. 4.1 ????

4.6.2.4 The construction of the universal cover

The collection of cover of an orbifold is countable up to covering isomor-
phisms preserving base points. (Cover by a countable good cover and for
each elementary neighborhood, there is a countable choice.) We take each
one with a different choices of base points. The base point is over a regular
point y of Y and hence all are regular points. We call them (Yi, yi). We
take a fiber product of (Yi, yi), i = 1, 2, 3, ... and we take a connected com-
ponent Ỹ containing the base point y∗. The base-point y∗ also is regular.
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Then for any cover (Yi, yi), there is a covering morphism qi : Ỹ → Yi with
qi(yi) = y∗ and so that pi ◦ qi = p.

Prop 4.5. A universal cover has a open dense and connected set of regular
points.

Proof. A universal cover has a morphism to a double of the orbifold. Any
point mapping to a regular point is also regular. The set of such points is
also dense and open and locally path connected. Hence the proposition
follows. �

Theorem 4.6.1. The universal cover is unique up to covering orbifold-
isomorphisms by the universality property.

Proof. If (Y ′, y′) is another universal cover. Then it arises in the list of
covers and hence there is a covering morphism q : Ỹ → Y ′ with q(y′) = y∗.
Conversely, we have a morphism p′ : Ỹ → Y ′ with p′(y∗) = y∗. We obtain
a morphism p′ ◦ q : Ỹ → Ỹ fixing y∗. By restricting it to regular subset, we
find that it restricts to identity in the regular part of Ỹ . Since the regular
part is open and dense, p′ ◦ q is the identity. Similarly, so is q ◦ p′. �

4.6.2.5 Properties of the universal cover

The group of automorphisms of Ỹ is called the fundamental group and is
denoted by π1(Y ).

Prop 4.6.

• π1(Y ) acts transitively on Ỹ on fibers of p̃−1(x) for each x in Y .
• Ỹ /π1(Y ) = Y .
• Any covering of Y is of form Ỹ /Γ for a subgroup Γ of π1(Y ).
• The isomorphism classes of coverings of Y is the set of conjugacy

classes of subgroups of π1(Y ).

Proof. Let y be a base-point of Y . We change the base point of Ỹ to any
point of p̃−1(y). Then there are always a morphism q : (Ỹ , y∗)→ (Ỹ , z). We
find an inverse to q by finding t = q−1(y∗) . Then there exists a morphism
q′ : (Ỹ , y∗) → (Ỹ , t). Hence, q ◦ q′(y∗) = y∗. Thus, q′ is the inverse and q

is an automorphism. Thus, π1(Y ) acts transitively on p̃−1(y).
Given a point x, we find a path γ in Y with endpoints x and y. Then γ

lifts to a smooth curve in Ỹ with endpoints a point of p̃−1(x) and p̃−1(y∗).
We see that π1(Y ) also acts transitively on the set of lifts. Since we can find
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a lift starting from any point of p̃−1(x), we see that π1(Y ) acts transitively
on p̃−1(y).

We see that Ỹ /π1(Y ) is clearly in one-to-one correspondence with Y .
The charts are also compatible.

For a covering Y ′ → Y , there is a covering morphism p′ : Ỹ → Y ′.
Therefore, Y ′ is a quotient orbifold of Ỹ .

Given two coverings Y1 → Y and Y2 → Y , an isomorphism f : Y1 → Y2

lifts to a diffeomorphism Ỹ → Ỹ . We choose a morphism fixing y∗ by
multiplying by an element of π1(Y ). By restricting to the regular part, we
see that the morphism is the identity map and f is induced by an element
of π1(Y ). Since Y1 = Ỹ /Γ1 and Y2 = Ỹ /Γ2, it follows that Γ1 and Γ2 are
conjugate. The converse is also simple. �

We see that given a covering Ỹ /Γ, the group of automorphism is
N(Γ)/Γ. A covering is regular if and only if Γ is normal.

A good orbifold is an orbifold with a cover that is a manifold. A very
good orbifold is an orbifold with a finite cover that is a manifold. A good
orbifold has a simply-connected manifold as a universal covering space since
it has a covering space that is a manifold and the universal covering orbifold
must cover this manifold and hence the universal covering space has to be
a manifold.

4.6.2.6 Induced homomorphism of the fundamental group

Given two orbifolds Y1 and Y2 and an orbifold-diffeomorphism g : Y1 →
Y2. Then the lift to the universal covers Ỹ1 and Ỹ2 is also an orbifold-
diffeomorphism. Furthermore, once the lift value is determined at a point,
then the lift is unique.

An isotopy F : Y1 × I → Y2 is an orbifold-map such that for each t ∈ I,
F restricts to a diffeomorphism of Y1 × {t} to Y2.

Prop 4.7. An isotopy ft : Y1 → Y2 of orbifold-maps lift to an isotopy in
the universal covering orbifold f̃t : Ỹ1 → Ỹ2 for each t ∈ I unique up to a
choice of f̃0(y).

Proof. We consider regular parts and model neighborhoods where the
lift clearly exists uniquely for each t. The map t 7→ ft(y) for a regular base
point y of Y is a path in Y . Then ft(y) is regular for all t ∈ I. This lifts
to a smooth path γ̃ : t 7→ p−1(ft(y)). By post-composing with elements of
π1(Y ) if necessary, we can make sure that f̃t(y) = γ̃(t) for each t. Now, we
can verify that f̃t form an isotopy. �
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Given orbifold-diffeomorphism f : Y → Z which lift to a diffeomorphism
f̃ : Ỹ → Z̃, we obtain f∗ : π1(Y ) → π1(Z). If g is homotopic to f , then
g∗ = f∗.

4.7 The path-approach to the universal covering spaces

4.7.1 G-paths

The notion of G-paths generalize the notion of paths to those on groupoids:
Given an etale groupoid X, a G-path c = (g0, c1, g1, ..., ck, gk) over a subdi-
vision a = t0 ≤ t1 ≤ ... ≤ tk = b of interval [a, b] consists of

• continuous maps ci : [ti−1, ti]→ X0

• elements gi ∈ X1 so that s(gi) = ci+1(ti) for i = 0, 1, .., k − 1 and
t(gi) = ci(ti) for i = 1, .., k.

The initial point is t(g0) and the terminal point is s(gk).
The two operations define an equivalence relation:

• Subdivision: Add new division point t′i in [ti, ti+1] and g′i = 1ci(t′i)

and replacing ci with c′i, g
′
i, c
′′
i where c′i, c

′′
i are restrictions to [ti, t′i]

and [t′i, ti+1].
• Replacement: replace c with c′ = (g′0, c

′
1, g
′
1, .., c

′
k, g
′
k) as follows.

For each i choose continuous map hi : [ti−1, ti] → X1 so that
s(hi(t)) = ci(t) and define c′i(t) = t(hi(t)) and g′i = hi(ti)gih−1

i+1(ti)
for i = 1, .., k − 1 and g′0 = g0h

−1
1 (t0) and g′k = hk(tk)gk.

All paths are defined on [0, 1] from now on. Given two paths c =
(g0, c1, .., ck, gk) over 0 = t0 ≤ t1 ≤ ... ≤ tk = 1 and c′ = (g′0, c

′
1, .., c

′
k′ , g′k′)

such that the terminal point of c equals the initial point of c′, the compo-
sition c ∗ c′ is the G-path c′′ = (g′′0 , c

′′
1 , .., g

′′
k+k′) so that

• t′′i = ti/2 for i = 0, .., k and t′′i = 1/2 + t′i−k/2 and
• c′′i (t) = ci(2t) for i = 1, .., k and c′′i (t) = c′i−k(2t − 1) for i =
k + 1, ..., k + k′.

• g′′i = gi fori = 1, .., k − 1 and g′′k = gkg
′
0, g
′′
i = g′i−k for i = k +

1, .., k + k′.

The inverse c−1 is (g′0, c
′
1, ..., c

′
k, g
′
k) over the subdivision where t′i = 1 − ti

so that g′i = g−1
k−i and c′i(t) = ck−i+1(1− t).
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4.7.1.1 Homotopies of G-paths

There are two types of homotopies

• equivalences
• An elementary homotopy is a family of G-paths cs = (gs0, c

s
1, ..., g

s
k)

over the subdivision 0 = ts0 ≤ ts1 ≤ ... ≤ tsk = 1 so that tsk, g
s
i , c

s
i

depends continously on s.

Two G-paths a and b are homotopic if there is a sequence of G-paths a =
a1, a2, ..., an = b so that ai and ai+1 are either equivalent or there is an
elementary homotopy between them.

A homotopy class of c is denoted [c]. [c ∗ c′] is well-defined in the
homotopy classes [c] and [c′]. Hence, we define [c] ∗ [c′] = [c ∗ c′].

We have associativity [c ∗ (c′ ∗ c′′)] = [(c ∗ c′) ∗ c′′].
The constant path ex at x is given as (1x, x, 1x). Then [c ∗ c−1] = [ex]

if the initial point of c is x and [c−1 ∗ c] = [ey] if the terminal point of c is
y. Thus, [c]−1 = [c−1].

4.7.1.2 Fundamental group π1(X,x0)

A loop is a G-path with the identical initial and terminal points. The funda-
mental group π1(X,x0) based at x0 ∈ X0 is the group of homotopy classes
of loops based at x0. The associativity, identity and inverse properties are
proven above.

A continuous homomorphism f : X → Y induces a homomorphism
f∗ : π1(X,x0)→ π1(Y, f(x0)).

This is well-defined up to conjuations. An orbifold-equivalence induces
an isomorphism.

Theorem 4.7.1. (Seifert-Van Kampen theorem) Let X be an orifold. Let
X0 = U ∪ V where U and V are open and U ∩ V = W . Assume that the
groupoid restrictions GU , GV , GW to U, V,W are connected. And let x0 ∈
W . Then π1(X,x0) is the quotient group of the free product π1(GU , x0) ∗
π1(GV , x0) by the normal subgroup generated by jU (γ)jW (γ−1) for γ ∈
π1(GW , x0) for jU the induced homomorphism π1(GW , x0) → π1(GU , x0)
and jV the induced homomorphism π1(GW , x0)→ π1(GV , x0) .

The proof is omitted but is essentially same as the elementary topology
proof.
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4.7.1.3 Examples

• Let a discrete group Γ act on a connected manifold X0 properly
discontinuously. Then (Γ, X0) has an orbifold structure. Any loop
can be made into a G-path (1x, c, γ) so that γ(x) = c(1). and
c(0) = x. Thus, there is an exact sequence

1→ π1(X0, x0)→ π1((Γ, X0), x0)→ Γ→ 1

• A two-orbifold that is a disk with an arc silvered has the funda-
mental group isomorphic to Z2.

• A two-dimensional orbifold with cone-points which is boundariless
and with no silvered point.

• A tear drop: A sphere with one cone-point of order n has the trivial
fundamental group

• An annulus with one boundary component silvered has a funda-
mental group isomorphic to Z × Z2. This can be seen since our
orbifold is covered by an annulus by an action of Z2 which fixes
the middle circle of the annulus.

The fundamental group can be computed by removing open-ball neigh-
borhoods of the cone-points and using Van-Kampen theorem: Suppose
that a two-dimensional orbifold has boundary and silvered points. Then
remove open-ball neighborhoods of the cone-points and corner-reflector
points. Then the fundamental group of remaining part can be computed
by Van-Kampen theorem by taking open neighborhoods of silvered bound-
ary arcs. Finally, adding the open-ball neighborhoods, we compute the
fundamental group.

The fundamental group of a three-dimensional orbifold can be computed
similarly.

4.7.1.4 Seifert fibered 3-manifold Examples

We can obtain a 2-orbifold from a Seifert fibered 3-manifold M : let X0 be
the union of open disks transversal to the fibers, and let X1 will be the
arrows obtained by the flow.

The orbifold X will be a 2-dimensional orbifold with cone-points whose
orders are obtained as the numerators of the fiber-order.

The fundamental group of X is then the quotient of the ordinary funda-
mental group π1(M) by the central cyclic group Z generated by the generic
fiber.
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4.7.2 Covering spaces and the fundamental group

One can build the theory of covering spaces using the fundamental group.
We first review the relationship of the homotopy group of G-paths to cov-
ering spaces first.

Let us be given a covering X ′ → X. For every G-path c in X, there
is a lift G-path in X ′. If we assign the initial point, the lift is unique.
If c′ is homotopic to c, then the lift of c′ is also homotopic to the lift of
c provided the initial points are the same. From this it follows that the
induced homomorphism π1(X ′, x′0)→ π1(X,x0) is injective.

A map from a simply connected orbifold to an orbifold lifts to a cover.
The lift is unique if the base-point lift is assigned. Thus, a simply connected
cover of an orbifold covers any cover of the given orbifold. From this, we
can show that the fiber-product construction is simply-connected. (Hence,
the fiber-product constructed cover is a universal cover in the sense given
here. )

Two simply-connected coverings of an orbifold are isomorphic and if
base-points are given, we can find an isomorphism preserving the base-
points.

Theorem 4.7.2. A simply-connected covering of an orbifold X is a Galois-
covering with the Galois-group isomorphic to π1(X,x0).

Proof. Consider p−1(x0). Choose a base-point x̃0 in it. Given a point of
p−1(x0), connected it with x̃0 by a path. The paths map to the fundamental
group. The Galois-group acts transitively on p−1(x). Hence the Galois-
group is isomorphic to the fundamental group. �

4.7.2.1 The existence of the universal cover using path-approach

The construction follows that of the ordinary covering space theory.

• Let X̂ be the set of homotopy classes [c] of G-paths in X with a
fixed starting point x0.

• We define a topology on X̂ by open set U[c] that is the set of paths
ending at a simply-connected open subset U of X with homotopy
class c ∗ d for a path d in U .

• Define a map X̂ → X sending [c] to its endpoint other than x0.
• Define a map X̂ ×X1 → X̂ given by ([c], g)→ [c ∗ g]. This defines

a right G-action on X̂. This makes X̂ into a bundle.
• Define a left action of π1(X,x0) on X̂ given by [c] ∗ [c′] = [c ∗ c′] for
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[c′] ∈ π1(X,x0). This is transitive on fibers.
• We show that X̂ is a simply connected orbifold.

4.8 Helpful references

For compact group actions, see [(author?) (Bredon)], [(author?)
(Hsiang)]. Good references for triangulation is [(author?) (Illman)] and
[Illman (6)] under group actions. For triangulations of stratified spaces,
and hence orbifolds, see [? )] and [(author?) (Weinberger)]. The work [?
)] seems to be most self-contained.

For general introduction to the orbifold theory see [Thurston (10)]
and [(author?) (Matsumoto and Montesinos-Amilibia)]. Also, the orig-
inal papers [Satake (8)] and [Satake (9)] are also very readable. The
book by Adem et al [Adem, Leida, and Ruan (1)] and [(author?)
(Bridson and Haefliger)] treat orbifolds as groupoids. Read [Moerdijk (7)]
and [(author?) (Moerdijk and D.A. Plonk)] for this approach in detail.
[(author?) (Haefliger)] and the papers and Chapter 13 of [(author?)
(Ratcliffe)] treats the path approaches to the covering spaces. See also [?
)]. Thurston’s chapter [Thurston (10)] and the paper [(author?) (Choi)]
give a covering space theory as fiber products.
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Topology of 2-orbifolds

2-orbifold topological constructions

5.1 2-orbifolds

We now wish to concentrate on 2-orbifolds to illustrate more concretely. In
many cases, the theory is much easier to understand.

To study singularities, we simply have to classify finite groups in O(2)
since we are looking at finite subgroups of GL(2,R): These are: Z2 acting
as a reflection group or a rotation group of angle π/2, a cyclic groups Cn
of order ≥ 3 and dihedral groups Dn of order ≥ 4. Recall that 2-orbifold
have three types of singularities: silvered points in open arcs, isolated cone-
points, and isolated corner-reflector points. The singular points of a two-
dimensional orbifold fall into three types:

(i) The mirror point: R2/Z2 where Z2 acts by reflections on the y-axis.
(ii) The cone-points of order n: R2/Zn where Zn acting by rotations

by angles 2πm/n for integers m.
(iii) The corner-reflector of order n: R2/Dn where Dn is the dihedral

group generated by reflections about two lines meeting at an angle
π/n.

The singular strata associated with conjugate local groups are as follows:
the silvered point is a subset of arc of silvered points which may have an
end point in the boundary of the orbifold. The other types have isolated
points as strata. Note that the silvered arc may end in a corner-reflector of
order ≥ 2 also but not at a cone-point by the local group considerations.

• On the boundary of a surface with a corner, one can take mutu-

81
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Fig. 5.1 The actions here are isometries on R2.

ally disjoint open arcs ending at corners. If two arcs meet at a
corner-point, then the corner-point is a distinguished one. If not,
the corner-point is ordinary. The choice of arcs will be called the
boundary pattern.

• As noted above, given a surface with corner and a collection of
discrete points in its interior and the boundary pattern, it is pos-
sible to put an orbifold structure on it so that the interior points
become cone-points and the distinguished corner-points the corner-
reflectors and boundary points in the arcs the silvered points of any
given orders.

I need
Hirsch’s
book

Theorem 5.1.1. Theorem: Any 2-orbifold is obtained from a smooth sur-
face with corner by silvering some arcs and putting cone-points and corner-
reflectors. A 2-orbifold is classified by the underlying smooth topology of
the surface with corner and the number and orders of cone-points, corner-
reflectors, and the boundary pattern of silvered arcs.

Proof. basically, strata-preserving isotopies. �

5.1.1 The triangulations of 2-orbifolds and classification

For 2-orbifolds, the Riemannian metric and triangulation can be ap-
proached in more simple manner.

Prop 5.1. One can put a Riemannian metric on a 2-orbifold so that the
boundary is a union of geodesic arcs and each corner-reflector have angles
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π/n for its order n and the cone-points have angles 2π/n. One can give
a triangulation by smooth triangles so that slivered arcs and boundary
curves in the union of 1-skeletons and corner-reflectors and cone-points are
in 0-skeletons.

Proof. First construct such a metric on the boundary by putting such
metrics on the boundary by using a broken geodesic in the euclidean plane
and around the cone points and then using partition of unity.

By removing open balls around cone-points and corner-reflectors, we
obtain a smooth surface with corners.

Find a smooth triangulation of so that the interior of each side is either
completely inside the boundary with the corners removed. Finally we ex-
tend the triangulations by cone-construction to the interiors of the removed
balls. �

There is
a
general
proof...
Cor-
nered
mani-
fold,
mark-
ings....State
it...

5.2 Topological operations on 2-orbifolds: constructions
and decompositions

We will now study the question of how to construct and decompose 2-
orbifolds:

• Classifications of 1-dimensional suborbifolds of 2-orbifolds
• Definition of splitting and sewing of 2-orbifolds
• Regular neighborhoods of 1-orbifolds
• Reinterpretation of splitting and sewing.
• Identification interpretations of splitting and sewing

5.2.1 Classifications of 1-dimensional suborbifolds of 2-

orbifolds

A suborbifold Q′ on a subspace XQ′ ⊂ XQ is the subspace so that each
point of XQ′ has a neighborhood in XQ modeled on an open subset U of
Rn with a finite group Γ preserving U ∩ Rd where Rd ⊂ Rn is a proper
subspace, so that (U ∩ Rd,Γ′) is in the orbifold structure of Q′. Here Γ′

denotes the restricted group of Γ to U ∩Rd, which is in general a quotient
group.

Note here that for a finite group G, there are always a complementary
G-invariant subspace for a G-invariant subspace and a point on it given a
smooth action of G, which is linear locally. Thus, Γ′ can lift to an injection
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to Γ onto a subgroup with the set of fixed points the complement of U ∩Rn.
Thus Γ′ is a direct summand of Γ. This

agrees
with the
orbifold
book...
Check
the gen-
eral
case...

5.2.1.1 Classifications of 1-dimensional suborbifolds of 2-orbifolds

A compact 1-orbifold is either a closed arc, a segment, a segment with one
silvered endpoint, or a segment with two silvered end-point.

A nicely imbedded suborbifold is an imbedded suborbifold so that its
boundary is in the boundary of the ambient orbifold so that each point
of the boundary has a neighborhood modelled on a half space Hn with
another half space Hm imbedded in it. A properly and nicely imbedded
1-orbifold in a 2-orbifold with boundary is either avoids the singular sets
in its topological interior or is entirely contained in a singular set. In the
former case we have:

• No silvered-point case: An imbedded closed arc avoiding boundary
or singular points or a segment with two endpoints in the boundary
avoiding singularities.

• One silvered-point case: A segment with silvered endpoint at a
cone-point of order two or in the interior of a silvered arc and the
other endpoint in the boundary.

• Two silvered-point case: A segment with silvered endpoints at
cone-points or order two or in the interiors of silvered arcs.

If the 1-orbifold is in the singular set, we classify them as below:

• No silvered-point case: a segment in the interior of a silvered edge.
• One silvered-point case: a segment in a silvered edge with one

endpoint in a corner reflector of order two and the other in the
interior of the silvered edge.

• Two silvered-point case: a segment in a silvered edge with two
endpoints in a corner-reflector of order two.

5.2.1.2 Orbifold Euler-characteristic for 2-orbifolds due to Satake

We defined the Euler characteristic to be

χ(X) =
∑
ci

(−1)dim(ci)(1/|Γ(ci)|),

where ci ranges over the open cells and |Γ(ci)| is the order of the group Γi
associated with ci.
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If X is finitely covered by another orbifold X ′, then χ(X ′) = rχ(X)
where r is the number of sheets for regular points. This follows since the
sum of the order of local groups in the inverse image of the elementary
neighborhood is always r.

The Euler-characteristic of 1-orbifold is as follows: a circle O, a segment
1, a segment with one silvered-point 1/2, a full 1-orbifold O.

For 2-orbifolds Σ1,Σ2 meeting in a compact 1-orbifold Y in the interior
forming a 2-orbifold Σ as a union, we have the following additivity formula:

χ(Σ) = χ(Σ1) + χ(Σ2)− χ(Y ), (5.1)

To be verified by counting cells with weights since the orders of singular
points in the boundary orbifold equal the ambient orders.

Suppose that a 2-orbifold Σ with or without boundary has the under-
lying space XΣ and m cone-points of order qi and n corner-reflectors of
order rj and nΣ boundary full 1-orbifolds. Then the following generalized
Riemann-Hurwitz formula is very useful:

χ(Σ) = χ(XΣ)−
m∑
i=1

(
1− 1

qi

)
− 1

2

n∑
j=1

(
1− 1

rj

)
− 1

2
nΣ, (5.2)

which is proved by a doubling argument and cutting and pasting.

5.2.2 Geometrization of 2-orbifold: partial result

Prop 5.2. Let S be a 2-orbifold whose underlying space is a disk or a 2-
sphere and has more than two cone-points of orders p1, p2, p3, .... Then S

is very good and so is regularly covered by a compact surface.

Proof. First, cover a double cover. Only cone-points...
n this case, O is easily shown to be a nontrivial quotient orbifold of

a 2-sphere, or a euclidean space R2, or a hyperbolic space by a discrete
subgroup of isometry group.

Use reflection groups....
Selberg’s lemma
See for example Beardon... � Nice

pictures
This
might
be more
good at
earlier
chap-
ters....

5.2.3 Good and very good and bad 2-orbifolds

The purpose of this section is to prove Theorem 5.2.1.
It is fairly easy to distinguish between the good and bad 2-orbifolds as

Thurston shows [? )].
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Since we know the existence of the universal cover of orbifolds from
Chapter 4, we can cover any 2-orbifold S with a simply-connected 2-orbifold
S̃. If these are silvered points, then we can double S̃ and obtain a double
cover. Thus, S̃ has no silvered points.

Suppose that S̃ is not compact and has no singular points. Then S̃ is a
manifold and S is good.

Suppose that S̃ is not compact and has some singular points. This is
not possible. Suppose that there are cone points. We can remove a disk-
neighborhood D of the cone-point of order say p for an integer p > 1. Then
we cover S̃ −D by a p-fold cyclic cover by taking a completely imbedded
arc from p avoiding singularities. Hence, by cutting and pasting p-copies of
these we again obtain a nontrivial covering orbifold.

Suppose that S̃ is compact. Then the base space of S̃ is simply con-
nected since otherwise we have a covering. Thus S̃ is a 2-sphere or a 2-disk.

Suppose first that S̃ is a 2-disk. If there are more than one cone-point,
then by using a separating arc avoiding singular points, we again obtain
nontrivial coverings. If S̃ has a unique singularity of order p, then S̃ can
be covered by a disk in a p-fold way.

Suppose that S̃ is a 2-sphere and has more than two cone-points of
orders p1, p2, .... Then S̃ double-covers a disk O with mirrored edges and
corner reflectors of corresponding orders 2p1, 2p2, ... where there are at least
three or more. By Proposition 5.2, S̃ is good.

Finally suppose that S̃ is a 2-sphere with two cone-points of order m
and n. If m and n have a common divisor p, then S̃ has a p-fold cover by
a sphere with two cone points of order m/p and n/p.

A sphere with cone points of order p and q with p and q relatively prime
is not covered by a manifold since we can show that the fundamental group
is trivial by Van Kampen theorem. (See ???) A sphere with one cone point
is also not covered by a manifold by the same reason.

Hence, we showed that except for a sphere with one or two singular
points with orders m and n where m 6= n is a bad orbifold. So is a disk
with two edges silvered and two corner-reflectors of order m and n where
m 6= n are bad.

Theorem 5.2.1. A sphere with one or two singular points with orders m
and n where m 6= n is a bad orbifold. So is a disk with two edges silvered
and two corner-reflectors of order m and n where m 6= n are bad. Except
for these two, every other orbifold is good. Furthermore, they are very good.

Proof. We need to show the final statement only. As above the orbifolds
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have cone-points only as singular points.
If the underlying space is of euler characteristic ≥ 1, then there is a

covering by an orbifold whose underlying spaces are spheres or disks. This
was studied above and was shown to be bad or is good. The good ones are
very good according to Proposition 5.2.

Now suppose that the euler characteristic of the underlying space is ≤ 0.
There exists a disk D containing all the cone-points. Since D admits a
Euclidean or hyperbolic structure, it follows that there is a a finite covering
orbifold that is very good. The boundary component of D is covered by m
boundary components of the covering surface S and each component of S
covers the boundary component of D by n-fold covering by Proposition 5.2.
The closure of the complement is a surface S of negative euler characteristic
and hence has infinite first homology. We map the homology to Z/n sending
the boundary component class to 1. Then the kernel of the map gives us a
finite covering S′′ of the complement S′. We see that S′′ has one boundary
component mapping to S′ in a n-fold way. Hence by attaching copies of
S′′ for each boundary component of S, we obtain a very good cover of the
original orbifold. �

I am
prov-
ing here
χ < 0
im-
ply very
good.
How to
do this?
Proba-
bly this
af-
ter the
proof of
hyper-
boliza-
tions.

5.2.4 Definition of Splitting and sewing 2-orbifolds

We will assume that the orbifolds here are very good.
Let S be a very good orbifold so that its underlying space XS is a pre-

compact open surface with a path-metric admitting a compactification to
a surface with boundary. Such a metric always exists and the topology
of the compactification is unique up to homeomorphism type. Let Ŝ be a
very good cover, that is, a finite regular cover, of S, so that S is orbifold-
diffeomorphic to Ŝ/F where F is a finite group acting on Ŝ.

Since XŜ = Ŝ is also pre-compact and has a path-metric, complete it to
obtain a compact surface X ′

Ŝ
. The action of the group F extends to Ŝ by

the path-metric. Then X ′
Ŝ
/F with the quotient orbifold structure is said

to be the orbifold-completion of S.

• Let S be a 2-orbifold with an embedded circle or a full 1-orbifold
l in the interior of S. The completion S′ of S − l is said to be
obtained from splitting S along l. Since S − l has an embedded
copy in S′, we see that there exists a map S′ → S sending the copy
to S− l. Let l′ denote the boundary component of S corresponding
to l under the map.
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• Conversely, S is said to be obtained from sewing S′ along l′.
• If the interior of the underlying space of l lies in the interior of

the underlying space of S, then the components of S′ are said to
be decomposed components of S along l, and we also say that S
decomposes into S′ along l.

• Of course, if l is a union of disjoint embedded circles or full 1-
orbifolds, the same definition holds.

A boundary point has a neighborhood which is realized as a quotient of
an open ball by a Z2-action generated by a reflection about a line.

There are two distinguished classes of splitting and sewing operations:
A simple closed curve boundary component can be made into a set of

mirror points and conversely in a unique manner.
A boundary full 1-orbifold can be made into a 1-orbifold of mirror points

and two corner-reflectors of order two and conversely in a unique manner: (
a boundary point has a neighborhood which is a quotient space of a dihedral
group of order four acting on the open ball generated by two reflections. )
The forward process is called silvering and the reverse process clarifying.

5.2.5 Regular neighborhoods of 1-orbifold

5.2.5.1 The classification of Euler-characteristic zero orbifold

Let A be a compact annulus with boundary. The quotient orbifold of an
annulus has Euler characteristic zero.

Prop 5.3. From Riemann-Hurwitz equation, all of the Euler characteristic
zero 2-orbifolds with nonempty boundary is as follows:

(1) an annulus, (2) a Möbius band, (3) an annulus with one boundary
component silvered (a silvered annulus),

(4) a disk with two cone-points of order two with no mirror points ( a
(; 2, 2)-disk ),

(5) a disk with two boundary 1-orbifolds, two edges (a silvered strip),
(6) a disk with one cone-point and one boundary full 1-orbifold (a bigon

with a cone-point of order two), that is, it has only one edge, and
(7) a disk with two corner-reflectors of order two and one boundary

full 1-orbifold (a half-square). (It has three edges.)

Proof. To prove this, notice that the underlying space must have a non-
negative Euler characteristic and Riemann-Hurwitz formula. When the
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Euler characteristic of the space is zero, there are no cone-points, corner-
reflectors, (1)(2)(3).

Suppose now that the underlying space is a disk. If there are no singular
points in the boundary, then (4) holds as there has to be exactly two cone-
points of order two. If two boundary full 1-orbifolds, then no singular points
in the interior and no corner-reflector can exist; thus, (5) holds.

Suppose that exactly one boundary full 1-orbifold exist. If a cone-point
exists, then it has to be a unique one and of order two. (6) holds. If there
are no cone-points, but corner-reflectors, then exactly two corner-reflectors
of order two and no more. (7) �

(4)

(6)

(5)

(7)

Fig. 5.2 ???.

5.2.5.2 Regular neighborhoods of 1-orbifold

A circle or a 1-orbifold l in the interior of a 2-orbifold S is not homotopic to
a point. as we can see from the universal cover of S. l has a neighborhood of
zero Euler characteristic considering its very good cover. Since the inverse
image of l consists of closed curves which represent generators, we deduce
that l is contained in the neighborhood as follows.

• For (1) and (2), l is the closed curve representing the generator of
the fundamental group;

• For (3), l is the mirror set that is a boundary component;
• For (4), l is the arc connecting the two cone-points unique up to

homotopy;
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• For (5), l is an arc connecting two interior points of two edges
respectively;

• For (6), l is an arc connecting an interior point of an edge and the
cone-point of order two;

• For (7), the edge in the topological boundary connecting the two
corner-reflectors of order two.

Given a 1-orbifold l and a neighborhood N of it in some ambient 2-
orbifold, N is said to be a regular neighborhood if the pair (N, l) is diffeo-
morphic to one of the above.

Prop 5.4. A 1-orbifold in a good 2-orbifold has a regular neighborhood
which is unique up to isotopy.

Proof. The existence is proved above. The uniqueness up to isotopy is
proved as follows: Each regular neighborhood fibers over a 1-orbifold with
fibers connected 1-orbifolds in the orbifold sense. A regular neighborhood
can be isotoped into any other regular neighborhood by contracting in the
fiber directions. To see this, we can modify the proof of Theorem 5.3 in
Chapter 4 of Hirsch to be adopted to an annulus with a finite group acting
on it and an imbedded circle. �

5.2.6 Splitting and sewing on 2-orbifolds reinterpreted

Let l be a 1-orbifold embedded in the interior of an orbifold S. If one
removes l from the interior of a regular neighborhood, we obtain either a
union of one or two open annuli, or a union of one or two open silvered strip.
In (2)-(4), an open annulus results. For (1), a union of two open annuli
results. For (6)-(7), an open silvered strip results. For (5), we obtain a
union of two open silvered strips. These can be easily completed to be a
union of one or two compact annuli or a union of one or two silvered strips
respectively.

We can complete S − l in this manner: We take a closed regular neigh-
borhood N of l in S. We remove N − l to obtain the above types and
complete it and re-identify with S − l to obtain a compactified orbifold.
This process is the splitting of S along l.

Conversely, we can describe sewing: Take an open annular 2-orbifold N
which is a regular neighborhood of a 1-orbifold l:

• Suppose that l is a circle. We obtain U = N − l which is a union
of one or two annuli.
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• Take an orbifold S′ with a union l′ of one (resp. two) boundary
components which are circles.

• Take an open regular neighborhood of l′ and remove l′ to obtain
V .

• U and V are the same orbifold. We identify S′− l′ and N − l along
U and V .

• This gives us an orbifold S, and it is easy to see that S is obtained
from S′ by sewing along l′.

• l corresponds to a 1-orbifold l′′ in S in a one-to-one manner. We
can obtain (1),(2),(3)-type neighborhoods of l′′ in this way. The
operation in case (1) is said to be pasting, in case (2) cross-capping,
and in case (3) silvering along simple closed curves.

• Suppose that l is a full 1-orbifold. U = N − l is either an open
annulus or a union of one (resp. two) silvered strips.

• The former happens if N is of type (4) and the latter if N is of
type (5)-(7).

• In case (4), take an orbifold S′ with a boundary component l′ a
circle. Then we can identify U with a regular neighborhood of l′

removed with l′ to obtain an orbifold S. Then l corresponds a full
1-orbifold l′′ in S in a one-to-one manner. l′′ has a type-(4) regular
neighborhood. The operation is said to be folding along a simple
closed curve.

• In the remaining cases, take an orbifold S′ with a union l′ of one
(resp. two) boundary full 1-orbifolds. Take a regular neighborhood
N of l′ and remove them to obtain V . Identify U with V for S′− l′
and N− l to obtain S. Then S is obtained from S′ by sewing along
l′. Again l corresponds to a full 1-orbifold l′′ in S in a one-to-one
manner.

• We obtain (5),(6), and (7)-type neighborhoods of l′′ in this way,
where the operations are said to be pasting, folding, and silvering
along full 1-orbifolds respectively.

• In other words, silvering is the operation of removing a regular
neighborhood and replacing by a silvered annulus or a half square.
Clarifying is an operation of removing the regular neighborhood
and replacing an annulus or a silvered strip.

Prop 5.5. The Euler characteristic of an orbifold before and after splitting
or sewing remains unchanged.
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Proof. Form regular neighborhoods of the involved boundary compo-
nents of the split orbifold and those of the original orbifold. They have
zero Euler characteristic. Since their boundary 1-orbifolds have zero Euler
characteristic, the lemma follows by the additivity formula (5.1). �

5.2.7 Identification interpretations of splitting and sewing

5.2.7.1 Identification interpretations of splitting and sewing

In the following we describe the topological identification process of the un-
derlying space involved in these six types of sewings. The orbifold structure
on the sewed orbifold should be clear.

Let an orbifold Σ have a boundary component b. (Σ is not necessarily
connected.) b is either a simple closed curve or a full 1-orbifold. We find a
2-orbifold Σ′′ constructed from Σ by sewing along b or another component
of Σ.

• (A) Suppose that b is diffeomorphic to a circle; that is, b is a
closed curve. Let Σ′ be a component of the 2-orbifold Σ with
boundary component b′. Suppose that there is a diffeomorphism
f : b→ b′. Then we obtain a bigger orbifold Σ′′ glued along b and
b′ topologically.

(I) The construction so that Σ′′ does not create any more singular
point results in an orbifold Σ′′ so that

Σ′′ − (Σ− b ∪ b′)

is a circle with neighborhood either diffeomorphic to an an-
nulus or a Möbius band.

(1) In the first case, b 6= b′ (pasting).
(2) In the second case, b = b′ and 〈f〉 is of order two without

fixed points (cross-capping).

(II) When b = b′, the construction so that Σ′′ does introduce more
singular points to occur in an orbifold Σ′′ so that

Σ′′ − (Σ− b)

is a circle of mirror points or is a full 1-orbifold with endpoints in
cone-points of order two depending on whether f : b→ b

(1) is the identity map (silvering), or
(2) is of order two and has exactly two fixed points (folding).
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• (B) Consider when b is a full 1-orbifold with endpoints mirror
points.

(I) Let Σ′ be a component orbifold (possibly the same as one
containing b) with boundary full 1-orbifold b′ with endpoints
mirror points where b 6= b′. We obtain a bigger orbifold Σ′′

by gluing b and b′ by a diffeomorphism f : b → b′. This does
not create new singular points (pasting).

(II) Suppose that b = b′. Let f : b → b be the attaching map.
Then

(1) if f is the identity, then b is silvered and the end points
are changed into corner-reflectors of order two (silvering).

(2) If f is of order two, then Σ′′ has a new cone-point of order
two and has one-boundary component orbifold removed
away. b corresponds to a mixed type 1-orbifold in Σ′

(folding).

– It is obvious how to put the orbifold structure on Σ′′ using
the previous descriptions using regular neighborhoods above.

5.3 Some helpful references

• S. Choi and W. Goldman, The deformation spaces of convex RP
2 -structures on 2-orbifolds American Journal of Mathematics 127,
5, 1019–1102 (2005)

• Y. Matsumoto and J. Montesinos-Amilibia, A proof of Thurston’s
uniformization theorem of geometric orbifolds, Tokyo J. Mathe-
matics 14, 181–196 (1991)
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Chapter 6

Geometry of 2-orbifolds

Geometric structures on 2-orbifolds

6.1 Introduction

• Definition of geometric structures on 2-orbifolds

– Using charts
– Goodness of geometric 2-orbifolds.
– Using development pair.
– Flat X-bundles and transversal sections.

• The deformation spaces of geometric structures on 2-orbifolds
• The local homeomorphism theorem from the deformation space to

the representation space.

• The deformation space of (X,G)-structures on an orbifold.

– Definition
– The local homeomorphism theorem

∗ The isotopy lemma
∗ Outline of proof.

%2

6.2 Definition of geometric structures on orbifolds

Let (X,G) be a pair defining a geometry. That is, G is a Lie group acting
on a manifold effectively and transitively. Given an orbifold M , there is at
least three ways to define (X,G)-geometric structure on M .

95
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• Using atlas of charts.
• A developing map from the universal covering space.
• A cross-section of the flat orbifold X-bundle.

6.2.1 Atlas of charts approach

Given an atlas of charts for M , for each chart (U,K, φ) we find an X-chart
ρ : U → X and an injective homomorphism h : K → G so that ρ is an
equivariant map. For each imbedding i : (V,H, ψ) → (U,K, φ) where V
has an X-chart ρ′ : V → X and equivariant with respect to an injective
homomorphism h′ : H → G, we have

ρ ◦ i = g ◦ ρ′, h′(·) = gh(i∗(·))g−1

If we simply identify with open subsets of X, the above simplifies greatly
and i is a restriction of an element of g and i∗ is a conjugation by g also.

This gives us a way to build an orbifold from pieces of X. A maximal
such atlas of X-charts is called an (X,G)-structure on M .

A (X,G)-map M → N is a smooth map f so that for each x and
y = f(x), there are charts (U,K, φ) and (V,H, ψ) so that f sends φ(U) into
ψ(V ) and lifts to f̃ : U → V so that ρ′ ◦ f̃ = g ◦ ρ and h′(i∗(·)) = gh(·)g−1.
In otherwards, f is a restriction of an element g of G up to charts with a
homomorphism K → H induced by a conjugation by an element of G.

Theorem 6.2.1. (X,G)-orbifold is always good.

Proof. Basically build a germ of local (X,G)-maps from M to X which
is a principal bundle and is a manifold: For each (U,K, φ), we build G(U) =
G × U/K and a projection G(U) → U . We paste these together to find
G(M). Then G(M) is a manifold since K acts on G × U freely. The
foliation given by pasting g0 × U is a foliation by open manifolds with the
same dimension as M . Each leave of the foliation is covers M . �

If G is a subrgroup of a linear group, then M is very good by Selberg’s
lemma. Thus M is a quotient M̃/Γ where Γ is finite and contains copies of
all of the local group.

6.2.2 The developing maps and holonomy homomorphisms

Let M̃ denote the universal cover of M with a deck transformation group
π. Then we obtain a developing map D : M̃ → X by first finding an initial
chart ρ : U → X and continuing by extending maps by patches. One uses
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a nice cover of M̃ and extend. The map is well-defined independently of
which path of charts one took to arrive at a given chart. To show this, we
need to homotopy and consider three nice charts simultaneously and the
fact that M admits a real analytic structure and the charts are real analytic
and hence if they agree on an open set, then they extend each other.

Since we can change the initial chart to k ◦ ρ for any k ∈ G, we see that
k ◦D is another developing map and conversely any developing map is of
such form.

Given a deck transformation γ : M̃ → M̃ , we see that D ◦ γ is a
developing map also and hence equals h(γ) ◦D for some h(γ) ∈ G.

The map h : π → G is a homomorphism, so-called the holonomy homo-
morphism.

The pair (D,h) is said to be the development pair. The development pair
is determined up to an action of G given by (D,h(·))→ (g ◦D, gh(·)g−1). More

details
here?
Is this
some-
what re-
peated?

Conversely, a developing map (D,h) gives us X-charts: For each open
chart (U,K,ψ), we lift to a component of p−1(U) in M̃ and obtain a restric-
tion of D to the component. This gives us X-charts. A different choice of
components gives us the compatible charts. Local group actions and imbed-
dings satisfy the desired properties. Thus, a development pair completely
determines the (X,G)-structure on M .

6.2.3 Definition as flat bundles with sections

Given an (X,G)-manifold with X-charts, form a G-bundle G(M) as above.
This is a principal G-bundle. We form an associated an X-bundle X(M)
using the G-action on X. X(M) = G(M)×X/G where G acts on the right
on G(M) and left on X. and G acts on G(M)×X on the right by

g : (u, x)→ (ug, g−1(x)), g ∈ G, u ∈ G(M), x ∈ X.

A flat G-bundle is an object obtained by patching open sets G× U by
the left action of G, and so is a flat X-bundle

6.2.3.1 Flat X-bundles

A foliation in G(M) induces a foliation in G(M)×X and hence a foliation
in X(M) transversal to fibers. This corresponds to a flat G-connection.
A flat G-connection on X(M) is a way to identify each fibers of X(M)
with X locally-consistently. A flat G-connection on X(M) gives us a flat
G-connection on X(M̃). Since M̃ is a simply-connected manifold, X(M̃)
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equals X × M̃ as an X-bundle. X(M̃) covers X(M) and hence X(M) =
X × M̃/π1(M) where the connection corresponds to foliations with leaves
of type x× M̃ , in general.

Hence this gives us a representation h : π1(M) → G so that for any
γ ∈ π1(M), the corresponding action in X × M̃ is given by (x,m) →
(h(γ)x, γ(x)). Conversely, given a representation h, we can build X × M̃
and act by γ(x,m) = (h(γ), γ(m)) to obtain a flat X-bundle X(M).

6.2.3.2 Flat X-bundles with sections

Conversely, a development pair gives us a flat X-bundle X(M) with a
section s;M → X(M). We obtain a section D′ : M̃ → X × M̃ transversal
to the foliation by taking D′(x) = (D(x), x) for x ∈ M̃ . The transversality
D′ to the constant foliation is actually equivalent to the immersive property
of D.

The left-action of π1(M) gives us a section s : M → X(M) transversal
to the foliation.

On the other hand, given a transversal section s : M → X(M), we
obtain a transversal section s′ : M̃ → X × M̃ . By a projection to X, we
obtain an immersion D : M̃ → X so that D ◦ γ = h(γ) ◦D for some h(γ)
in G. The map h : π1(M) → G is a homomorphism. Hence we obtain a
development pair.

6.2.4 The equivalences of three notions.

Given an atlas of X-charts, i.e., a (X,G)-structure, we determine a develop-
ment pair (D,h). Given a development pair (D,h), we determine an atlas
of X-charts, i.e., an (X,G)-structure. Given a development pair (D,h), we
determine a flat X-bundle X(M) with a transversal section M → X(M).
Given a section s : M → X(M) to a flat X-bundle, we determine a devel-
opment pair (D,h). Thus, these three class of defintions are equivalent.

6.3 Definition of the deformation space of (X, G)-structures
on orbifolds

Consider the set M(M) of all (X,G)-structures on an orbifold M . We
introduce an equivalence relation ∼: two (X,G)-structures µ1 and µ2 are
equivalent if there is an isotopy φ : M → M so that φ∗(µ1) = µ2. The
deformation space of (X,G)-structures on M is M/ ∼. We reinterpret the
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space as

• The set of diffeomorphisms f : M →M ′ for M an orbifold and M ′

an (X,G)-orbifold.
• The equivalence relation f : M → M ′ and g : M → M” if exists

an (X,G)-diffeomorphism h : M ′ →M” so that h ◦ f is isotopic to
g.

• The quotient space is same as above.

6.3.1 Another interpretations

First, we identify π1(M) with π1(M × I). Consider the set of diffeomor-
phisms f : M̃ → M̃ ′ equivariant with respect to isomorphism f∗ : π(M)→
π1(M ′) for an (X,G)-orbifold M ′. We introduce an equivalence relation:
Given f : M̃ → M̃ ′ and g : M̃ → M̃”, we say that they are equivalent if
there exists an (X,G)-map φ : M̃ ′ → M̃” so that φ ◦ f is isotopic to g by
an isotopy M̃ × I → M̃ ′′ equivariant with respect to both φ∗ ◦ f∗ and g∗
which are equal. Denote this set by DI(M). This set is again one-to-one
relation with the above space since we can always lift diffeomorphisms and
isotopies.

6.3.1.1 Isotopy-equivalence space.

The space S(M) is defined as follows: Consider the set of (D, f̃ : M̃ → M̃ ′)
where f : M → M ′ is a diffeomorphism for orbifolds M and M ′ and D :
M̃ ′ → X is a diffeomorphism equivariant with respect to a homomorphism
h : π1(M ′) → G. Two (D, f̃) and (D′, f̃ ′ : M̃ → M̃”) are equivalent if
there is a diffeomorphism φ : M ′ →M ′′ so that D′ ◦ φ̃ = D and an isotopy
H : M × I → M ′′ equivariant with respect to f̃ ′∗ : π1(M) → π1(M ′′) so
that φ ◦ f = H0 and f ′ = H1. We can finally give topology on this space
by C1 topology using D ◦ f̃ .

6.3.1.2 The topology of the deformation space

Theorem 6.3.1. There is a natural action of G on S(M) given by
g(D, f̃) = (g ◦ D, f̃ , g ∈ G. The quotient space D(M) is the deformation
space.

Proof. We show DI(M) is one-to-one equivalent to S(M)/G: Given an
element f̃ : M̃ → M̃ ′, there is a developing map D : M̃ ′ → X equivariant
with respect to h : π1(M ′) → G. If f̃ : M̃ → M̃ ′ and f̃ ′ : M̃ → M̃” are
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equivalent, then there is an (X,G)-diffeomorphism M ′ → M” and hence
two global charts D′ and D” differ only by an element of G.

Conversely, given (D, f̃), we obviously obtain an (X,G)-structure on
M ′. If (D, f̃) and (D′, f̃ ′) are equivalent, then there is a diffeomorphism
φ : M ′ → M ′′ so that D′ ◦ φ̃ = g ◦ D. This means φ′ : M ′ → M ′′ is an
(X,G)-diffeomorphism. �

6.3.2 The local homeomorphism theorem

6.3.2.1 The representation space

Suppose that π is finitely-presented. In particular if M is a compact
n-orbifold, this is true. Denote by g1, ..., gn the set of generators and
R1, ..., Rm be the set of relations.

The set of homomorphisms π1(M)→ G can be identified with a subset
of Gn by sending a homomorphism h to (h(g1), ..., h(gn)). This clearly
injective map. This image can be described as an algebraic subset defined
by relations R1, ..., Rm. This follows since if the relation is satisfied, then we
can obtain the representation conversely. Denote the space by Hom(π,G).

There is an action of G on Hom(π,G) given by the action (g ? h)(·) =
gh(·)g−1 We denote by Rep(π,G) the quotient space Hom(π,G)/G.

6.3.2.2 The map hol

We can define hol′ : S(M)→ Hom(π,G). This induces hol :MX,G(M)→
Rep(π,G). The main purpose of this section is to state:

Theorem 6.3.2. hol is a local homeomorphism.

Proof. We send (D, f̃) to the associated homomorphism h : π → G.
First, it is easy to show that hol is continuous: If D′ ◦ f̃ ′ is sufficiently close
to D ◦ f in a sufficiently large compact subset of M̃ , then the holonomy
h′(gi) of generators gi is as close to the original h(gi) as possible.

The converse is given in the subsubsections below. The idea is to find
a geometric structure corresponding to h and if one deforms h by a small
amount, then we can change the geometric structure correspondingly by
considering local models and changing them each by using Lemma ?? and
patching up the differences in a consistent way. Finally, we have to show
that such change of geometric structures is unique up to isotopies. �

The proof is shortened considerably. See [(author?) (Choi)] for details.
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The local homeomorphism result was very important for the study of
deformations of (X,G)-structures on manifolds, introduced by Weil [? )].
The same can be said for orbifolds. For manifolds, Thurston gave a proof
(see [? )]). Later J. Morgan gave a lecture of it, which is written up by Lok
[? )] in his Ph.D. thesis. Also, Canary and Epsten gave a proof of it also.
[? )].

6.3.2.3 The stable representations

There is a dense open subset, called the stable subset, of Hom(π,G) where
G acts properly. Denote this space by Homs(π,G) and its quotient by
Reps(π,G).

If we denote by Ds(M) the subset of D whose holonomies are in the
stable region. Then there is a local homeomorphism D2(M)→ Reps(π,G)
since the right action on developing map gives a conjugation action on
holonomy homomorphisms.

6.4 Notes

The main part of this chapter is from [(author?) (Choi)] and [(author?)
(Choi and Goldman)]. [(author?) (Kapovich)] also devotes some pages to
geometric orbifolds. (See also [? )]).
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Chapter 7

Deformation spaces of hyperbolic
structures on 2-orbifolds

Teichmüller spaces of 2-orbifolds

7.1 Introduction

• The definition of the Teichmüller space of 2-orbifolds
• The geometric cutting and pasting and the deformation spaces
• The decomposition of 2-orbifolds into elementary orbifolds.
• The Teichmüller spaces of 2-orbifolds

7.2 The definition of the Teichmüller space of 2-orbifolds

A hyperbolic structure on a 2-orbifold is a geometric structure modeled on
H2 with the isometry group PSL(2,R). The Teichmüller space T (M) of
a 2-orbifold M is the deformation space of hyperbolic structures on the
2-orbifold. As before, we reinterpret the space as

• The set of diffeomorphisms f : M →M ′ for M an orbifold and M ′

a hyperbolic 2-orbifold.
• The equivalence relation f : M →M ′ and g : M →M” if exists a

hyperbolic isometry h : M ′ →M” so that h ◦ f is isotopic to g.
• The quotient space is same as above.

A necessary condition for an orbifold to have a hyperbolic structure is
that the orbifold euler characteristic be negative: This follows from the
Gauss-Bonnet theorem. Here the negative of the hyperbolic area is the
Euler characteristic times 2π.

103
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A closed 2-orbifold with a complex structure has a unique hyperbolic
structure provided it is compact and has negative Euler characteristic. The
deformation space of complex structures on a closed 2-orbifold is identical
with the Teichmuller space as defined here by the uniformization theorem.

7.3 The geometric cutting and pasting and the deformation
spaces

A compact geodesic 1-orbifold without boundary points in the interior of a
2-orbifold Σ are either

• a closed geodesic in the interior or entirely in the boundary of |Σ|
or

• a segment with two silvered points which are either at silvered edges
or cone-points of order two. The topological interior is either in the
interior or entirely in the boundary of |Σ|.

The geometric type is classified by length and the topological type. Such
a geodesic 1-orbifold is covered by a closed geodesic in some cover of the
2-orbifold, which is a surface.

The Teichmüller space T (I) for a 1-orbifold I is the product of the space
of lengths R+s for each component of I.

7.3.1 Geometric constructions.

Recall the type of topological constructions with 1-orbifolds. Suppose they
are boundary components of 2-orbifolds whose components have negative
Euler characteristics.

• (A)(I) Pasting or crosscapping along simple closed curves.
• (A)(II) Silvering or folding along a simple closed curve.
• (B)(I) Pasting along two full 1-orbifolds.
• (B)(II) Silvering or folding along a full 1-orbifold.

Now we suppose that the simple closed curves and 1-orbifolds are geodesic
and try to obtain geometric version of the above.

Suppose that the involved 1-orbifolds are geodesic boundary compo-
nents of a hyperbolic 2-orbifolds.

• (A)(I). For pasting two closed geodesics, we have a R-amount of
isometries to do this. They will create hyperbolic structures in-
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equivalent in the Teichmüller space. (Here the length of two closed
geodsics have to be the same. )

• (A)(I) For cross-capping, we have a unique isometry. The isometry
has to be a slide reflection of distance half the length of the closed
geodesic. (There is no conditions.)

l!

" "

!

l ’

’

’

Fig. 7.1 The actions here are isometries on R2.

• (A)(II). For folding a closed geodesics, we have a R-amount of
isometries to do this. They will create hyperbolic structures in-
equivalent in the Teichmüller space. The choice depends on the
choice of two fixed points of the pasting map. The distance is the
half of length of the closed geodesic. (no condition)

• (A)(II) For silvering, we have unique isometry to do this. (no
condition)

l!

" F

F " F-1

!F(   )

Fig. 7.2 The actions here are isometries on R2.

• (B)(I). For pasting along two geodesic full 1-orbifolds, We have a
unique way to do this. The lengths of the orbifolds have to be the
same.
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• (B)(II) For silvering and folding, we have unique isometry to do
this. (no condition)

!

"

! ’

" ’

r

r

q

q

p

p

1

2

1

1

2

2

Fig. 7.3 The actions here are isometries on R2.

7.3.2 Teichmuller spaces under the geometric operations

(A)(I)(1) Let the 2-orbifold Σ′′ be obtained from pasting along two closed
curves b, b′ in a 2-orbifold Σ′. The map resulting from splitting

SP : T (Σ′′)→ ∆ ⊂ T (Σ′)

is a principal R-fibration, where ∆ is the subset of T (Σ′) where b
and b′ have equal legnths.

(A)(I)(2) Let Σ′′ be obtained from Σ′ by cross-capping. The resulting
map

SP : T (Σ′′)→ T (Σ′)

is a diffeomorphism.

(A)(II)(1) Let Σ′′ be obtained from Σ′ by silvering. The clarifying map

SP : T (Σ′′)→ T (Σ′)

is a diffeomorphism.
(A)(II)(2) Let Σ′′ be obtained from Σ′ by folding a boundary closed curve

l′. The unfolding map

SP : T (Σ′′)→ T (Σ′)

is a principal R-fibration.

(B)(I) Let Σ′′ be obtained by pasting along two full 1-orbifolds b and b′

in Σ′. The splitting map

SP : T (Σ′′)→ ∆ ⊂ T (Σ′)
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is a diffeomorphism where ∆ is a subset of T (Σ′) where the lengths
of b and b′ are equal.

(B)(II) Let Σ′′ be obtained by silvering or folding a full 1-orbifold. The
clarifying or unfolding map

SP : T (Σ′′)→ T (Σ′)

is a diffeomorphism.

7.4 The decomposition of 2-orbifolds into elementary orb-
ifolds.

7.4.1 Topological decomposition of hyperbolic 2-orbifolds

into elementary orbifolds along geodesic 1-orbifolds.

Suppose that Σ is a compact hyperbolic orbifold with χ(Σ) < 0 and geodesic
boundary. Let c1, . . . , cn be a mutually disjoint collection of simple closed
curves or 1-orbifolds so that the orbifold Euler characteristic of the com-
pletion of each component of Σ− c1 − · · · − cn is negative. Then c1, . . . , cn
are isotopic to simple closed geodesics or geodesic full 1-orbifolds d1, . . . , dn
respectively where d1, . . . , dn are mutually disjoint.

7.4.1.1 Elementary 2-orbifolds.

We require the boundary components be geodesics.

(P1) A pair-of-pants.
(P2) An annulus with one cone-point of order n. (A(; n))
(P3) A disk with two cone-points of order p, q, one of which is greater than

2. (D(; p, q))
(P4) A sphere with three cone-points of order p, q, r where 1/p+1/q+1/r <

1. (S2(; p, q, r))

(A1) An annulus with one boundary component a union of a singular seg-
ment and one boundary-orbifold. (2-pronged crown and A(2, 2; ).) It
has two corner-reflectors of order 2 if the boundary components are
silvered.

(A2) An annulus with one boundary component of the underlying space in
a singular locus with one corner-reflector of order n, n ≥ 2. (The other
boundary component is a closed geodesic which is the boundary of the
orbifold.) (We call it a one-pronged crown and denote it A(n; ).)
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(A3) A disk with one singular segment and one boundary 1-orbifold and a
cone-point of order greater than or equal to three (D2(2, 2; n)).

(A4) A disk with one corner-reflector of order m and one cone-point of order
n so that 1/2m + 1/n < 1/2 (with no boundary orbifold). (n ≥ 3
necessarily.) (D2(m; n).)

(D1) A disk with three edges and three boundary 1-orbifolds. No
two boundary 1-orbifolds are adjacent. (We call it a hexagon or
D2(2, 2, 2, 2, 2, 2; ).)

(D2) A disk with three edges and two boundary 1-orbifolds on the bound-
ary of the underlying space. Two boundary 1-orbifolds are not ad-
jacent, and two edges meet in a corner-reflector of order n, and the
remaining one a segment. (We called it a pentagon and denote it by
D2(2, 2, 2, 2, n; ).)

(D3) A disk with two corner-reflectors of order p, q, one of which is greater
than or equal to 3, and one boundary 1-orbifold. The singular locus of
the disk is a union of three edges and two corner-reflectors. (We call it
a quadrilateral or D2(2, 2, p, q; ).)

(D4) A disk with three corner-reflectors of order p, q, r where 1/p + 1/q +
1/r < 1 and three edges (with no boundary orbifold). (We call it a
triangle or D2(p, q, r; ).)

(D1)

(P4)

(A2) (A3)

(P1) (P2) (P3)

(A4)
(A1)

(D2) (D4)(D3)

Fig. 7.4 The elementary orbifolds. Arcs with dotted arcs next to them indicate bound-

ary components. Black points indicate cone-points and white points the corner-reflectors.

.
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7.4.1.2 The geometric decomposition into elementary orbifolds

Let Σ be a compact hyperbolic orbifold with χ(Σ) < 0 and geodesic
boundary. Then there exists a mutually disjoint collection of simple closed
geodesics and mirror- or cone- or mixed-type geodesic 1-orbifolds so that Σ
decomposes along their union to a union of elementary 2-orbifolds or such
elementary 2-orbifolds with some boundary 1-orbifolds silvered addition-
ally.

7.4.2 The Teichmüller spaces for 2-orbifolds

Theorem 7.4.1. Thurston’s theorem
Let Σ be a compact 2-orbifold with empty boundary and negative Euler

characteristic diffeomorphic to an elementary 2-orbifold. Then the defor-
mation space T (Σ) of hyperbolic RP2-structures on Σ is homeomorphic to a
cell of dimension −3χ(XΣ) + 2k+ l+ 2n where XΣ is the underlying space
and k is the number of cone-points, l is the number of corner-reflectors,
and n is the number of boundary full 1-orbifolds.

7.4.2.1 Strategy of proof

Prop 7.1. Proposition A: for each elementary 2-orbifold S, T (S) is home-
omorphic to T (∂S), where T (∂S) is the product of R+ for each component
of ∂S corresponding to the hyperbolic-metric lengths of components of ∂S.
Then for hyperbolic structures, to obtain a bigger orbifold, we need to use
the above result about the Teichmüller spaces under geometric decomposi-
tions.

7.4.2.2 The generalized hyperbolic triangle theorem

A generalized triangle in the hyperbolic plane is one of following:

(a) A hexagon: a disk bounded by six geodesic sides meeting in right angles
labeled A, β,C, α,B, γ.

(b) A pentagon: a disk bounded by five geodesic sides labeled A,B, α,C, β
where A and B meet in an angle γ, and the rest of the angles are right
angles.

(c) A quadrilateral: a disk bounded by four geodesic sides labeled
A,C,B, γ where A and C meet in an angle β, C and B meet in an
angle α and the two remaining angles are right angles.
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(d) A triangle: a disk bounded by three geodesic sides labeled A,B,C

where A and B meet in an angle γ and B and C meet in an angle α
and C and A meet in angle β.

7.4.2.3 The generalized hyperbolic triangles

B

A

C

!

"

#

A B

C

#

!"

C C
A

B
A

B
! "

#

!

"#

(c)
(d)

(b)(a)

Fig. 7.5 .

7.4.2.4 The trigonometry

For generalized triangles in the hyperbolic plane,

(a) coshC =
coshα coshβ + cosh γ

sinhα sinhβ

(b) coshC =
coshα coshβ + cos γ

sinhα sinhβ

(c) sinhA =
cosh γ cosβ + cosα

sinhβ sin γ

(d) coshC =
cosα cosβ + cos γ

sinα sinβ
(7.1)

In (a), (α, β, γ) can be any positive numbers. In (b), (α, β) can be any
positive numbers and γ in (0, π) In (c), (α, β) can be any positive real
numbers in (0, π) satisfying α + β < π, and γ any real number. In (d),
(α, β, γ) can be any real numbers in (0, π) satisfying α+ β + γ < π.
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7.4.2.5 The proof of Proposition A.

The following lemmas imply Proposition A

Lemma 7.4.2. For elementary 2-orbifolds of type (D1), (D2), (D3), and
(D4). Silvered edges are labeled by the capital letters A,B,C. Assign to each
vertex an angle of the form π/n (where (n > 1 is an integer), for which it
is a corner-reflector of that angle. Each edge labeled by Greek letters α, β, γ
is a boundary full 1-orbifold. Then in cases (a), (b), (c), (d) F : T (P ) →
T (∂P ) for each of the above orbifolds P is a homeomorphism; that is, T (P )
is homeomorphic to a cell of dimension 3, 2, 1, or 0 respectively.

Lemma 7.4.3. Let S be an elementary 2-orbifold of type (A1), (A2), (A3),
or (A4). Then F : T (S) → T (∂S) is a homeomorphism. Thus, T (S) is a
cell of dimension 2, 1, 1, or 0 when S is of type (A1), (A2), (A3) or (A4)
respectively. In case (A4), T (S) is a single point.

For elementary orbifolds of type (P1),(P2),(P3), or (P4), we simply
notices that they double covers orbifolds of type (D1),(D2),(D3), or (D4)
which is realized as isometries where each of the boundary components do
the same. In fact, the isometry can be explictly constructed by taking
shortest geodesics between boundary components.

7.4.2.6 The steps to prove Theorem A.

Let a 2-orbifold Σ, each component of which has negative Euler character-
istic, be in a class P if the following hold:

(i) The deformation space of hyperbolic RP2-structures T (Σ) is diffeomor-
phic to a cell of dimension

−3χ(XΣ) + 2k + l + 2n

where k is the number of cone-points, l the number of corner-reflectors,
n is the number of boundary full 1-orbifolds.

(ii) There exists a principal fibration

F : T (Σ)→ T (∂Σ)

with the action by a cell of dimension dim T (Σ)− dim T (∂Σ).

Let Σ be a 2-orbifold whose components are orbifolds of negative Euler
characteristic, and it splits into an orbifold Σ′ in P. We suppose that (i)
and (ii) hold for Σ′, and show that (i) and (ii) hold for Σ. Since Σ eventually
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decomposes into a union of elementary 2-orbifolds where (i) and (ii) hold,
we would have completed the proof.

The proof follows by going through each of the constructions....

(A)(I)(1) Let the 2-orbifold Σ′′ be obtained from pasting along two closed
curves b, b′ in a 2-orbifold Σ′. The map resulting from splitting

SP : T (Σ′′)→ ∆ ⊂ T (Σ′)
is a principal R-fibration, where ∆ is the subset of C(Σ′) where b and
b′ have equal invariants.

(A)(I)(2) Let Σ′′ be obtained from Σ′ by cross-capping. The resulting
map

SP : T (Σ′′)→ T (Σ′)
is a diffeomorphism.

(A)(II)(1) Let Σ′′ be obtained from Σ′ by silvering. The clarifying map
SP : T (Σ′′)→ T (Σ′)

is a diffeomorphism.
(A)(II)(2) Let Σ′′ be obtained from Σ′ by folding a boundary closed curve

l′. The unfolding map
SP : T (Σ′′)→ T (Σ′)

is a principal R-fibration.

(B)(I) Let Σ′′ be obtained by pasting along two full 1-orbifolds b and b′

in Σ′. The splitting map
SP : T (Σ′′)→ ∆ ⊂ T (Σ′)

is a diffeomorphism where ∆ is a subset of T (Σ′) where the invariants
of b and b′ are equal.

(B)(II) Let Σ′′ be obtained by silvering or folding a full 1-orbifold. The
clarifying or unfolding map

SP : T (Σ′′)→ T (Σ′)
is a diffeomorphism.

7.5 Some helpful references

These theory were created in [Thurston (10)] and were written
in [(author?) (Matsumoto and Montesinos-Amilibia)] and [(author?)
(Ohshika)]. (See also [(author?) (Kapovich)].) The materials here are
from [(author?) (Choi)] and [(author?) (Choi and Goldman)].
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