UNAVOIDABLE VERTEX-MINORS
IN LARGE PRIME GRAPHS

0O-JOUNG KWON AND SANG-IL OUM

ABSTRACT. A graph is prime (with respect to the split decompo-
sition) if its vertex set does not admit a partition (4, B) (called a
split) with |A], |B| = 2 such that the set of edges joining A and B
induces a complete bipartite graph.

We prove that for each n, there exists N such that every prime
graph on at least IV vertices contains a vertex-minor isomorphic
to either a cycle of length n or a graph consisting of two disjoint
cliques of size n joined by a matching.

1. INTRODUCTION

In this paper, all graphs are simple and undirected. We write P,
and C,, to denote a graph that is a path and a cycle on n vertices,
respectively. We aim to find analogues of the following theorems.

e (Ramsey’s theorem)

For every n, there exists N such that every graph on at least
N vertices contains an induced subgraph isomorphic to K, or
K,.

e (folklore; see Diestel’s book [§, Proposition 9.4.1])

For every n, there exists IV such that every connected graph
on at least N vertices contains an induced subgraph isomorphic
to Ky, Ki,, or P,.

e (folklore; see Diestel’s book [8, Proposition 9.4.2])

For every n, there exists N such that every 2-connected graph
on at least IV vertices contains a topological minor isomorphic
to C, or Ky,,.

e (Oporowski, Oxley, and Thomas [15])
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For every n, there exists N such that every 3-connected graph
on at least IV vertices contains a minor isomorphic to the wheel
graph W,, on n vertices or Kj .

e (Ding, Chen [9])

For every integer n, there exists IV such that every connected
and co-connected graph on at least N vertices contains an in-
duced subgraph isomorphic to P,, K7j, (the graph obtained
from K ,, by subdividing one edge once), K, \e, or Ky, /e\f\g
where {f, g} is a matching in K5 ,/e. A graph is co-connected
if its complement graph is connected.

e (Chun, Ding, Oporowski, and Vertigan [6])

For every integer n > 5, there exists N such that every in-
ternally 4-connected graph on at least N vertices contains a
parallel minor isomorphic to K,, K}, (K4, with a complete
graph on the vertices of degree n), T'F,, (the n-partition triple
fan with a complete graph on the vertices of degree n), D,
(the n-spoke double wheel), D!, (the n-spoke double wheel with
axle), M, (the (2n + 1)-rung Mobius zigzag ladder), or Z,, (the
(2n)-rung zigzag ladder).

These theorems commonly state that every sufficiently large graph hav-
ing certain connectivity contains at least one graph in the list of un-
avoidable graphs by certain graph containment relation. Moreover in
each theorem, the list of unavoidable graphs is optimal in the sense
that each unavoidable graph in the list has the required connectivity,
can be made arbitrary large, and does not contain other unavoidable
graphs in the list.

In this paper, we discuss prime graphs as a connectivity requirement.
A split of a graph G is a partition (A, B) of the vertex set V' (G) having
subsets A9 € A, By € B such that |A|,|B| = 2 and a vertex a €
A is adjacent to a vertex b € B if and only if a € Ay and b € B,.
This concept was first studied by Cunningham [7] in his research on
split decompositions. We say that a graph is prime if it has no splits.
Sometimes we say a graph is prime with respect to split decomposition
to distinguish with another notion of primeness with respect to modular
decomposition.

Prime graphs play important role in the study of circle graphs (inter-
section graphs of chords in a circle) and their recognition algorithms.
Bouchet [2], Naji [14], and Gabor, Hsu, and Supowit [I1] independently
showed that prime circle graphs have a unique chord diagram. This is
comparable to the fact that 3-connected planar graphs have a unique
planar embedding.
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FiGure 1. KsH K.

The graph containment relation we will mainly discuss is called a
vertex-minor. A graph H is a wertez-minor of a graph G if there
exist a sequence vy, v, ..., v, of (not necessarily distinct) vertices and
a subset X < V(G) such that H = G = vy = vy -+ * v,\X, where G * v
is an operation called local complementation, to take the complement
graph only in the neighborhood of v. The detailed description will be
given in Section [2.1] Vertex-minors are important in circle graphs; for
instance, Bouchet [5] proved that a graph is a circle graph if and only
if it has no vertex-minor isomorphic to one of three particular graphs.

Prime graphs have been studied with respect to vertex-minors, per-
haps because local complementation preserves prime graphs, shown by
Bouchet [2]. In addition, he showed the following.

Theorem 1.1 (Bouchet [2]). Every prime graph on at least 5 vertices
must contain a vertex-minor isomorphic to Cs.

Here is the main theorem of this paper.

Theorem [7.1] For every n, there is N such that every prime graph on
at least N wertices has a vertez-minor isomorphic to C,, or K, 3 K,,.

The graph K,, 3 K, is a graph obtained by joining two copies of K,
by a matching of size n, see Figure[I] This notation will be explained in
Section 2.4 In addition, we show that this list of unavoidable vertex-
minors in Theorem is optimal, which will be discussed in Section [§]
We will heavily use Ramsey’s theorem iteratively and so our bound N
is astronomical in terms of n.

The proof is splitted into two parts.

(1) We first prove that for each n, there exists N such that every
prime graph having an induced path of length N contains a
vertex-minor isomorphic to C,. (In fact, we prove that N =
[6.75n7].)

(2) Secondly, we prove that for each n, there exists N such that
every prime graph on at least N vertices contains a vertex-
minor isomorphic to P, or K,, H K.
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To prove (1), we actually prove first that every sufficiently large gen-
eralized ladder, a certain type of outerplanar graphs, contains C,, as
a vertex-minor. This will be shown in Section [} Then, we use the
technique of blocking sequences developed by Geelen [I3] to construct
a large generalized ladder in a prime graph having a sufficiently long
induced path, shown in Section [6] Blocking sequences will be discussed
and developed in Section |5, The second part (2) is discussed in Sec-
tion |7 where we iteratively use Ramsey’s theorem to find a bigger con-
figuration called a broom inside a graph. In Section |3| we give similar
theorems of this type on vertex-minors with respect to less restrictive
connectivity requirements.

2. PRELIMINARIES

For X € V(G), let dg(X) be the set of edges having one end in X
and another end in V(G)\X. Let Ng(z) be the set of the neighbors of
a vertex z in G. For X < V(G), let G[X] be the induced subgraph
of G on the vertex set X. For two disjoint subsets S,T" of V(G),
let G[S,T] = G[S u TI\(E(G[S]) u E(G[T])). Cleatly, G[S,T] is a
bipartite graph with the bipartition (S, 7).

2.1. Vertex-minors. The local complementation of a graph G at a
vertex v is an operation to replace the subgraph of G induced by the
neighborhood of v by its complement graph. In other words, to apply
local complementation at v for every pair z, y of neighbors of v, we flip
the pair x, y, where flipping means that we delete the edge if it exists
and add it otherwise. We write GG =v to denote the graph obtained from
G by applying local complementation of GG at v. Two graphs are locally
equivalent if one is obtained from another by applying a sequence of
local complementations. A graph H is a vertex-minor of G if H is an
induced subgraph of a graph locally equivalent to G.

For an edge zy of a graph GG, a graph obtained by pivoting an edge
xy of G is defined as G A xy = G =x =y * x. Here is a direct way to see
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G A zy; there are 3 kinds of neighbors of x or y; some are adjacent to
both, some are adjacent to only z, others are adjacent to only y. We
flip the adjacency between all pairs of neighbors of x or y of distinct
kinds and then swap the two vertices x and y. Two graphs are pivot-
equivalent if one is obtained from another by a sequence of pivots.
Thus, pivot-equivalent graphs are locally equivalent. See Figure [2| for
an example of these operations.

The following lemma by Bouchet provides a key tool to investigate
vertex-minors. His proof is based on isotropic systems, which are some
linear algebraic objects corresponding to the equivalence classes of
graphs with respect to local equivalence, introduced by Bouchet [IJ.
A direct proof is given by Geelen and Oum [12].

Lemma 2.1 (Bouchet [3]; see Geelen and Oum [12]). Let H be a
vertez-minor of G and let ve V(G)\V(H). Then H is a vertex-minor
of G\v, G =v\v, or G A vw\v for a neighbor w of v.

The choice of a neighbor w in Lemma does not matter, because
if z is adjacent to y and z, then G A zy = (G A z2) A yz (see [16]).

2.2. Cut-rank function. Let A(G) be the adjacency matrix of G over
the binary field. For an X x Y matrix A, if X’ € X and Y’ € Y, then
we write A[X',Y’] to denote the submatrix of A obtained by taking
rows in X’ and columns in Y.

We define p§(X,Y) = rank A(G)[X,Y]. This function satisfies the
following submodular inequality (see Oum and Seymour [1§]):

Lemma 2.2 (See Oum and Seymour [18]). Forall A, B,A’, B < V(G),
pe(A, B) + pt(A' B = pt(An A, Bu B') + pt.(Au A, Bn B).
The cut-rank function pg of a graph G is defined as
pa(X) = po(X, V(G)\X) = rank A(G)[X, V(G)\X].
By Lemma [2.2] we have the submodular inequality:
pc(A) + pa(B) = pa(An B) + pe(A v B)
for all A, B < V(G).

The cut-rank function is invariant under taking local complementa-
tion, which makes it useful for us.

Lemma 2.3 (Bouchet [4]; See Oum [16]). If G and H are locally equiv-
alent, then pa(X) = pu(X) for all X < V(G).
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Lemma 2.4 (Oum [16, Lemma 4.4]). Let G be a graph and v e V(G).
Suppose that (X1, X3), (Y1,Y2) are partitions of V(G)\{v}. Then we
have

pevw(X1) + pasow (Y1) = pa(Xi 0 Y1) + pa(Xo nYs) — 1
Similarly if w is a neighbor of v, then
pG\v(Xl) + pGAUw\v(}/l> = pG(Xl M Yi) + pG<X2 M YrZ) - 1.

Lemma [2.4] is equivalent to the following lemma, which we will use
in the proof of Proposition [5.3|

Lemma 2.5. Let G be a graph and v € V(G). Suppose that X;, Xo,
Y1, Y, are subsets of V(G)\{v} such that X; U Xo = Y] U Yy and
lengyleg:@. Then

PE(X17X2) +p2*v(Y1,Y2)
> pL(Xin Y, XouYou{v}) +pf(XiuYiu{o}, XonYs) — 1

Simalarly if w e Xy u Xy is a neighbor of v, then

Pe(X1, Xa) + PG p0 (Y1, Y2)
> pa(Xin Y, Xo uYou {v}) + pi(XiuYiu{v}, XonYs) — 1.

Proof. Apply Lemma 2.4 with G’ = G[X; u X5 U {v}]. O

2.3. Prime graphs. For a graph G, a partition (A, B) of V(G) is
called a split if |A|,|B| = 2 and there exist A" € A and B’ € B such
that x € A is adjacent to y € B if and only if x € A" and y € B’. A
graph is prime (with respect to the split decomposition) if it has no
splits. These concepts were introduced by Cunningham [7].

Alternatively, a split can be understood with the cut-rank function
pc- A partition (A4, B) of V(G) is a split if and only if |A,|B| = 2 and
vet pa(A) < 1.

The following lemma is natural.

Lemma 2.6. If a prime graph H on at least 5 vertices is a vertex-
manor of a graph G, then G has a prime induced subgraph Gy such that
Gy has a vertex-minor isomorphic to H.

Proof. We may assume that G is connected. It is enough to prove the
following claim: if G has a split (A, B), then there exists a vertex v
such that H is isomorphic to a vertex-minor of G\v. Let G’ be a graph
locally equivalent to G such that H is an induced subgraph of G'. We
have py(V(H)n A) = p&(V(H) n A, V(H) n B) < pf(A,B) <1 and
therefore |V(H) n Al < 1or |V(H) n B] <1 because H is prime. By
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symmetry, let us assume |V (H) n B| < 1. Let us choose = € B such
that = has a neighbor in A and z € V(H) if V(H) n B is nonempty.

Let H' be a vertex-minor of G on Ay {z} such that H is isomorphic
to a vertex-minor of H'. Then H' = G #vy * vy - - -+ v, \(B\{z}) for some
sequence vy, Vg, . .., v, of vertices. We may choose H' and n so that n
is minimized.

Suppose n > 0. Then v, € B\{z}. Let Hy = G = vy *vg--- =
Un—1\(B\{z,v,}). Since (A4, {z,v,}) is a split of Hy, one of the following
holds.

(i) The two vertices v, and z have the same set of neighbors in A.
(ii) The vertex v, has no neighbors in A.
(iii) The vertex x has no neighbors in A.

If we have the case (i), then (Hp\v,) * x = H' and therefore H is
isomorphic to a vertex-minor of Hy\v,, contradicting our assumption
that H is chosen to minimize n. If we have the case (ii), then Hy\v, =
H’, contradicting the assumption too. Finally if we have the case (iii),
then z is adjacent to v, in G because G is connected. Then Hy = v, \vy,
is isomorphic to Hy * v,\z. Then Hy\z has a vertex-minor isomorphic
to H, contradicting our assumption that n is minimized. 0

2.4. Constructions of graphs. For two graphs G and H on the same
set of n vertices, we would like to introduce operations to construct
graphs on 2n vertices by making the disjoint union of them and adding
some edges between two graphs. Roughly speaking, G 5 H will add a
perfect matching, GIX]H will add the complement of a perfect matching,
and G'[11 H will add a bipartite chain graph. Formally, for two graphs
G and H on {vy,vy,...,v,}, let GE H, GXI H, G H be graphs on
{vf,vd,.. . vl v 02 ... v2} such that for all 4,5 € {1,2,...,n},
(i E(GHH) if and only if vv; € E(GQ),

(ii E(GHH) if and only if vv; € E(H),
(iii E(GHH) if and only if i = j,
€ E(GX H) if and only if vv; € E(G),
E(GX H) if and only if vv; € E(H),
€ E(GX H) if and only if ¢ # j,
E(G H) if and only if vv; € E(G),
(viii E(G H) if and only if vlvj € E(H),

(i v; € E(GIAH) if and only if 7 >

See Figure (3 I 3| for K; 5 K5, K5 X K5, and K5 K.
We will use the following lemmas.

(vi
(vii

) viv; €
) vivy €
) viv} e
iv) v Jl
(v) vivi e
) viv} e
) vjv; €
) viv} €
X) vlo?

Y;
2
Y;
1
Y;

Lemma 2.7. Let n > 3 be an integer.
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FIGURE 3. K5|E|F5, I({t_’,?{,7 and K5|ZIF5

(1) ﬁ@ has a vertex-minor isomorphic to K,_1 5 K,_1.

(2) K, X1 K,, has a vertex-minor isomorphic to K, o H K, _s.
Proof. (1) Let V(K,) = V(K,) = {v; : 1 < i < n}. The graph
(K, X K,,) = v = vi\vj\v? is isomorphic to K, 1 H K, ;.

(2) Let V(K,) = {vi,vs,...,v,}. The graplimfn) = v1\v] \v?

is isomorphic to K, & K,_1. By (1), K,, ¥ K,, has a vertex-minor
isomorphic to K, s H K, _s. O

Lemma 2.8. Let n be a positive integer.
(1) The graph EZE is pivot-equivalent to Ps,.
(2) The graph K, A K, is locally equivalent to Ps,.

Proof. (1) Let P = p1py...pan. We can check that K, [ K, can be
obtained from P by pivoting p;p;41 for all i =1,3,...,2n — 1.
(2) Let V(K,) = V(K,) = {v1,v,...,v,}. Since (K, [ K,,) = v? is

isomorphic to K, [1 K, the result follows from (1). O

2.5. Ramsey numbers. A clique is a set of pairwise adjacent vertices.
A stable set or an independent set is a set of pairwise non-adjacent
vertices.

We write R(nq,na,...,ng) to denote the minimum number N such
that in every k coloring of the edges of K, there exist ¢ and a clique of
size n; whose edges are all colored with the ¢-th color. Such a number
exists by Ramsey’s theorem [19].

3. UNAVOIDABLE VERTEX-MINORS IN LARGE GRAPHS

We present three simple statements on unavoidable vertex-minors.
These are optimal as discussed in Section [I]

Theorem 3.1. (1) For every n, there exists N such that every
graph on at least N vertices has a vertex-minor isomorphic to
K,.
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q1 q2 q3 q4 g5 3 q7 qs

P1 D2 b3 P4 Ps Pe p7 Ds P9

FIGURE 4. An example of a generalized ladder.

(2) For every n, there exists N such that every connected graph
having at least N wvertices has a vertex-minor isomorphic to
K,.

(8) For every n, there exists N such that every graph having at least
N edges has a vertex-minor isomorphic to K, or K, H K,.

Proof. (1) If a graph has no K, as a vertex-minor, then it has no
vertex-minor isomorphic to K,.;. So we can take N = R(n,n + 1).

(2) Let us assume that G has no vertex-minor isomorphic to K.
Then the maximum degree of G is less than A = R(n — 1,n — 1) by
Ramsey theorem. If |V(G)| is big enough, then it contains an induced
path P of length 2n — 3 because the maximum degree is bounded. By
Lemma , P5,_2 has a vertex-minor isomorphic to Kj,_;, that is
locally equivalent to K,.

(3) Let G be a graph having no vertex-minor isomorphic to K, or
K, 3 K,. Each component of G has bounded number of vertices, say
M, by (2). Since K, 5 K, is not a vertex-minor of G, G has less than
n non-trivial components. (A component is trivial if it has no edges.)
So G has at most (A;)(n — 1) edges. O

4. OBTAINING A LONG CYCLE IN A HUGE GENERALIZED LADDER

A generalized ladder is a graph G with two vertex-disjoint paths
P=pipa...pa, @ =qqa-..q (a,b = 1) with additional edges, called
chords, each joining a vertex of P with a vertex of @ such that V(P)u
V(Q) = V(G), py is adjacent to ¢, p, is adjacent to g, and no two
chords cross. Two chords p;q; and pyq; (i < ') cross if and only if
j > 7'. We remark that a generalized ladder is a outerplanar graph
whose weak dual is a path. We call pyq; the first chord and p,q, the
last chord of G. Since no two chords cross, p; or ¢; has degree at most
2. Similarly, p, or g, has degree at most 2. See Figure 4| for an example.

We will prove the following proposition.

Proposition 4.1. Let n > 2. Every generalized ladder having at least
4608n° vertices has a cycle of length 4n + 3 as a vertex-minor.
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4.1. Lemmas on a fan. Let F}, be a graph on n vertices with a speci-
fied vertex ¢, called the center, such that F,,\c is a path on n—1 vertices
and c is adjacent to all other vertices. We call F,, a fan on n vertices.

Lemma 4.2. A fan F3, has a vertex-minor isomorphic to a cycle of
length 2n + 1.

Proof. Let ¢ be the center of F3,. Let vy, v, ..., v3,_1 be the non-center
vertices in F3, forming a path. Let G = F3, * v3 * vg * vg - - - * U3;,_3.
Clearly ¢ is adjacent to v; in G if and only if i € {1,3n — 1} or i = 0
(mod 3) and furthermore vs;_; is adjacent to vs;;; in G for all i. Let
H = G\{vs,vs,...,03,_3}. Then H is a cycle of length 3n—(n—1). O

Lemma 4.3. Let n > 2. Let G be a graph with a vertex ¢ such that
G\c is isomorphic to an induced path P whose both ends are adjacent
toc. If [V(G)| = 6(n—1)? — 3, then G has a vertez-minor isomorphic
to a cycle of length 2n + 1.

Proof. We may assume that n > 3. Let P = vjvy...v, with &k > 6.
We may assume that v, is adjacent to ¢ because otherwise we replace
G with G = vy. Similarly we may assume that v,_; is adjacent to c.
We may also assume vz is adjacent to ¢ because otherwise we replace
G with G A viv,. Similarly we may assume that v,_s is adjacent to c.

If ¢ is adjacent to at least 3n — 1 vertices on P, then G has a vertex-
minor isomorphic to Fj,. So by Lemma [£.2] G has a vertex-minor
isomorphic to a cycle of length 2n + 1. Thus we may assume that the
number of neighbors of ¢ is at most 3n — 2. The neighbors of ¢ gives
a partition of P into at most 3n — 3 subpaths. We already have 4
subpaths at both ends having length 1. Since

|E(P)|=6(n—1)>-3—-2> (2n—2)((3n — 3) — 4) + 4,

there exists a subpath P’ of P having length at least 2n — 1 such that
no internal vertex of P’ is adjacent to ¢ and the ends of P’ are adjacent

to c¢. This together with ¢ gives an induced cycle of length at least
2n + 1. 0

4.2. Generalized ladders of maximum degree at most 3.

Lemma 4.4. Let G be a generalized ladder of maximum degree 3. If G
has at least 6n vertices of degree 3, then G has a cycle of length 4n + 3
as a verter-minor.

Proof. We proceed by induction on |V(G)|. Let P, @ be two defining
paths of G. We may assume that all internal vertices of P or () has
degree 3, because if P or () has an internal vertex v of degree 2, then
we apply the induction hypothesis to G =v\v. Since p; or ¢; has degree
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2, we may assume that p; has degree 2 by symmetry. We may assume
that ¢; has degree 3 because otherwise we can apply the induction
hypothesis to G * ¢;\¢1. Consequently ¢; is adjacent to py and thus for
each internal vertex ¢; of ), ¢; is adjacent to p;;; and each internal
vertex p; 1 of P is adjacent to ¢;. Thus either a = b and p, has degree
3ora=>b+1 and p, has degree 2. But if @ = b+ 1 and p, has
degree 2, then we can apply the induction hypothesis to G * pg\pa.
Thus we may assume that a = b and p, has degree 3. Since G has at
least 6n vertices of degree 3, a > 3n and b > 3n. If a = b > 3n + 1,
then we can apply the induction hypothesis to G\g. Thus we may
assume that a = b = 3n + 1 and p, has degree 3 and ¢, has degree
2. Note that p; is adjacent to ¢;_q for all © = 2,...,3n + 1. Then G =

P1LADIG3 A D16 A D3ns1G30 \{P4, D75 - - s P3n—2, 03, @65 - - - G3n—35 Q3n+1)
is isomorphic to a cycle of length 4n + 3. U

Lemma 4.5. Let G be a generalized ladder of maximum degree 3. If
\V(G)| = 12n?, then G has a cycle of length 4n + 3 as a vertez-minor.

Proof. Let P, ) be two defining paths of G. We may assume a > 1
and b > 1 because otherwise G has an induced cycle of length at least
6n2+ 1= 4n + 3.

Let p,q, be the unique chord other than p;¢; with minimum x + y.
We claim that we may assume (x—1)+ (y—1) < 2. Suppose not. Then
Pzqy, P11 and subpaths of P and () form a cycle of length x +y > 5
and p1,p2, ..., Pa—1,41,Q2, - - -, qy—1 have degree 2. By moving the first
few vertices of P to ) or () to P, we may assume that x > 3 and y > 2.
Then we may replace G with G = p;. This proves the claim.

Thus the induced cycle containing p;¢q; has at most 2 edges from
E(P) u E(Q). Similarly we may assume that the induced cycle con-
taining p,q, has at most 2 edges from E(P) u E(Q).

If G has at least 6n vertices of degree 3, then by Lemma [4.4] we
obtain a desired vertex-minor. So we may assume that G' has at most
6n — 1 vertices of degree 3. Thus G has at most 3n — 1 chords other
than p;q; and p,q,. These chords give at most 3n induced cycles of G
where each edge in F(P) u E(Q) appears in exactly one of them. If
every such induced cycle has length at most 4n + 2, then

|E(P)u E(Q)| < (3n —2)(4n) + 4 = 12n° — 8n + 4 < 12n° — 2.

Since |V(G)| = 12n?, we have |E(P) u E(Q)| = 12n* — 2. This leads
to a contradiction. O

4.3. Generalized ladders of maximum degree 4.
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Lemma 4.6. Let G be a generalized ladder of maximum degree at most
4. Let o be the number of vertices of G having degree 3 or 4. Then GG
has a vertex-minor H that is a generalized ladder of mazimum degree
at most 3 such that |V (H)| = a/4.

Proof. Let P = pips...pay, @ = q1qz...q be the paths defining a
generalized ladder G. Let X;; = {p1,p2,...,Di» @1, q2, - -,q;}. We may
assume o > 8.

If a = 1, then p; has at least @ — 1 neighbors but the maximum
degree is 4 and therefore o < 5, contradicting our assumption. Thus
a > 1. Similarly b > 1.

We may also assume that no internal vertex of P or ) has degree 2,
because otherwise we can apply local complementation and remove it.

Let o, j(G) be the number of vertices in V(G)\X; ; having degree 3
or 4. We will prove the following.

Claim 1. Suppose that there exist 1 < i < a and 1 < j < b such that
dc(Xi ;) has exactly two edges and every vertex in X, ; has degree 2 or
3 i G. Then G has a vertex-minor H that is a generalized ladder of
mazximum degree at most 3 such that |V (H)| = | X, ;| + a; ;(G)/4.

Before proving Claim [I], let us see why this claim implies our lemma.
First we would like to see why there exist ¢ and j such that d(X; ;) has
exactly two edges. If p; has degree bigger than 2, then p; is adjacent
to go and so G = ¢; = G\p1g2. Thus we may assume that both p; and
¢1 have degree 2. Keep in mind that the number of vertices of degree
3 or 4 in X;; may be decreased by 1 by replacing G with G * ¢; and
so a1 1(G) = a—2.

By applying Claim [If with ¢ = j = 1, we obtain a generalized ladder
H of maximum degree at most 3 as a vertex-minor such that |V (H)| >
2+ (a—2)/4 = a/4. This completes the proof of the lemma, assuming
Claim [

We now prove Claim (1| by induction on [V(G)| — | X;;(G)|. We may
assume that every vertex in V(G)\(X;; U {pa,q}) has degree 3 or 4
because otherwise we can apply local complementation and delete it
while keeping «; ;. Then p;;; is obviously adjacent to g;;.

We may assume that ¢ < a — 1 because otherwise G is a generalized
ladder of maximum degree 3 if p, has degree 3 and G\g is a generalized
ladder of maximum degree 3 otherwise. Similarly we may assume j <
b— 1. Either p;;; or ¢;+1 has degree 4, because otherwise d¢(Xit1,41)
has exactly two edges. By symmetry, we may assume that p;,; has
degree 3 and g;;1 has degree 4 and therefore ¢;;, is adjacent to p;o.
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If a;;(G) < 12, then H = G[X;42+1] is a generalized ladder of
maximum degree at most 3. Thus we may assume that «; ;(G) > 12.
If b—j <4, then a —7 < 8 because each vertex in g;41, ¢j42, - - -, ¢ has
degree at most 4 and each vertex in p;,1, pito,...,DPe—1 has degree at
least 3. This contradicts our assumption that «; ;(G) > 12. So we may
assume that b — 7 > 5 and similarly a — ¢ > 5.

Let R be the component of G\(E(P) u E(Q)) containing p;;1. Be-
cause of the degree condition, R is a path. We now consider six cases,
see Figure [5

(a) If R has length 2 and p;,3 has degree 3 in G, then G' = G =
Pir2\Piva = (G\Dir2 + Pit1Pivs + ¢j+1Piv3) \Piv1g41 1s a generalized
ladder of maximum degree at most 4. Every vertex in G’ not in X
has degree at most 4. Furthermore p;,; has degree 2 in G'. Thus,
dcr(Xit14) has exactly 2 edges. Then | X1, + qip1(G)/4 =
(1Xi ]+ 1) + (i ;(G) —2)/4 = | X ;| + 0, j(G) /4. By the induction
hypothesis, we find a desired vertex-minor H in G’.

(b) If R has length 2 and p;,5 has degree 4 in G, then the vertex ¢ o
has degree 3. Then G’ = G # pi1a * ¢j+2\Di+2\¢j+2 IS a generalized
ladder of maximum degree at most 4. Then 0¢/(X;41,j41) has ex-
actly two edges and ;11,j+1(G’) = o, ;(G) —6. Again, | X1 41| +
ir1,j+1(G)/4 = | Xij|+ 2+ (i;(G) = 6)/4 = [ Xy + 2i5(G) /4 and
therefore we are done.

(c) If R has length 3 and g¢;3 has degree 3 in G, then G' = G =
¢j+2\@j+2 is a generalized ladder of maximum degree at most 4.
Then d¢/ (X1 j+1) has exactly two edges and a1 j4+1(G’) = ;. j(G)
3. We deduce that ‘Xi-i-l,j-i-l’+ai+1,j+1(G/)/4 = ’Xi,j‘+2+(ai,j(G)_
3)/4 = | X5 + ai(G)/4.

(d) If R has length 3 and ¢;;3 has degree 4 in G, then p;,3 has de-
gree 3 and G’ = G = @42 * Pi+3\gj+2\Di+3 1S a generalized ladder of
maximum degree at most 4. Then 0¢/(X;42,41) has exactly two
edges and Oéi+27j+1(G/) = Q5 (G) — 7. We deduce that |Xi+2,j+l| +
Qir2,+1(G)/4 = | Xij| + 3 + (i (G) = 7)/4 = |Xij| + ai3(G)/4.
By the induction hypothesis, G’ has a desired vertex-minor and so
does G.

(e) If R has length 4, then G' = G A Pi+245+2 *pi+3\pi+2\pi+3\(b’+2 is a
generalized ladder of maximum degree at most 4. Then d¢/ (X;41,j41)
has exactly two edges and a;4111(G’) = ;;(G) — 7 and there-
fore ’Xi+17j+1| + Oéi+1’j+1(G/)/4 = |Xi,j‘ + 2+ (Oé@j(G) - 7)/4 =
| X ;| + @;;(G)/4. Our induction hypothesis implies that G’ has a
desired vertex-minor.
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Di, Pi+1 Pi+2 Di+3 Di Di+1/ Di+3
—o—+—4 L
1 /
Xij | = Xit15 — ;
———4 v;
45, 4j+1 4j+2 45, d5+1 4j+2

(a) Apply G * pit2\pito

Di, Pi+1 Pi+2 Di+3 Pi Pi+1 Di+3
- . . ‘

Xij | o = Xivgn | _
q;, 9j+1 4j+2 4j+3 45 45+1 , qj+3

(b) Apply G * pita * ¢j+2\Pi+2\qj+2

Di, Pi+1 DPi+2 Di+3 Pi Pi+1 | Pi+2 Di+3

*- s . —= s
Xij | = Xit1j+1 l

q;, 9j+1 4j+2 4j+3 q; 9j+1, qj+3

(c) Apply G * Qj+2\Qj+2

Di, Pi+1 Pi+2 Di+3 Pi+a Di Pi+1 Pit2/ Di+a

e; o’ i d > -
Xij | = Xit2j+1 K

95 95+1 495+2 4dj+3 q; qj+1 ) qj+3

(d) Apply G * qji2 * Pit3\@j+2\Pi+3

Di, Pi+1 Pi+2 Di+3 Pi+a Di Pi+1 Dit+a
Xij | /=> Xit1j+1 l
495 95+1 495+2 4dj+3 i q9j+1 qj+3

(€) Apply G A piyagjt2 * Dit3\Dit2\@j+2\Dit3

Di, Pi+1 DPi+2 Di+3 Di Pi+1 Di+3
v; & N
\
Xij | ] = X i1 3
- o o
q;, 9j+1 4dj+2 4j+3 q; 4j+1°, qj+3

(f) Apply G A pi+2Qj+2\pi+2\Qj+2

FIGURE 5. Cases in the proof of Lemma .
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(f) If R has length at least 5, then G’ = G A pi+2gj+2\Dit2\gj+2 IS a
generalized ladder of maximum degree at most 4. Then d¢/ (X j+1)
has exactly two edges and «; j4+1(G’") > «;,;(G) — 4 and therefore
[ Xijor| + @i (G4 = [Xig| + 1+ (;(G) — 4)/4 = [ X[ +
a;;(G)/4. Our induction hypothesis implies that G’ has a desired
vertex-minor.

In all cases, we find the desired vertex-minor H. This completes the
proof of Claim [T} O

Lemma 4.7. Let G be a generalized ladder of mazimum degree at most
4. If [V(Q)| = 192n3, then G has a cycle of length 4n + 3 as a vertez-

minor.

Proof. Let P, @ be two defining paths of G. We may assume a > 1
and b > 1 because (192n® —2)/3 +2 = 4n + 3.

Let p,q, be the unique chord other than p;¢; with minimum x + y.
We claim that we may assume (x—1)+ (y—1) < 2. Suppose not. Then
Dzqy, P11 and subpaths of P and ) form a cycle of length x +y > 5
and p1,p2, ..., Pz—1,41,Q2, - - -, qy—1 have degree 2. By moving the first
few vertices of P to ) or ) to P, we may assume that x > 3 and y > 2.
Then we may replace G with G = p;. This proves the claim.

Thus the induced cycle containing pi;¢q; has at most 2 edges from
E(P) u E(Q). Similarly we may assume that the induced cycle con-
taining p,q, has at most 2 edges from E(P) u E(Q).

If G has at least 48n? vertices of degree 3 or 4, then by Lemma[4.6] G
has a generalized ladder H as a vertex-minor such that |V (H)| > 12n?
and H has maximum degree at most 3. By Lemma[£.5] H has a cycle
of length 4n + 3 as a vertex-minor.

Thus we may assume that G has less than 48n? vertices of degree
3 or 4. We may assume that G has at least one vertex of degree at
least 3. The cycle formed by edges in E(P) u E(Q) v {p1¢1,Paqs}
is partitioned into less than 48n? paths whose internal vertices have
degree 2 in G. One of the paths has length greater than 192n3/(48n?%) =
4n. Then there is an induced cycle C of G containing this path. Since
C does not contain p;q; or p.gy, C' must contain two edges not in
E(P)UE(Q)u{piq1,paqs}- Thus the length of C'is at least 4n+3. O

4.4. Treating all generalized ladders.

Lemma 4.8. Let G be a generalized ladder. If G has n wvertices of
degree at least 4, then G has a vertez-minor H that is a generalized
ladder such that the mazximum degree of H is at most 4 and H has at
least n vertices.
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Proof. Let S be the set of vertices having degree at least 4. For each
vertex v in S, let P, be the minimal subpath of () containing all neigh-
bors of v in @ if v € V(P) and let P, be the minimal subpath of P
containing all neighbors of v in P if v € V(Q).

Then each internal vertex of P, has degree 2 or 3 and has degree 3
if and only if it is adjacent to v. We apply local complementation to
each internal vertex and delete all internal vertices of P,. It is easy to
see that the resulting graph H is a generalized ladder and moreover
S <€ V(H) and every vertex in S has degree at most 4 in H. O

We are now ready to prove the main proposition of this section.

Proof of Proposition[4.1. Let G be such a graph. If G has at least
192n3 vertices of degree at least 4, then by Lemma , G has a vertex-
minor H having at least 192n® vertices such that H is a generalized
ladder of maximum degree at most 4. By Lemmal[4.7, H has a cycle of
length 4n + 3 as a vertex-minor.

Thus we may assume that G has less than 192n? vertices of degree
at least 4. For a vertex v in P having degree at least 5, let ¢;, g;
be two neighbors of v in @) such that if ¢ is a neighbor of v in @,
then i < k < j. By Lemma [4.3] if j —4 + 2 > 24n? — 3, then G
contains a cycle of length 4n + 3 as a vertex-minor. Thus we may
assume j — ¢ < 24n* — 6. The subpath of @ from ¢; to g; contains
j—i—1 < 24n?—7 internal vertices. Similarly the same bound holds for
a vertex v in @ having degree at least 5. As in the proof of Lemma[4.8]
we apply local complementation and delete all internal vertices of the
minimal path spanning the neighbors of each vertex of degree at least
5 to obtain H. Then each vertex of degree at least 5 in G will have
degree at most 4 in H. Since we remove at most (192n3 —1)(24n? —7)
vertices,

V(H)| = [V(G)] — (192n® — 1)(24n* — 7) > 192n°.
By Lemma[4.7, H has a cycle of length 4n + 3 as a vertex-minor. [

5. BLOCKING SEQUENCES

Let A, B be two disjoint subsets of the vertex set of a graph G. By
the definition of pf and pq, it is clear that

if Ac X < V(G)\B, then p%(A, B) < pa(X).

What prevents us to achieve the equality for some X7 We now present
a tool called a blocking sequence, that is a certificate to guarantee that
no such X exists. Blocking sequences were introduced by Geelen [13].
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A sequence vy,vs, ..., v, (m = 1) is called a blocking sequence of a
pair (A, B) of disjoint subsets A, B of V(G) if

(a) pé’(A7B Y {Ul}) > ,OZ(A, B)v

(b) p(Au{vi}, Bu{vis}) > p&(A,B) foralli=1,2,...,m—1,
(©) pe(A v {vm}, B) > pg(A, B),

(d) no proper subsequence of vy, ..., v, satisfies (a), (b), and (c).

The condition (d) is essential for the following standard lemma.

Lemma 5.1. Let vy, 09, ...,0, be a blocking sequence for (A, B) in a
graph G. Let X, Y be disjoint subsets of {v1,vs,..., vy} such that if
vie X andv; €Y, thent < j. Then

PE(AUX,BUY) = pi(A, B)

if and only if v1 ¢ Y, v, ¢ X, and for all i € {1,2,...,m — 1}, either
vig X orvig1 €Y.

Proof. The forward direction is trivial. Let us prove the backward
implication. Let k = pg(A, B). It is enough to prove p&(A v X, B U
Y) < k. Suppose that v; ¢ Y, v,, ¢ X, and for all i € {1,2,...,m — 1},
either v; ¢ X or v;11 ¢ Y and yet p5(Au X, BuY) > k. We may
assume that |X| + |Y| is chosen to be minimum. If |X| > 2, then
we can partition X into two nonempty sets X; and X,. Then by
the hypothesis, p&(A U X1, BuY) = p(Au Xo,BUY) = k. By
Lemma 2.2 we deduce that p(A U X1, BUY )+ pi(AuXe, BUY) >
k+pE(AuX, BUY) and therefore we deduce that pf(AuX, BUY) < k.
So we may assume | X| < 1. By symmetry we may also assume |Y| < 1.
Then by the condition (d), this is clear. O

The following proposition states that a blocking sequence is a certifi-
cate that pg(X) > p&(A, B) for all A < X < V(G)\B. This appears
in almost all applications of blocking sequences. The proof uses the
submodular inequality (Lemma .

Proposition 5.2 (Geelen [13, Lemma 5.1]; see Oum [17]). Let G be
a graph and A, B be two disjoint subsets of V(G). Then G has a
blocking sequence for (A, B) if and only if pa(X) > p&(A, B) for all
Ac X cV(G)\B.

The following proposition allows us to change the graph to reduce
the length of a blocking sequence. This was pointed out by Geelen
[private communication with the second author, 2005]. A special case
of the following proposition is presented in [17].
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Proposition 5.3. Let G be a graph and A, B be disjoint subsets of
V(G). Let vi,vq,...,0y be a blocking sequence for (A, B) in G. Let
1<ie<m.

o Ifm > 1, then pf,, (A, B) = p&(A, B) and a sequence
V1,025 -+ -5 Vi=1,Vit1, .-+, Um

obtained by removing v; from the blocking sequence is a blocking
sequence for (A, B) in G * v;.
o I[fm =1, then pf,, (A, B) = p5(A, B) +1

Proof. Let k = p&(A,B) and H = G = v;.
If m =1, then by Lemma

pir(A, B) + pl(A, B) = pl(AU {1}, B) + pls(A, B {nn}) 1 > 2k + 1

and therefore pj; (A, B) = k + 1. Since p§(A, B) < pi;(A, B u {v}) =
pe(A, Bu{n}) <k+1, we deduce that p};(A,B) =k+ 1if m = 1.

Now we assume that m # 1. First it is easy to observe that p3;(X,Y) <
P (X, Yu{u}) and p§; (X, Y) < p&(Xu{v},Y) whenever X, Y are dis-
joint subsets of V(G)\{v;}, because the local complementation does not
change the cut-rank function of G[X UY U {v;}]. This with Lemma5.1]
implies that

 pji(A, B) <k,

o pi(Au{v;},B) <kforallje{l,2,...,mH\{i — 1,m},

o pi/(Au{vi1},B) <kifi#1,m.

o pi;(A,Bu{v;}) <kforall je{l,2,..., mj\{1,i+ 1}.

o pi (A, Bu{vi}) <kifi#1m.

o pi/(Au{v;},Bu{v}) < kforall j,fe{l,2...,mp\{i} with

(—7>1,unless j+1=0v=0¢—1.

Let B' = B u {v;1} if i < m and B' = B otherwise. Then p&(A U
{v;}, By =k+1and pi(A,B') = k.
(1) We claim that if ¢ > 1, then pj (A, Bu{vi}) > k. By Lemmal[2.5]

pi(A, B'ufoi}) +p6(A, BY) = pi(A, B'ufvr, vid) +pg(Aui{uvi, BY)—1,

and therefore we deduce that pi; (A, B U {vi}) = p&(A, B’ U {v1,v;}) >
k. By Lemma 2.2 pi (A4, B U {v;}) + pi(A, B U {v1}) = pi(A,B' U
{v1,v;})+pi (A, B) > 2k. We deduce that p3;(A, Bu{v}) > k because
pir(A, B U {vi}) = pt(A, B U {v;}) = k by Lemma 5.1}

(2) By (1) and symmetry between A and B, if i < m, then p§;(A U
{om}, B) > k.

Then we deduce that p% (A, B) = k and therefore p3; (A, B) = k.
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(3) We claim that if j < i — 1, then p§ (A U {v;}, B U {vj11}) > k.
By Lemma [2.5

pr(A U {vh, B U {vja}) + (A v {v;}, B)
= pa(Au{v;}, B'u{vji,vi}) + pa(A o {v;, v}, BY) — 1> 2k,

and therefore pf; (A U {v;}, B’ U {vj;1}) > k. By Lemma [2.2] p3 (A U
{03}, BoAtya D+ P (AC {5}, B) = ply(AU{os}, B'O{uger]) + iy (A
{v;},B) > 2k. Note that pj;(A U {v;},B) = p}j;(A,B) = k. Since
ph(Autu) B) < ph(Aotu), B'ofuh) = sb(AC o B ofud) < &,
we deduce that pj;(A U {v;}, Bu {vj11}) > k.

(4) By symmetry, we deduce from (3) that if i < j < m, then
pi(A v {v}, Bu{vja}) >k

(5) We claim that pf(A U {v;_1}, B') > k. By Lemma 2.5

pi(A v {viaa}, B) + pp(A v {via}, B)
> pa(Au{vi 1}, B u{v}) + pi(A v {viq,v}, B) — 1> 2k.
Since p&(A v {vi_1}, B') = k, we have p} (A v {v;_1}, B') > k.
This completes the proof of the lemma that vy, v, ..., v; 1, Vig1, ..., Uy

is a blocking sequence of (A, B) in G * v;. O

Corollary 5.4. Let G be a graph and A, B be disjoint subsets of V(G).
Let vy, vy, ..., vy be a blocking sequence for (A, B) in G. Let1 <i < m.
Suppose that v; has a neighbor w in A U B.
o If m > 1, then p§,,..(A, B) = p&(A,B) and the sequence
V1, U2, oy Vi1, Vg1, - - -, Um Obtained by removing v; from the
blocking sequence is a blocking sequence for (A, B) in G A v;w.
o If m =1, then p§,,.,(A, B) = pg(A, B) + 1.

Proof. 1t follows easily from the facts that G A v;w = G *w * v; * w and

Pa(X,Y) = pk,..(X,Y) for all graphs G withwe X UY. O
Corollary 5.5. Let G be a graph and A, B be disjoint subsets of V(G).
Let vy, vy, ..., vy, be a blocking sequence for (A, B) inG. Let1 <i < m.

Suppose that v; and vy are adjacent and i < i'.
o If m > 2, then pf,.,,,, (A B) = p&(A, B) and the sequence
V1,09, vy Uim 1y Vigdy -+ 5 Vir—1, Vit 1, - - - Uy Obtained by removing
v; and vy from the blocking sequence is a blocking sequence for
(A, B) in G A vvy.
o If m =2, then pf,p.0, (A, B) = p&(A, B) + 1.

Proof. If v; has a neighbor w in A u B, then G A v;uy = G A v;w A Wy
and this corollary follows from Corollary So we may assume that v;
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has no neighbors in A U B and similarly v; has no neighbors in A u B.
Thus ¢,7 ¢ {1,m} and m > 4.

Since v; and v; are adjacent, we may assume that i/ = ¢ + 1. Let
H = G Avvipq and k = pg (A, B). Since v; and v;41 have no neighbors
in Au B, p5(A,B) = k.

Then wvy,vs,...,v; is a blocking sequence for (A, B U {v;;1}) in G
by Lemma Similarly v;y1,vi40,...,0, is a blocking sequence for
(A v {v},B)in G.

By Corollary , V1, Ve, ..., v;—1 is a blocking sequence for (A, B U
{viz1}) in H. Then p3(A, B u {v1}) = p5(A, B U {v,vi41}) > k,
because v;,1 has no neighbors of H in A.

For 1 <] < 2—1, p}k{(AU{’Uj}, BU{/UjJrl})—i_p?{(AU{/Uj}’ BU{’UZ‘+1}) =
pif(Au {v;}, Bu{vjs1,viz1}) + pi (A U {v;}, B) > 2k and therefore

pi(AU {3}, B U {v51) >
because pi (A U {v;}, B) < pi (AU {v;}, Bu{vis1}) < k.

Similarly vi2,vit3, .- ., U is a blocking sequence for (A u {v;}, B) in

H. By symmetry, we deduce that p} (A U {v,}, B) > k and p3(A U

{vj}, Bu{vj}) >kforali+1<j<m.
We now claim that pf;(A U {v;_1}, B U {v;42}) > k. By Lemma[2.2]

pr(A v {vii}, B U {via}) + p(A v {vina}, B U {visa})
= pi (AU {vicg, vigaf, B U {viga}) + p (A, B U {viya}).
Since v;41 has no neighbors in A u B, we have p§; (A U {v;11}, B U
(vi2}) = PE(A U {0k B U {visa}) = k and p}(A, B O {tra}) =
pe(A, B U {viy2}) = k. Therefore
pr(A v {viei}, Bu{vipa}) = pi(A U {vier, viga ), B U {viga}).
By Lemma [2.5

P (A U {viey, vigr}, B U {vige}) + pG(A U {viea}, B U {vig1, viga})
= p(A v {viei}, B U {vi, Vi1, Viga})
+ p6(A U {vii1, v, viga}, B U {viga}) — 1.
By Lemma pe(A U {vim1, v, 01}, B U {vige}) > k and p&(A U
{vi_1}, B U {vi11,vi12}) = k. Therefore p§;(A U {vi_1}, B U {vi12}) =
P (Au{vi_1, vig}, Bu{vige}) = PE(AU{%‘A}, Bu{vi, viy1,viga}) > k.
This proves the claim.

So far we have shown that the sequence vy, v, ..., V;_1,Viya, ..., Upnp
satisfies (a), (b), (c) of the definition of blocking sequences. It remains
toshow (d). Forj e {2,3,...,m}\{i,i+1}, p3; (A, Bu{v;}) = p&(A, Bu
{v;}) = k because v; and v;41 have no neighbors in A U B. Similarly
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pir(Au{v;}, B) = pt.(Au{v,}, B) = kfor je {1,2,... ,m—1}\{7,i+1}.
For j. 0 e {1,2,....m}\{i,i+ 1} with £ —j > 1, either p&(Au {v;}, By
{ve, vi,vi11}) = k or pi(A U {vj,v;,vi41}, B U {ve}) = k and therefore
pif(Au{v;},Bu{v}) < k, unless j = ¢ — 1 and ¢ = i + 2. This
completes the proof. O

We will now prove that without loss of generality, a blocking sequence
for (A, B) is short by applying local complementation while keeping the
subgraph induced on A U B.

Proposition 5.6. Let G be a prime graph and let A, B be disjoint sub-
sets of V(G) with |Al,|B| = 2. Suppose that there exist two nonempty
sets Ag € A and By S B such that the set of all edges between A and
Bis{xy:x € Ay,y € By}. Let

3 if |[Ao] = |Bo| =1,
bo=14 if|Ag| =1 or|Bo| =1,
6 otherwise.

Then there exists a graph G’ locally equivalent to G satisfying the fol-
lowing.
(i) GIA v B] = G'[A v B].
(11) G' has a blocking sequence by, b, ..., by of length at most o for
(A, B).

Proof. Since G is prime, G has a blocking sequence for (A, B) by Propo-
sition[5.2} Let G be the set of all graphs G’ locally equivalent to G such
that G'[A U B] = G[A u B]. We assume that G is chosen in G so that
the length ¢ of a blocking sequence by, by, . . ., by for (A, B) is minimized.

For 1 <i < ¢, Ng(b;)) n B = By or J because pg(A u {b;}, B) = 1.
For 1 <i </, Ng(b;)) n A= Ay or & because pg(A, Bu {b;}) = 1.

Suppose that Ng(b;) n (A v B) = Ng(bj) n (A u B) for some 1 <
i <j </ Ifb and b; are adjacent, then G' = G A b;b; € G. If b; and
b; are non-adjacent, then G' = G+ b;  b; € G. In both cases, we found
a graph in G having a shorter blocking sequence by Proposition |5.3| or
Corollary p.5] contradicting our assumption.

If |Bg|] = 1, then for all 1 < i < ¢, Ng(b;)) n A = Ay because
otherwise G «b; € G has a shorter blocking sequence by Proposition [5.3]
contradicting our assumption. Similarly if |A| = 1, then Ng(b;) n B =
By foralll << /.

By the pigeonhole principle, we deduce that ¢ < /¢;. 0

6. OBTAINING A LONG CYCLE FROM A HUGE INDUCED PATH

In this section we aim to prove the following theorem.
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w; W2 W3 W4
| |
|
|

Vo UVp | V2 | U3 | Vg | Us Vg U7 Ug

FIGURE 6. An example of a 4-patched path of length 8.

Theorem 6.1. If a prime graph has an induced path of length [6.75n7],
then it has a cycle of length n as a vertex-minor.

The main idea is to find a big generalized ladder, defined in Section [4]
as a vertex-minor by using blocking sequences in Section [5]

6.1. Patching a path. For 1 < k < n — 2, a k-patch of an induced

path P = vyvy - - - v, of a graph G is a sequence ) = wy, ws, ..., wy of
distinct vertices not on P such that for each i € {1,2,..., k},
(1) vis2 is the only vertex adjacent to w; among v;i1, Vita, ..., U,

(11) @ #* NG(’LUZ) M {’007 e, U, Wy . ,U)ifl} #* {’Ul', wi,l} if 1 > 1,
(111) Ng<’w1) M {'U(),Ul} = {UO}.
An induced path is called k-patched if it has a k-patch. An induced
path of length n is called fully patched if it is equipped with a (n — 2)-
patch. See Figure [0] for an example.
Our goal is to find a fully patched long induced path in a vertex-
minor of a prime graph having a very long induced path.

Lemma 6.2. Let P = vgvy...v,, be an induced path from s = vy to
t = v, n a graph G and let H be a connected induced subgraph of
G\V(P). Let v be a vertex in V(G)\(V(H) v V(P)). Suppose that
Ng(V(H))nV(P) = {s}, |E(P)| = 6(n—1)*>—5, and v has neighbors
in both V(P)\{s} and V(H).
If G has no cycle of length 2n+ 1 as a vertex-minor, then there exist
a graph G' locally equivalent to G and an induced path P' from s to t
of G' disjoint from V (H) satisfying the following.
(1) GIV(H) v {s}] = G'[V(H) v {s}],
(ZZ) Ng(v) M V(H) = Ng/(?}) M V(H),
(111) P' = vgu;vi41Vis2 - - - Uy for some i,
(iv) v; is the only vertex on V(P') adjacent to v in G',
(v) |E(P')| = |[E(P)| - 6(n—1)* + 6.

Proof. Since G has a cycle using H with s and P, GG is not a forest and
therefore n > 2. Let vy = s,vq,v9,...,v,, =t be vertices in P. Let v
be the neighbor of v with maximum k. Then G has a fan having at
least k + 3 vertices because H is connected and v has a neighbor in H.
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If k > 6(n —1)? — 6, then G has a fan having at least 6(n — 1)? — 3
vertices and by Lemma [£.3] G contains a cycle of length 2n + 1 as a
vertex-minor. This contradicts to our assumption that G has no such
vertex-minor. Thus, k < 6(n —1)* — 7.

Let GO =G = V1 ¥ Vg * Vg -+ * VUp_9 and let P() = VoVUg—-1VEVk+1 " " Um-
(If £ < 2, then let Gy = G and Py = P.) Then clearly P is an induced
path of Gy and vy € Ng,(v) N V(Py) < {vo, Vg_1, U}

If Ng,(v) "V (Py) = {v}, then we are done by taking G’ = G * vg_1
and P’ = vgurUp41 "+ * U

If Ng,(v) nV(Py) = {vg_1, vk}, then we can take G' = G » vy, * vp_;
and P’ = 0gUk41Vks2 U,

If Ng,(v) nV(Fy) = {vo, v}, then we can take G’ = Gg * vg_1 * vy
and P’ = 0gUk41Vks2 * * * U,

Finally, if Ng,(v) n V() = {vo,vk—1,vx}, then we can take G' =
Gl * U * V1 * Vgg1 and P’ = VgU12Vk13 - - U

In all cases, |E(P")| = |[E(P)|— (k+1) > |E(P)|—6(n—1)*+6. O

Lemma 6.3. Let n > 2. Let G be a prime graph having an induced
path of length t. Ift = 6(n—1)>—3, then there exists a graph G’ locally
equivalent to G having a 1-patched induced path of length t—6(n—1)%+6,
unless G has a cycle of length 2n + 1 as a vertez-minor.

Proof. We may choose G so that the length ¢ of an induced path P is
maximized among all graphs locally equivalent to G. Let vy, vy, ..., 0,
be vertices of P in this order. Since G is prime, vy has a neighbor v
other than v;. We may assume that v is non-adjacent to v; because
otherwise we can replace G with G * vy.

Since P is a longest induced path, v must have some neighbors in
V(P)\{vo,v1}. We now apply Lemma with H = G[{vo,v1}], de-
ducing that there exists a graph G’ locally equivalent to G having a
1-patched induced path of length ¢ —6(n —1)% + 6, unless G has a cycle
of length 2n + 1 as a vertex-minor. O

Lemma 6.4. Let n > 2. Let G be a prime graph and let P be a k-
patched induced path vovy - - -vs. Ift = 6(n—1)?+k, then there exists a
graph G’ locally equivalent to G having a (k + 1)-patched induced path
VUL -+ * Up2ViVis1 - U of length at least t — 6(n — 1)% + 3 with some
1>k + 2, unless G has a cycle of length 2n + 1 as a vertez-minor.

Proof. Let P = vgvy...v; be an induced path of length ¢ in G and
Q = wy,wsq,...,w, be its k-patch. Suppose that G has no vertex-
minor isomorphic to a cycle of length 2n + 1.

Let A = {vp,v1,...,vk+1} U Q. By Proposition 5.6 we may assume
that G has a blocking sequence by, bs,...,b, of length at most 4 for
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(A, V(P)\A) because vy,2 is the only vertex in V(P)\A having neigh-
bors in A.

Notice that P\A is an induced path of G. We say that a blocking
sequence by, by, ..., by for (A, V(P)\A) is nice if b, has a unique neighbor
in V/(P)\A, that is also a unique neighbor of vy in V(P)\A.

We know that b, has neighbors in {vg,3,...,v;} by the definition
of a blocking sequence. We take H = G[A U Q U {b1,bs,...,bi1}].
By Lemma [6.2] there exist a graph G, locally equivalent to G and
an induced path Py = vgvy -+ Vg yov;U11 - - vy of Gy for some ¢ with
a k-patch @ such that Gy[A U {vgi2}] = G[A U {vr42}], a sequence
by, b, ..., be is a nice blocking sequence for (A, V(FP)\A) in Gy, and
|E(Py)| =t —6(n—1)*+6.

Let » > 1 be minimum such that there exist a graph G’ locally
equivalent to G and an induced path P’ = vgvy - - - Vg4 00;Vi41 - - - Uy, fOr
some 7 with a k-patch @ in G’ such that G'[Au{vki2}] = G[AU{vk2}],
a sequence by, by, ..., b, is a nice blocking sequence for (A, V(P')\A) in
G, and |[E(P')| >t —6(n—1)>+ 6+ r — {. Such r exists because Gy
and P, satisfy the condition when r = /.

We claim that r = 1. Suppose r > 1.

Suppose that b, is non-adjacent to v, in G'. Then v; is the only
neighbor of b, in V(P’) in G’ and b, is adjacent to b,_1 in G'. If b,_; is
non-adjacent to vy, o, then take G = G’ # b, and P”" = P’; in G”, a se-
quence by, by, ..., b, is a nice blocking sequence for (A, V(P")\A) and
the length of P’ is at least t—6(n—1)?+6+7—/¢. This leads a contradic-
tion to the assumption that r is minimized. Therefore b,_; is adjacent
to V4. Then take G” = G’ = b, = v; with P” = vqvy -+ - Up400i1 * * * U
Then by, bs, ..., b.—; is a nice blocking sequence for (A, V(P")\A) in G”
and the length of P” is at least t — 6(n — 1)> 4+ 6 + » — ¢ — 1. This
contradicts to the assumption that r is chosen to be minimum.

Therefore b, is adjacent to viy1 in G’. Since b, is the last vertex
in the blocking sequence, b, is also adjacent to wy in G'. If b._; is
non-adjacent to vy,9, then take G” = G’ x v 42+ b, and P”" = P’; in G,
a sequence by, bo, ..., b._1 is a nice blocking sequence for (A, V(P")\A)
and the length of P” is at least t — 6(n — 1)? 4+ 6 + r — ¢, contradicting
our assumption on r. So b,_; is adjacent to vi4o. Then we take G” =
G’ # Vg9 # by +v; with P” = vguy - - UpyoUit1 -+ - Up. Then by, bo, ... b1
is a nice blocking sequence for (A, V(P")\A) in G” and the length of
P" is at least t — 6(n — 1) + 6 + r — ¢ — 1. This again contradicts to
the assumption on r. This proves that r = 1.

Since b; is a nice blocking sequence for (A, V(P')\A) in G’, b; has a
neighbor in A in G’ and Ng/(b1) N A # {vg.1, wy}. In addition, v; is the
only neighbor of b; among V(P")\A in G’. Now it is easy to see that
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Wy, Wo, W3, . .., Wi, by is a (k + 1)-patch of P" in G'. And, since ¢ < 4,
we have |E(P')| =t —6(n—1)?+ 3. O

Proposition 6.5. Let N > 4 be an integer. If a prime graph G on at
least 5 vertices has an induced path of length L = (6(n — 1)? — 2)(N —
2)—1, then there exists a graph G' locally equivalent to G having a fully
patched induced path of length N, unless G has a cycle of length 2n + 1
as a verter-minor.

Proof. Suppose that G has no cycle of length 2n + 1 as a vertex-minor.
Then n > 3 by Theorem By Lemma [6.3] we may assume that G
has a 1-patched path of length L — 6(n — 1)? + 6. By Lemma , we
may assume that G has an (N — 2)-patched path of length

L—6(n—-12+6—(N-3)(6(n—-1)>*-3)=N
Thus G has a fully patched induced path of length N. O

6.2. Finding a cycle from a fully patched path. We aim to find
a cycle as a vertex-minor in a sufficiently long fully patched path.

Let P = vyvy - - - v, be an induced path of a graph G with a (n — 2)-
patch Q) = wiwows, ... w,_s. Let A; = {vg,v1} and fori =2,... n—2,
let A; = {vo,v1,...,05,wi,wa,...,w;—1} and B; = V(P)\A; for all
ie{l,2,...,n— 2.

For i > 1, let L(w;) be the minimum j > 0 such that

pc(Aj1; Bi v {wi}) > L.
Since w; is a blocking sequence for (A;, B;), L(w;) is well defined and

We classify vertices in () as follows.

e A vertex w; has Type 0 if L(w;) = 0 and w; is adjacent to vy.
e A vertex w; has Type 1 if L(w;) = 1 and w; has no neighbor in
Apw,) and w; is adjacent to exactly one of vy y,)4+1 and wi(w,).
e A vertex w; has Type 2 if L(w;) = 1 and w; is adjacent to vy,
non-adjacent to vy.
e A vertex w; has Type 3 if L(w;) = 2 and w; has no neighbor in
Apw)—1 and w; is adjacent to both vy, and wi(w,)—1.
By the definition of fully patched paths, we can deduce the following
lemma easily.

Lemma 6.6. Fach vertex in () has Type 0, 1, 2, or 3.

Proof. If w; is adjacent to vy, then p& (A, By u {w;}) > 1 and therefore
L(w;) = 0, implying that w; has Type 0. We may now assume that w;
is non-adjacent to vy and so L(w;) > 0.
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If w; has no neighbors in Ay, ), then p& (AL, +1, BLiw)+1 U {ws}) =
PE(ALw)+1\AL(w,)> BLw)+1 Y {w;}) > 1. Thus vp,)+2 and w; cannot
have the same set of neighbors in Apw,)+1\ALw,) = {VL(w)+1: WL(ws)}-
By the definition of fully patched paths, vy ,,)+2 is adjacent to both
Vr(w)+1 and wr(y,). It follows that w; is adjacent to exactly one of
VL (w)+1 and wr ;). So w; has Type 1.

Now we may assume that w; has some neighbors in Az ,,). By defi-
nition,

PG (AL, Briw) v {wi}) <1

and therefore w; and vp,,)+1 have the same set of neighbors in Ay,
Therefore, if L(w;) = 1, then w; is adjacent to vy, implying that w; has
Type 2. If L(w;) > 1, then w; is adjacent to both vy, and wrw,)-1,
and so w; has Type 3. 0

We say that a pair of paths P} and Py from {vg,v;} to {v;y1,w;} is
good if

(i) P! and P are vertex-disjoint induced paths on A; 1,
(i) for each j € {1,2,...,i—1}, w; € V(P))uV(P;) or vjyy € V(P])u
V(P;), ‘
(i) GV (P})uV (Py)]+v;11w; is a generalized ladder with two defining
paths P and Pi.

Lemma 6.7. For alli€ {1,2,...,n — 2}, G has a good pair of paths
Pj and Pi from {vg,v1} to {viy1, w;}.

Proof. We proceed by induction on . If w; has Type 0, then let P{ =
V107 - - v and Pi = vpw;. Since vy has no neighbors in {vo, vs, ..., viy1},
GIV(P}) u V(P))] + virw; is a generalized ladder with two defin-
ing paths P and Pj. Also, V(P}) u V(Pi) < A;;1 and for all j €
{1,2,...,i— 1}, vj41 € V(P}). Thus, the pair (P}, P3) is good.

If w; has Type 2, then let P/ = vow vszvy -+ vy and Py = vjw;.
By the definition of a patched path, v; is not adjacent to w;. So,
vy has no neighbors in {w;,vs,v4,...,v;41}, and therefore G[V(P}) u
V(PY)] + vip1w; is a generalized ladder with two defining paths P} and
Pi. Clearly, V(P}) u V(P)) < Ajy1. Moreover, w; € V(P}) and for
each j € {2,...,i — 1}, vjy € V(P}). Therefore, the pair (P{, P3) is
good.

Now, we may assume that w; has Type 1 or Type 3. Since L(w;) > 1

by the induction hypothesis, G has a good pair of paths P;° (ws), Py (w:)

from {vo, v1} t0 {VL(wy)+1 Wr(w,)}-
Suppose w; has Type 1 and therefore w; is adjacent to exactly one
of vp(w)+1 and wiw,). Let {z,y} = {vi(w)+1, Wrw,)} such that x is
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Y Unw)+2  VL(w)+3 " Vig1
T € {VL(w)+1 WL(wy) }

Y € {VL(w)+1, Wr(wy) ) \{2}

VL(w)+1  YL(wi)+2 " Vig1

T € {UL(w;)> W(w;)—1}

F1cURE 7. Constructing a generalized ladder in a fully
patched path. The vertex w; has Type 1 in (a) and has
Type 3 in (b).

adjacent to w;. We may assume that the paths P and PF™) end
at y and z, respectively. Let P/ be a path

L w;
P () + YUL(w;)+2VL(w;)+3 " Vit1

and let P} be a path P2L (w) 4 zw;. See Figure EI By the induction
hypothesis, V(PlL(wi)) U V(P;(wi)) C Arnw)+1 S Aiz1, and for each j €
(1,2,..., L(w;) — 1}, V(P O V/(PF™)) contains w; or vj,;. Thus
it follows that V(P§) u V(Pi) < A;+1 and for each j € {1,2,...,i— 1},
V(P}) u V(Pj) contains w; or v;1.

We claim that G[V(P}) u V(P3)] + viy1w; is a generalized ladder
with the defining paths P} and Pi. By the induction hypothesis, it is
enough to show that there are no two crossing chords xa and w;b for
some a,b € V(P}). Since w; has no neighbor in Apw, and w; and y
are non-adjacent, b€ X = {vy : k € {L(w;) + 2, L(w;) + 3,...,i + 1}}.
Since z has no neighbor in X\{vpw,)+2}, we deduce that xza and w;b
cannot cross and therefore G[V (P}) u V(Py)] + viy1w; is a generalized
ladder. This proves that if w; has Type 1, then (P}, Pi) is a good pair.
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Finally, suppose that w; has Type 3 and so w; is adjacent to both

(w;

VL (w;) and W ,;)—1. By symmetry, we may assume that PQL ) ends at

is on Ap(w,)+1 and vpe,,)4+1 has only two neighbors vp ), Wrw,)-1 in

Apw)+1, either & = v, Or T = Wr(w,)-1. Let y be the predecessor of
W () I PlL(wi). Let P! be a path

Ur(w)+1- Let  be the predecessor of vy ()41 in PQL(wi). Since Pf(wi)

L Wy
P1 (o) T WL (w;) VL (w;)+2VL(w;)+3 * * * Vi1

and let Pi be a path obtained from PS™" by removing Vp(w;)+1 and
adding rw;. See Figure (b) It follows from our construction and the
induction hypothesis that V(P}) u V(Pj) € A1 and V(P)) u V(P))
contains w; or v,y for each j e {1,2,...,i—1}.

We claim that G[V(P}) u V(P3)] + visqw; is a generalized ladder
with the defining paths P and Pi. By the induction hypothesis, it is
enough to prove that there are no two chords za and w;b such that
a,b € V(P}) and b precedes a in P}. Suppose not. Since w; has no
neighbor in Ay ,,)—1, neighbors of w; in P} are in {y, wrw,)} v {vy :
k e {L(w;) + 2,L(w;) + 3,...,i + 1}}. Since x has no neighbor in
{vp : k€ {L(w;) + 2, L(w;) + 3,...,i+ 1}}, we deduce that a = wp,)
and b = y. Since w; has no neighbor in Ay ,,)-1, b is one of v,
and wr,(,,)—1 other than x. Thus wp,,) is adjacent to both vy ,,) and
W (w)—1- This contradicts (iil) because vy (w,)+1 is also adjacent to both
Vr(wy) and W (y;)—1 and so G’[V(PlL(wi)) U V(PQL(“”))] + VL (w5) 1 WL () 19
not a generalized ladder. U

Lemma 6.8. If a graph has a fully patched induced path of length n,
then it has a generalized ladder having at least n + 2 wvertices as an
induced subgraph.

Proof. Let P = vgvy - - - v, be the induced path of length n with an (n—
2)-patch @ = wyws -+ - Wp_s. Lemma provides a good pair of paths
P2 and Py from {vg,v1} to {v,_1,w, o} such that G[V (P} %) u
V(P )] + vn_1wn_s is a generalized ladder and V (PP~2) U V(Py2)
contains w; or vy for each j € {1,2,...,n — 3}. Since v, is only
adjacent to v, ; and w,_» in G, G' = G[V(P]"?) u V(Py?) U {v,}]
is a generalized ladder. Since vy, v, Up, Vp_1, Wp—2 € V(G'), G' has at
least (n —3) + 5 = n + 2 vertices. O

Now we are ready to prove the main theorem of this section.

Lemma 6.9. Letn > 1. If a prime graph has an induced path of length
110592n7, then it has a cycle of length 4n + 3 as a vertez-minor.
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Proof. Let G be a prime graph having an induced path of length
110592n". Suppose that G has no cycle of length 4n + 3 as a vertex-
minor. Let N = 4608n°. Then

(6(2n)* — 2)(N —2) — 1 < 110592n".

Thus by Proposition [6.5] there exists a graph G’ locally equivalent to
G having a fully patched induced path of length N. By Lemma [6.8]
G’ must have a generalized ladder having at least N + 2 vertices as an
induced subgraph. By Proposition we deduce that G’ has a cycle
of length 4n + 3 as a vertex-minor. O

Proof of Theorem[0.1]. Let k = |n/4]. Let G be a prime graph having a
path of length at least 6.75n7. Then G has a path of length 6.75(4k)7 =
110592k7, and by Lemma , G has a cycle of length 4k + 3 > n as a
vertex-minor. U

7. MAIN THEOREM
In this section, we prove the following.

Theorem 7.1. For every n, there is N such that every prime graph on
at least N wertices has a vertez-minor isomorphic to C,, or K, 3 K,,.

By Theorem (6.1} it is enough to prove the following proposition.

Proposition 7.2. For every c, there exists N such that every prime
graph on at least N wvertices has a vertex-minor isomorphic to either
P.or K.AK..

Here is the proof of Theorem [7.1] assuming Proposition [7.2]

Proof of Theorem [7.1. We take ¢ = [6.75n"| and apply Proposition
and Theorem [6.1] O

For integers h,w, ¢ > 1, a (h,w, £)-broom of a graph G is a connected
induced subgraph H of G such that

(i) H has an induced path P of length h from some vertex v called
the center,

(ii) P\v is a component of H\v,

(iii) H\V(P) has w components, each having exactly ¢ vertices.
The path P is called a handle of H and each component of H\V (P) is
called a fiber of H. If H = G, then we say that G is a (h, w, {)-broom.
We call h, w, ¢ the height, width, length, respectively, of a (h,w,{)-
broom. See Figure [§f Observe that v has one or more neighbors in
each fiber.
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height h := number of edges in the handle

center

length ¢ :=number of vertices in each ﬁberi

p——
width w :=number of fibers

FIGURE 8. A (h,w,{)-broom.

Here is the rough sketch of the proof. If a prime graph G has no
vertex-minor isomorphic to P. or K.H K. and G has a broom having
huge width as a vertex-minor, then it has a vertex-minor isomorphic to
a broom with larger length and sufficiently big width. So, we increase
the length of a broom while keeping its width big. If we obtain a broom
of big length by repeatedly applying this process, then we will obtain
a broom of larger height. By growing the height, we will eventually
obtain a long induced path.

To start the process, we need an initial broom with sufficiently big
width. For that purpose, we use the following Ramsey-type theorem.

Theorem 7.3 (folklore; see Diestel [8, Proposition 9.4.1]). For positive
integers c and t, there exists N = go(c,t) such that every connected
graph on at least N wvertices must contain K1, Ky, or P. as an
induced subgraph.

By Theorem if G is prime and [V(G)| = go(c,t + 1), then either
G has an induced subgraph isomorphic to P. or GG has a vertex-minor
isomorphic to Kj;1. Since a (1,¢,1)-broom is isomorphic to K441,
we conclude that every sufficiently large prime graph has a vertex-
minor isomorphic to a (1, ¢, 1)-broom, unless it has an induced subgraph
isomorphic to P..

7.1. Increasing the length of a broom. We now show that if a
prime graph has a broom having sufficiently large width, we can find a
broom having larger length after applying local complementation and
shrinking the width.

In the following proposition, we want to find a wide broom of length
2 when we are given a sufficiently wide broom of length 1, when the
graph has no P, or K.H K, as a vertex-minor.
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Proposition 7.4. For all integers ¢ = 3 and t > 1, there exists N =
g1(c, t) such that for each h = 1, every prime graph having a (h, N, 1)-
broom has a vertex-minor isomorphic to a (h,t,2)-broom, K.H K., or
P..

We will use the following theorem.

Theorem 7.5 (Ding, Oporowski, Oxley, Vertigan [10]). For every pos-
itive integer n, there exists N = f(n) such that for every bipartite graph
G with a bipartition (S,T), if no two vertices in S have the same set
of neighbors and |S| = N, then S and T have n-element subsets S’ and
T', respectively, such that G[S', T"] is isomorphic to K, K,, K, K,,
or K, X K,.

Proof of Proposition|[7.4. Let N = f(R(w,w)) where f is the function
in Theorem [7.5] and w = max(t + (¢ — 1)(c — 3),2c — 1). Suppose that
G has a (h, g1(c,t),1)-broom H. Note that every fiber of H is a single
vertex.

Let S be the union of the vertex sets of all fibers of H, and x be the
center of H. Let Ng(S)\{z} = T. Since G is prime, no two vertices
in G have the same set of neighbors, and so two distinct vertices in
S have different sets of neighbors in 7". Since |S| = N = f(R(w,w)),
by Theorem there exist Sop < S, Ty < T such that G[Sy, Tp] is
isomorphic to KR(w,w)EKR(w,w)v KR(w,w)lZlKR(w,w) or KR(w,w)KR(w,w)'
Since |Ty| = R(w,w), by Ramsey’s theorem, there exist S’ < Sy and
T' < T, such that G[S',T"] is isomorphic to K, B K., K, K,
or K, X K,, and T' is a clique or a stable set in G. If G[S",T"] is
isomorphic to K,, ] K,, or K, X K,, then by Lemmas and G
has a vertex-minor isomorphic to either Py, or K, o H K,_». Since
w > 2c—1and ¢ > 3, we have P, or K. K.. Thus we may assume
that G[S’, T'] is isomorphic to K, E K.

If 7" is a clique in G, then we can remove the edges connecting 7" with
x by applying local complementation at some vertices in S’. Thus, we
can obtain a vertex-minor isomorphic to K,,HK,, from G[S"uT"u{x}]
by applying local complementation at x and deleting x. Therefore we
may assume that 7" is a stable set in G.

We claim that each vertex y # x in the handle of H is adjacent to at
most ¢ vertices in 77, or G has K.HK_ as a vertex-minor. Suppose not.
If y is a neighbor of x, then by pivoting an edge of G[S’,T"], we can
delete the edge xy. From there, we obtain a vertex-minor isomorphic
to K.H K. by applying local complementation at x and y. If y is not
adjacent to x, then we obtain a vertex-minor isomorphic to K.H K.
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FIGURE 9. Dealing with 4-vertex graphs in Lemma .

by deleting all vertices in the handle other than x and y, and applying
local complementation at x and y. This proves the claim.

By deleting at most (¢ — 1)h vertices in 7" and their pairs in S’, we
can assume that no vertex other than = in the handle has a neighbor
in 77 and this broom has width at least w — (¢ — 1)h. If h + 2 > ¢,
then we have P, as an induced subgraph. Thus we may assume that
h <c¢—3. Since w — (¢ —1)h = w— (¢ —1)(c — 3) = t, we obtain a
vertex-minor isomorphic to a (h, t,2)-broom. U

We now aim to increase the length of a broom when the broom has
length at least 2. For a fiber I’ of a broom H, we say that a vertex
ve V(G)\V(H) blocks F if

pe(V(E), VHN\V(F)) v {v}) > 1.

If G is prime and F' has at least two vertices, then GG has a blocking se-
quence for (V(F),V(H)\V(F)) by Proposition [5.2| and therefore there
exists a vertex v that blocks I’ because we can take the first vertex in
the blocking sequence.

Lemma 7.6. Let G be a graph and let x,y be two vertices such that
pc({z,y}) = 2 and G\z\y is connected. Then there exists some se-
quence vy, va, . .., v, € V(G)\{z,y} of (not necessarily distinct) vertices
such that G = vy % vy - - - x v, has an induced path of length 3 from x toy.

Proof. We proceed by induction on |V(G)|. If |V(G)| = 4, then it is
easy to check all cases to obtain a path of length 3. To do so, first ob-
serve that up to symmetry, there are 2 cases in G[{z,y}, V(G)\{z, y}];
either it is a matching of size 2 or a path of length 3. In both cases, one
can find a desired sequence of vertices to apply local complementation,
see Figure [J] for all possible graphs on 4-vertices up to isomorphism.

Now we may assume that G has at least 5 vertices. Let A; =
No(@)\(Na(y) U {y}), A2 = No(x) A Na(y), and Ag = Ne(y)\(No() U
{z}). Clearly pe({z,y}) = 2 is equivalent to say that at least two of
Ay, Ay, Az are nonempty.

We say a vertex t in G\x\y deletable if G\x\y\t is connected. If there
is a deletable vertex not in A; U Ay U As, then pey({z,y}) = 2 and we
apply the induction hypothesis to find an induced path. Thus we may
assume that all deletable vertices are in A; U Ay U As.
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If |[A;] > 1 and A; has a deletable vertex ¢ for some ¢ = 1,2, 3, then
peve({x,y}) = 2 and so we obtain a sequence by applying the induction
hypothesis. So we may assume that if A; has a deletable vertex, then
|A;| = 1.

If there are three deletable vertices t, ta, t3 in G\z\y, then we may
assume A; = {t;}. However, pg, ({x,y}) = 2 because Ay, As are
nonempty and therefore we obtain an induced path from x to y by the
induction hypothesis.

Thus we may assume that G\z\y has at most 2 deletable vertices.
So G\z\y has maximum degree at most 2 because otherwise we can
choose leaves of a spanning tree of G\z\y using all edges incident with
a vertex of the maximum degree. If G\z\y is a cycle, then every vertex
is deletable and so G\z\y is a path. Let w be a degree-2 vertex in
G\z\y. Then G » w has at least 3 deletable vertices and therefore we
find a desired sequence vy, vg, ..., v, such that G «w vy *vy - - - x v, has
an induced path of length 3 from z to y. U

Lemma 7.7. Let G be a graph and let x, y be two vertices in G, and
let Fy, Fy, ..., F. be the components of G\x\y. If p&({x,y}, F;) = 2 for
all 1 < i < ¢, then G has a vertex-minor isomorphic to K. 3 K..

Proof. We proceed by induction on |V (G)| + |E(G)].

Suppose that G[V (F;) u {z,y}] is not an induced path of length 3
from = to y. By Lemma [7.6] there exists a sequence vy, vs, ..., v, €
V(F;) such that G[V(F;) u {x,y}] vy * vy - - - * v, has an induced path
of length 3 from x to y. If |V (F;)| = 3, then we delete all vertices in F;
not on this path and apply the induction hypothesis. If |V (F})| = 2,
then [E(G[V(Fi) v {z,y}])| > |E(G[V(F) U {2,y}] * v1 x vg = - x 0]
because two vertices in F; are connected, G[{x,y}, V(F;)] has at least
two edges, and G|V (F;) u {z,y}] is not an induced path of length 3
from x to y. So we apply the induction hypothesis to G = vy xvg*- - - xv,
to obtain a vertex-minor isomorphic to K.H K..

Therefore we may assume that G[V (F;) u {z,y}] is an induced path
of length 3 from z to y for all . Thus G =z +y\x\y is indeed isomorphic
to K. = K.. U

Lemma 7.8. Let t be a positive integer, and G be a bipartite graph
with a bipartition (S,T) such that every vertex in T has degree at least
1. Then either S has a vertex of degree at least t + 1 or G has an
induced matching of size at least |T|/t.

Proof. We claim that if every vertex in .S has degree at most ¢, then G
has an induced matching of size at least |T'|/t. We proceed by induction
on |T|. This is trivial if |T] = 0. If 0 < |T| < t, then we can simply
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pick an edge to form an induced matching of size 1. So we may assume
that |T'] > t.

We may assume that 7" has a vertex w of degree 1, because otherwise
we can delete a vertex in S and apply the induction hypothesis. Let v
be the unique neighbor of w. By the induction hypothesis, G\v\Ng(v)
has an induced matching M’ of size at least (|T'| —t)/t. Now M’ {vw}
is a desired induced matching. 0

Lemma 7.9. Let H be a broom in a graph G havingn fibers Fy, Fy, ..., F,
given with n vertices vy, vy, ..., v, in V(G)\V(H) such that

(1) v; blocks F; if and only if i = j,

(2) v; has a neighbor in F; if and only if i < j.
If n = R(c+1,c+ 1), then G has a vertez-minor isomorphic to P..

Proof. 1f j > 4, then v; has a neighbor in Fj, but v; does not block Fj.
Therefore, v; is adjacent to every vertex in V' (F;) n Ny (x) for j > i.
Since n = R(c+ 1,¢ + 1), there exist 1 < t; < ty--+ < t.y1 < n such
that {vy,, vy,, ..., vy, } isaclique or a stable set of G. For 1 <i < c+1,
let w; be a vertex in V(F},) n Ny (x). Clearly,

G[{'Utla Vtzy - - - avtg[c/g],l}a {w2a Wy, -« Wle/2] }]

is iSOIHOI‘phiC to K[C/Q] 1 K[C/Q].
By Lemma , Kiejo1 A Kej2) or Kjejo1 A Kjej21 has a vertex-minor
isomorphic to P.. 0

Lemma 7.10. Let H be a broom in a graph G havingn fibers Fy, Fy, ..., F,.
Let vy, v, ..., v, be vertices in V(G)\V (H) such that

(1) v; blocks F; if and only if i = j,
(2) v; has a neighbor in F; for all i and j.

Ifn = R(c+2,¢+2), then G has a vertex-minor isomorphic to K. HK..

Proof. If i # j, then v; does not block F; and therefore Ng(v;) N
V(F;) = Ng(z) nV(F;). Since n = R(c+2,c+2), there exist 1 <t; <
ty- -+ < tero < msuch that {v,, v, ..., v, } is a clique or a stable set

of GG.

We claim that for each 1 < ¢ < ¢ + 2, there exist a sequence
wl? Wl ,w,(c? of k; = 0 vertices in V(F},)\(Ng(z) U Ng(vy,)) and

z; € V(F},) such that z; is not adjacent to vy, in G = wgi) * wéi) CRRRE w,i?

but z; is adjacent to vy, In G = wgi) * wéi S w,(g? for all j # 1.

Let AY) = (Ng(v,)\Na(@)) n V(E,), AY = (Na(v,) n Na(z)) n

V(E,) and A = (Ng(2)\Ng(v,)) 0 V(E,).
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If Ag) # (&, then a vertex z; in Agi) satisfies the claim. So we
may assume A:(f) is empty. Then Agi) # ¢ and Agi) # (J, otherwise
pg({vti,vtj},V(F}i)) < 1 for all j # i because N(;(vtj) N V(F,) =
Neg(z) n V(F,). We choose agi) € Agi) and ag) € Ag) so that the

distance from a!” to a{” in F; is minimum.

Let P; be a shortest path from a(li) to a(;) in Fj,. Note that each

internal vertex of P; is not contained in Agi) U Ag). After applying

local complementation at all internal vertices of P;, agi) is adjacent to

a;i) and vy, and non-adjacent to vy, for all j # 7. So by applying one

more local complementation at agi) if necessary, we can delete the edges

between agi) and vy, for all j # ¢. And then, z; = agi) satisfies the claim.

Since each w,(f) has no neighbors in {v;,v4,,...,v,,} in G, applying
local complementation at w,(f) does not change the adjacency between
any two vertices in {v,,vy,,...,v,,}. Thus the induced subgraph of
G’ on {21, 22, ., Zera ) UV, Uty - -, Ut } I8 isomorphic to K, o< Koo

or K., X K.,2, and by Lemma , G has a vertex-minor isomorphic
to K. 5 K.. ]

Lemma 7.11. Let H be a (h,n,{)-broom in a graph G having n fibers
Fi, Fy, ..., F, given with n vertices vy, vs,...,v, in V(G)\V(H) such
that

(1) v; blocks F; if and only if i = j,

(2) if i # j, then v; has no neighbor in F;.
If n = R(t + (¢ —1)(c — 3),¢), then G has a vertez-minor isomorphic
to P., K.A K., or a (h,t,{ + 1)-broom.

Proof. Since n = R(t + (¢ — 1)(¢ — 3),¢), there exist 1 < t; <ty--- <
t;. < n such that either

(1) k= cand {v,v4,, ..., v} is a clique in G, or
(2) k=t+ (c—1)(c—3) and {v4,,vs,, ..., v, } is a stable set in G.

First, we assume that & = ¢ and {vy,,vy,,..., v, } is a clique. For
each t;, since p&({z, vy}, V(F},)) = 2, by Lemmal|7.6] there exists some
sequence wy, Ws, ..., w, € V(F;,) of (not necessarily distinct) vertices
such that G[V(F,) v {x, v, }] * wy * wsy - - - » w, has an induced path of
length 2 from v, to z. By applying local complementation at x, we
have a vertex-minor isomorphic to K.H K..

Now, suppose that k& = t + (¢ — 1)(c — 3) and {vy,,vpy, ..., 0}
is a stable set in G. Let P be the handle of H. If h + 2 > ¢,
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then we have P, as an induced subgraph. Thus we may assume that
h < ¢ — 3. We assume that a vertex y € V(P)\{z} adjacent to ¢ ver-
tices in {vy,vs,...,vx}. Then since p&({x,y}), V(F;) u {v,}) = 2 for
each 7, by Lemma [7.7] . we have a vertex-minor isomorphic to K.H K..
Thus, every vertex in the handle other than x cannot have more than
¢ — 1 neighbors in {v;,, v4,, ..., v, }. By deleting at most (¢ — 1)h ver-

tices in {vy,, Uty, ..., 0}, We can remove all edges from V(P)\{z} to
{v,, vty ..., 04, }. Since

k—(c—1h=k—(c—1)(c—3) >t
we have a vertex-minor isomorphic to a (h,t, ¢ + 1)-broom. O

Proposition 7.12. For positive integers ¢ and t, there erists N =
g2(c,t) such that for all integers £ = 2 and h = 1, every prime graph
having a (h, N, {)-broom has a vertex-minor isomorphic to a (h,t,(+1)-
broom, P., or K.H K,.

Proof. Let N = gs(c,t) = (¢ — 1)m, where m = R(mi, ma, ma, ma),
my = R(t + (¢ — 1)(c — 3),¢), and mg = R(c+ 2,c+ 2). Let H be
a (h, N,¢)-broom of G. If a vertex w in V(G)\V(H) blocks ¢ fibers
of H, then for each fiber F' of them, pf({w,z},V(F)) = 2. So by
Lemma [7.7, G has a vertex-minor isomorphic to K.H K.. Thus, a
vertex in V(G)\V (H) can block at most ¢ — 1 fibers of H.

For each fiber F' of H, there is a vertex v € V(G)\V (H) that blocks F
because G is prime. Thus, by Lemmal(7.8] there are g2(c, t)/(c — 1) = m
vertices vy, vy, ..., v, in V(G)\V(H) and fibers Fy, Fy, ..., F,, of H
such that for 1 < 4,5 < m, v; blocks F} if and only if i« = j. For
© # j, either v; has no neighbor in Fj or v; has a neighbor in F; but
ot (v, 2}, V(F)) = 1.

We assume that V(Kn) ={1,2,...,m}. We color the edges of K,,
such that an edge {3, j} is
green if Ng(v;) n V(Fj) # & and Ng(v;) n V(F;) # @,
red if Ng(v;) n V(F;) # & and Ng(vj) n V(F;) =
yellow if Ng(v;) nV(F;) = & and Ng(vj) n V( z) sé o,
blue if Ng(v;) NV (F;) = Ng(vj) nV(F) = &.

Since |V (K,,)| = m = R(my, ma, ma, my), by Ramsey’s theorem, either
K, has a green clique of size my, or K,, has a monochromatic clique
of size my which is red, yellow, or blue.

If K,, has a red clique C' of size mo, then for 7,5 € C, v; has a
neighbor in F} if and only if ¢ < j. Since my = R(c+ 1,c¢+ 1), by
Lemma |7 G has a vertex-minor isomorphic to F..

Slmllarly, if K, has a yellow clique C' of size my, by Lemma G
has a vertex-minor isomorphic to P..
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If K,, has a blue clique C' of size msy, then for distinct 7,7 € C, v;
has a neighbor in Fj. Since my = R(c + 2,c¢ + 2), by Lemma , G
has a vertex-minor isomorphic to K.H K..

If K,, has a green clique C' of size mq, then for distinct 7,7 € C,
v; has no neighbor in Fj. Since m; = R(t + (¢ — 1)(c — 3),¢), by
Lemma [7.11, G has a vertex-minor isomorphic to P., K. H K., or a
(h,t,¢+ 1)-broom. O

7.2. Increasing the height of a broom.

Proposition 7.13. For positive integers c, t, there exists N = gs(c, t)
such that for h = 1, every prime graph having a (h,1, N)-broom has a
vertex-minor isomorphic to a (h + 1,t,1)-broom or P..

Proof. Let N = gs(c,t) = go(c, 2t) where gq is given in Theorem [7.3]
Suppose that G has a (h, 1, N)-broom H and let x be the center of H.
Let F' be the fiber of H.

Since F' is connected, by Theorem [7.3] F has an induced subgraph
isomorphic to P,., or F' has a vertex-minor isomorphic to Ko 1. We
may assume that F' has an induced subgraph F’ isomorphic to Ko, 1.
Let P = p1ps...pn be a shortest path from p; = x to F’ in H. Note
that m > 2 and p,,_1 is adjacent to at least one vertices of F’. Let
S = Ng(pm-1) n V(F").

We claim that there exists a vertex v € V(F”) such that (G=v)[V (F)u
{z}] has an induced path of length at least m — 1 from z, and the last
vertex of the path has ¢ neighbors in F” which form a stable set in G.

If |S| < t, then choose p,,1 € V(F')\S and we delete S\p,, from
F’. And by applying local complementation at p,,;1, we obtain a path
from = to p,,41 such that p,,,; has t neighbors in F’ which form a
stable set.

If |S| = ¢t + 1, then by applying local complementation at p,,, we
obtain a path from x to p,, such that p,, has ¢ neighbors in F’ which
form a stable set. Thus, we prove the claim.

Since m > 2, the union of the handle of H and the path in the
claim form a path of length at least h + 1, and the last vertex of the
path has t neighbors which form a stable set in F’. Therefore, G has a
vertex-minor isomorphic to a (h + 1,¢, 1)-broom. O

Proposition 7.14. For positive integers c, t, there exists N = gy4(c,t)
such that for all h = 1, every prime graph having a (h, N, 1)-broom has
a vertez-minor isomorphic to a (h + 1,t,1)-broom, P., or K.H K..
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Proof. By Proposition [7.13], there exists Ny depending only on ¢ and
t such that every prime graph having a (h, 1, Ny)-broom has a vertex-
minor isomorphic to a (h + 1,¢,1)-broom or P.. By applying Proposi-
tion[7.12] (Np —2) times, we deduce that there exists N such that every
prime graph having a (h, N7, 2)-broom has a vertex-minor isomorphic
to a (h,1, No)-broom, P., or K. K.. By Proposition [7.4] there ex-
ists N such that every prime graph having a (h, N,1)-broom has a
vertex-minor isomorphic to a (h, Ny, 2)-broom, P., or K.H K.. O

We are now ready with all necessary lemmas to prove Proposition|7.2]

Proof of Proposition[7.3. By Theorem [I.1, every prime graph on at
least 5 vertices has a vertex-minor isomorphic to C5 and Py is a vertex-
minor of C5. Therefore we may assume that ¢ > 5.

By applying Proposition (¢ — 3) times, we deduce that there
exists a big integer ¢ depending only on ¢ such that every prime graph
G with a (1,¢,1)-broom has a vertex-minor isomorphic to a (c—2,1, 1)-
broom, P,, or K.= K. Since a (¢ — 2,1, 1)-broom is isomorphic to P,
and a (1,t¢,1)-broom is isomorphic to K., we conclude that every
prime graph having a vertex-minor isomorphic to K ;41 has a vertex-
minor isomorphic to P. or K.H K,.. By Theorem there exists N
such that every connected graph on at least NV vertices has a vertex-
minor isomorphic to K ;4. This completes the proof. U

8. WHY OPTIMAL?

Our main theorem (Theorem states that sufficiently large prime
graphs must have a vertex-minor isomorphic to C,, or K, H K,,. But
do we really need these two graphs? To justify why we need both, we
should show that for some n, C, is not a vertex-minor of Ky 5 Ky
for all N and similarly K,, 5 K, is not a vertex-minor of C'y for all N,
because C,, and K,, 5 K, are also prime.

Proposition 8.1. Let n be a positive integer.

(1) K3E K3 is not a vertex-minor of C,,.
(2) C7 is not a vertex-minor of K, B K,.

Since C7 is a vertex-minor of C, for all n > 7, the above proposition
implies that C), is not a vertex-minor of K yHKy when n > 7. Similarly
K, 3K, is not a vertex-minor of Cy for all n > 3.

We can classify all non-trivial prime vertex-minors of a cycle graph.

Lemma 8.2. If a prime graph H on at least 5 vertices is a vertex-minor
of C,,, then H is locally equivalent to a cycle graph.
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Hj Js

Fi1GURE 10. The graphs Hs and J5.

Proof. We proceed by induction on n. If n = 5, then it is trivial. Let
us assume n > 5. Suppose |V (H)| < |V(C,)|. By Lemma[2.1] H is a
vertex-minor of C,\v, C,, * v\v, or C,, A vw\v for a neighbor w of v.

If H is vertex-minor of C,, * v\v, then we can apply the induction
hypothesis because C,, * v\v is isomorphic to C,,_;.

By Lemma 2.6, H cannot be a vertex-minor of C,,\v because C,\v
has no prime induced subgraph on at least 5 vertices.

Thus we may assume that H is a vertex-minor of C, A vw\v for a
neighbor w of v. Again, by Lemma [2.6] H is isomorphic to a vertex-
minor of C),_s. ]

Classifying prime vertex-minors of K,, 5 K,, turns out to be more
tedious. Instead of identifying prime vertex-minors of K, H K,, we
focus on characterizing prime vertex-minors on 7 vertices to prove (2)
of Proposition 8.1

Instead of K,, H K,,, we will first consider H,. Let H, be the graph
having two specified vertices called roots and n internally disjoint paths
of length 3 joining the roots. Let J,, be the graph obtained from H,, by
adding a common neighbor of two roots. Then H,, has 2n + 2 vertices
and J, has 2n + 3 vertices, see Figure [I0] It is easy to observe the
following.

Lemma 8.3. Let H be a prime vertex-minor of H, on at least 5 ver-
tices. If |V (Hy,)| — |V(H)| = 3, then J,—1 has a vertez-minor isomor-
phic to H.

Proof. We may assume n > 3. Since at most 2 vertices of H,, have
degree other than 2, there exists v € V(H,)\V(H) of degree 2 in H,.
Let w be the neighbor of v having degree 2 in H,,. Let av’w’b be a path
of length 3 from a to b in H, such that {v,w} # {v/,w'}.
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By Lemma 2.1, H is a vertex-minor of either H,\v, H, * v\v or
H, ~vw\v. If H is a vertex-minor of H, * v\v, then H is isomorphic
to a vertex-minor of .J,,_1, because H,, * v\v is isomorphic to J,_;.

Since w has degree 1 in H,\v, by Lemma , if H is a vertex-minor
of H,\v, then H is isomorphic to a vertex-minor of H,\v\w. Since
H,\v\w is isomorphic to H, ; and H, ; is an induced subgraph of
Jn_1, H is isomorphic to a vertex-minor of J, ;.

Similarly, if H is a vertex-minor of H,, A vw\v, then H is isomorphic
to a vertex-minor of H, A vw\v\w. Clearly, (H, A vw\v\w) A v'w’ is
isomorphic to H,_;. Since H,_; is an induced subgraph of J,_1, H is
isomorphic to a vertex-minor of J, 1, as required. U

Lemma 8.4. Let H be a prime vertex-minor of J,, on at least 5 vertices.
IfI|V(J)|—|V(H)| = 2, then H, has a vertez-minor isomorphic to H.

Proof. We may assume n > 2. Let a,b be the roots of J,, azb be the
path of length 2, and avwb be a path of length 3 from a to b.

Case 1: Suppose that V' (J,)\V(H) has a degree-2 vertex on a path of
length 3 from a to b. We may assume that it is v by symmetry. By
Lemma 2.1} H is a vertex-minor of J,\v, J, = v\v, or J,, A vw\v.

If H is a vertex-minor of .J,,\v, then H is isomorphic to a vertex-minor
of J,\v\w by Lemma [2.6] because w has degree 1 in J,\v. Similarly,
if H is a vertex-minor of .J,, A vw\v, then H is isomorphic to a vertex-
minor of J, A vw\v\w. Clearly, J,\v\w and (J, A vw\v\w) * z are
isomorphic to J,_1, and J,,_; is a vertex-minor of H,,.

If H is a vertex-minor of J,,=v\v, then by Lemma , H is isomorphic
to a vertex-minor of J, * v\v\w, which is isomorphic to J,_1, because
w and z have the same set of neighbors in J, = v\v. Since J,_; is a
vertex-minor of H,, H is isomorphic to a vertex-minor of H,. This
proves the lemma in Case 1.

Case 2: Suppose that z € V(.J,)\V(H). Then by Lemma 2.1} H is a
vertex-minor of J,\z, J,, *2\z, or J, Aaz\z. Since J,\z and (J, *2\z) A
vw are isomorphic to H,,, we may assume that H is a vertex-minor of
Jn A az\z. However, J, A az\z has no prime induced subgraph on at
least 5 vertices and therefore by Lemma [2.6] H cannot be a vertex-
minor of J, A az\z, contradicting our assumption.

Case 3: Suppose that a or b is contained in V' (J,)\V (H). By symmetry,
let us assume a € V(J,)\V(H). By Lemma 2.1, H is a vertex-minor of
J\a, J, * a\a, or J, A az\a.

Since J,\a has no prime induced subgraph on at least 5 vertices, H
cannot be a vertex-minor of J,\a by Lemma [2.6]
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Loy

FiGURE 11. Graphs Fi, F5 and F3.

Suppose H is a vertex-minor of J, A az\a. By the definition of
pivoting, b is adjacent to all vertices of N (a)\{z} in J, A az\a. We
can remove all these edges between b and N (a)\{z} by applying local
complementation on all vertices of N, (b)\{z} in J, Aaz\a. Thus, H, is
locally equivalent to J, A az\a, and H is isomorphic to a vertex-minor
of H,.

Now suppose that H is a vertex-minor of J, * a\a. By the definition
of local complementation, N, (a) forms a clique in J, = a\a. So, b is
adjacent to all vertices of Ny (a)\{z} in (J, = a\a) = z. Similarly in
the above case, by applying local complementation on all vertices of
Ny (b)\{z} in (J, = a\a) = z, we can remove all edges between b and
Ny (a)\{z} in (J, = a\a) = z. Finally, by pivoting vw, we can remove
the edge bz, and therefore, J,, = a\a is locally equivalent to H,. Thus,
H is isomorphic to a vertex-minor of H,. U

Let Fi, Fy, F3 be the graphs in Figure

Lemma 8.5. Let n > 3 be an integer. If a prime graph H is a vertex-
minor of H,, and |V(H)| = 7, then H is locally equivalent to Fy, Fy,
or F3.

Proof. We proceed by induction on n. If n = 3, then let H be a prime 7-
vertex vertex-minor of Hs. Let axyb be a path from a root a to the other
root bin H3. By symmetry, we may assume that V(H3)\V (H) = {z} or
{a}. By Lemmal2.1] H is locally equivalent to H3\z, Hy=z\x, H3 Aza\z,
Hs\a, Hjz = a\a, or Hy A ab\a. The conclusion follows because H3\z,
Hj3 A xzy\z, H3\a are not prime and Hj * x\z, Hs A ax\a, and H3 = a\a
are isomorphic to Fi, F,, and F3, respectively.

Suppose n > 3. By Lemma [8.3] every 7-vertex prime vertex-minor
is also isomorphic to a vertex-minor of J, ;. By Lemma [8.4] it is
isomorphic to a vertex-minor of H,,_;. The conclusion follows from the
induction hypothesis. 0

Lemma 8.6. The graphs Fy, Fs, F3 are not locally equivalent to C'.

Proof. Suppose that F; is locally equivalent to C7. Then pg (X) =
pc.(X) for all X < V(C7) by Lemma Let = be the vertex in the
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L

ESSRE

FiGUuRE 12. List of all 3-vertex sets having cut-rank 2
containing a fixed vertex x denoted by a square.

center of Fj, see Figure [12] By symmetry of C7, we may assume that
x is mapped to a particular vertex in C;. Figure 12| presents all vertex
subsets of size 3 having cut-rank 2 and containing z in graphs C%, F7,
F;, F3. It is now easy to deduce that no bijection on the vertex set will
map these subsets correctly. U

We are now ready to prove Proposition 8.1}

Proof of Proposition[8.1. (1) By Lemma , it is enough to check that
K3H K3 is not locally equivalent to Cg. This can be checked easily.

(2) By applying local complementation at roots, we can easily see that
H,, has a vertex-minor isomorphic to K,, = K,,. Lemma [8.5|states that
all 7-vertex prime vertex-minors of H,, are F;, Fy, and F;5. Lemma
proves that none of them are locally equivalent to C;. Thus H,, has no
vertex-minor isomorphic to C7 and therefore K,, 3 K,, has no vertex-
minor isomorphic to C. 0

9. DISCUSSIONS

9.1. Vertex-minor ideals. A set [ of graphs is called a vertez-minor
ideal if for all G € I, all graphs isomorphic to a vertex-minor of G
are also contained in I. We can interpret theorems in this paper in
terms of vertex-minor ideals as follows. This formulation allows us to
appreciate why these theorems are optimal.

Corollary 9.1. Let I be a vertex-minor ideal.
Theorem B.1: Graphs in I have bounded number of vertices if
and only if {K, :n >3} & I.
Theorem [B.1k Connected graphs in I have bounded number of
vertices if and only if {K, :n >3} & 1.
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Theorem [3.1k Graphs in I have bounded number of edges if and
only if (K, :n>3y&1 and {K,EK,:n>1} ¢ I.

Theorem [T.1k Prime graphs in I have bounded number of ver-
tices if and only if {C,, :n =3} € I and {K,HK,, :n >3} £ I.

9.2. Rough structure. We can also regard Theorem as a rough
structure theorem on graphs having no vertex-minor isomorphic to C),
or K, H K, as follows. The 1-join of two graphs G, G5 with two
specified vertices v; € V(G1), va € V(Gs) is the graph obtained by
making the disjoint union of G1\v; and G\vy and adding edges to join
neighbors of v; in G with neighbors of vy in Gs.

Corollary 9.2. For each n, there exists N such that every graph having
no vertez-minor isomorphic to C, or K, 5K, can be built from graphs
on at most N wvertices by repeatedly taking 1-join operation.
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