
UNAVOIDABLE VERTEX-MINORS
IN LARGE PRIME GRAPHS

O-JOUNG KWON AND SANG-IL OUM

Abstract. A graph is prime (with respect to the split decompo-
sition) if its vertex set does not admit a partition pA,Bq (called a
split) with |A|, |B| ě 2 such that the set of edges joining A and B
induces a complete bipartite graph.

We prove that for each n, there exists N such that every prime
graph on at least N vertices contains a vertex-minor isomorphic
to either a cycle of length n or a graph consisting of two disjoint
cliques of size n joined by a matching.

1. Introduction

In this paper, all graphs are simple and undirected. We write Pn

and Cn to denote a graph that is a path and a cycle on n vertices,
respectively. We aim to find analogues of the following theorems.

‚ (Ramsey’s theorem)
For every n, there exists N such that every graph on at least

N vertices contains an induced subgraph isomorphic to Kn or
Kn.

‚ (folklore; see Diestel’s book [8, Proposition 9.4.1])
For every n, there exists N such that every connected graph

on at least N vertices contains an induced subgraph isomorphic
to Kn, K1,n, or Pn.

‚ (folklore; see Diestel’s book [8, Proposition 9.4.2])
For every n, there exists N such that every 2-connected graph

on at least N vertices contains a topological minor isomorphic
to Cn or K2,n.

‚ (Oporowski, Oxley, and Thomas [15])
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For every n, there exists N such that every 3-connected graph
on at least N vertices contains a minor isomorphic to the wheel
graph Wn on n vertices or K3,n.

‚ (Ding, Chen [9])
For every integer n, there exists N such that every connected

and co-connected graph on at least N vertices contains an in-
duced subgraph isomorphic to Pn, Ks

1,n (the graph obtained
from K1,n by subdividing one edge once), K2,nze, or K2,n{ezfzg
where tf, gu is a matching in K2,n{e. A graph is co-connected
if its complement graph is connected.

‚ (Chun, Ding, Oporowski, and Vertigan [6])
For every integer n ě 5, there exists N such that every in-

ternally 4-connected graph on at least N vertices contains a
parallel minor isomorphic to Kn, K 1

4,n (K4,n with a complete
graph on the vertices of degree n), TFn (the n-partition triple
fan with a complete graph on the vertices of degree n), Dn

(the n-spoke double wheel), D1n (the n-spoke double wheel with
axle), Mn (the p2n` 1q-rung Mobius zigzag ladder), or Zn (the
p2nq-rung zigzag ladder).

These theorems commonly state that every sufficiently large graph hav-
ing certain connectivity contains at least one graph in the list of un-
avoidable graphs by certain graph containment relation. Moreover in
each theorem, the list of unavoidable graphs is optimal in the sense
that each unavoidable graph in the list has the required connectivity,
can be made arbitrary large, and does not contain other unavoidable
graphs in the list.

In this paper, we discuss prime graphs as a connectivity requirement.
A split of a graph G is a partition pA,Bq of the vertex set V pGq having
subsets A0 Ď A, B0 Ď B such that |A|, |B| ě 2 and a vertex a P
A is adjacent to a vertex b P B if and only if a P A0 and b P B0.
This concept was first studied by Cunningham [7] in his research on
split decompositions. We say that a graph is prime if it has no splits.
Sometimes we say a graph is prime with respect to split decomposition
to distinguish with another notion of primeness with respect to modular
decomposition.

Prime graphs play important role in the study of circle graphs (inter-
section graphs of chords in a circle) and their recognition algorithms.
Bouchet [2], Naji [14], and Gabor, Hsu, and Supowit [11] independently
showed that prime circle graphs have a unique chord diagram. This is
comparable to the fact that 3-connected planar graphs have a unique
planar embedding.
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Figure 1. K5 a K5.

The graph containment relation we will mainly discuss is called a
vertex-minor. A graph H is a vertex-minor of a graph G if there
exist a sequence v1, v2, . . . , vn of (not necessarily distinct) vertices and
a subset X Ď V pGq such that H “ G ˚ v1 ˚ v2 ¨ ¨ ¨ ˚ vnzX, where G ˚ v
is an operation called local complementation, to take the complement
graph only in the neighborhood of v. The detailed description will be
given in Section 2.1. Vertex-minors are important in circle graphs; for
instance, Bouchet [5] proved that a graph is a circle graph if and only
if it has no vertex-minor isomorphic to one of three particular graphs.

Prime graphs have been studied with respect to vertex-minors, per-
haps because local complementation preserves prime graphs, shown by
Bouchet [2]. In addition, he showed the following.

Theorem 1.1 (Bouchet [2]). Every prime graph on at least 5 vertices
must contain a vertex-minor isomorphic to C5.

Here is the main theorem of this paper.

Theorem 7.1. For every n, there is N such that every prime graph on
at least N vertices has a vertex-minor isomorphic to Cn or Kn a Kn.

The graph Kn aKn is a graph obtained by joining two copies of Kn

by a matching of size n, see Figure 1. This notation will be explained in
Section 2.4. In addition, we show that this list of unavoidable vertex-
minors in Theorem 7.1 is optimal, which will be discussed in Section 8.
We will heavily use Ramsey’s theorem iteratively and so our bound N
is astronomical in terms of n.

The proof is splitted into two parts.

(1) We first prove that for each n, there exists N such that every
prime graph having an induced path of length N contains a
vertex-minor isomorphic to Cn. (In fact, we prove that N “

r6.75n7s.)
(2) Secondly, we prove that for each n, there exists N such that

every prime graph on at least N vertices contains a vertex-
minor isomorphic to Pn or Kn a Kn.
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Figure 2. Local complementation and pivot.

To prove (1), we actually prove first that every sufficiently large gen-
eralized ladder, a certain type of outerplanar graphs, contains Cn as
a vertex-minor. This will be shown in Section 4. Then, we use the
technique of blocking sequences developed by Geelen [13] to construct
a large generalized ladder in a prime graph having a sufficiently long
induced path, shown in Section 6. Blocking sequences will be discussed
and developed in Section 5. The second part (2) is discussed in Sec-
tion 7, where we iteratively use Ramsey’s theorem to find a bigger con-
figuration called a broom inside a graph. In Section 3, we give similar
theorems of this type on vertex-minors with respect to less restrictive
connectivity requirements.

2. Preliminaries

For X Ď V pGq, let δGpXq be the set of edges having one end in X
and another end in V pGqzX. Let NGpxq be the set of the neighbors of
a vertex x in G. For X Ď V pGq, let GrXs be the induced subgraph
of G on the vertex set X. For two disjoint subsets S, T of V pGq,
let GrS, T s “ GrS Y T szpEpGrSsq Y EpGrT sqq. Clearly, GrS, T s is a
bipartite graph with the bipartition pS, T q.

2.1. Vertex-minors. The local complementation of a graph G at a
vertex v is an operation to replace the subgraph of G induced by the
neighborhood of v by its complement graph. In other words, to apply
local complementation at v for every pair x, y of neighbors of v, we flip
the pair x, y, where flipping means that we delete the edge if it exists
and add it otherwise. We write G˚v to denote the graph obtained from
G by applying local complementation of G at v. Two graphs are locally
equivalent if one is obtained from another by applying a sequence of
local complementations. A graph H is a vertex-minor of G if H is an
induced subgraph of a graph locally equivalent to G.

For an edge xy of a graph G, a graph obtained by pivoting an edge
xy of G is defined as G^ xy “ G ˚ x ˚ y ˚ x. Here is a direct way to see
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G^ xy; there are 3 kinds of neighbors of x or y; some are adjacent to
both, some are adjacent to only x, others are adjacent to only y. We
flip the adjacency between all pairs of neighbors of x or y of distinct
kinds and then swap the two vertices x and y. Two graphs are pivot-
equivalent if one is obtained from another by a sequence of pivots.
Thus, pivot-equivalent graphs are locally equivalent. See Figure 2 for
an example of these operations.

The following lemma by Bouchet provides a key tool to investigate
vertex-minors. His proof is based on isotropic systems, which are some
linear algebraic objects corresponding to the equivalence classes of
graphs with respect to local equivalence, introduced by Bouchet [1].
A direct proof is given by Geelen and Oum [12].

Lemma 2.1 (Bouchet [3]; see Geelen and Oum [12]). Let H be a
vertex-minor of G and let v P V pGqzV pHq. Then H is a vertex-minor
of Gzv, G ˚ vzv, or G^ vwzv for a neighbor w of v.

The choice of a neighbor w in Lemma 2.1 does not matter, because
if x is adjacent to y and z, then G^ xy “ pG^ xzq ^ yz (see [16]).

2.2. Cut-rank function. Let ApGq be the adjacency matrix of G over
the binary field. For an X ˆ Y matrix A, if X 1 Ď X and Y 1 Ď Y , then
we write ArX 1, Y 1s to denote the submatrix of A obtained by taking
rows in X 1 and columns in Y 1.

We define ρ˚GpX, Y q “ rankApGqrX, Y s. This function satisfies the
following submodular inequality (see Oum and Seymour [18]):

Lemma 2.2 (See Oum and Seymour [18]). For all A,B,A1, B1 Ď V pGq,

ρ˚GpA,Bq ` ρ
˚
GpA

1, B1q ě ρ˚GpAX A
1, B YB1q ` ρ˚GpAY A

1, B XB1q.

The cut-rank function ρG of a graph G is defined as

ρGpXq “ ρ˚GpX, V pGqzXq “ rankApGqrX, V pGqzXs.

By Lemma 2.2, we have the submodular inequality:

ρGpAq ` ρGpBq ě ρGpAXBq ` ρGpAYBq

for all A,B Ď V pGq.
The cut-rank function is invariant under taking local complementa-

tion, which makes it useful for us.

Lemma 2.3 (Bouchet [4]; See Oum [16]). If G and H are locally equiv-
alent, then ρGpXq “ ρHpXq for all X Ď V pGq.
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Lemma 2.4 (Oum [16, Lemma 4.4]). Let G be a graph and v P V pGq.
Suppose that pX1, X2q, pY1, Y2q are partitions of V pGqztvu. Then we
have

ρGzvpX1q ` ρG˚vzvpY1q ě ρGpX1 X Y1q ` ρGpX2 X Y2q ´ 1.

Similarly if w is a neighbor of v, then

ρGzvpX1q ` ρG^vwzvpY1q ě ρGpX1 X Y1q ` ρGpX2 X Y2q ´ 1.

Lemma 2.4 is equivalent to the following lemma, which we will use
in the proof of Proposition 5.3.

Lemma 2.5. Let G be a graph and v P V pGq. Suppose that X1, X2,
Y1, Y2 are subsets of V pGqztvu such that X1 Y X2 “ Y1 Y Y2 and
X1 XX2 “ Y1 X Y2 “ H. Then

ρ˚GpX1, X2q ` ρ
˚
G˚vpY1, Y2q

ě ρ˚GpX1 X Y1, X2 Y Y2 Y tvuq ` ρ
˚
GpX1 Y Y1 Y tvu, X2 X Y2q ´ 1.

Similarly if w P X1 YX2 is a neighbor of v, then

ρ˚GpX1, X2q ` ρ
˚
G^vwpY1, Y2q

ě ρ˚GpX1 X Y1, X2 Y Y2 Y tvuq ` ρ
˚
GpX1 Y Y1 Y tvu, X2 X Y2q ´ 1.

Proof. Apply Lemma 2.4 with G1 “ GrX1 YX2 Y tvus. �

2.3. Prime graphs. For a graph G, a partition pA,Bq of V pGq is
called a split if |A|, |B| ě 2 and there exist A1 Ď A and B1 Ď B such
that x P A is adjacent to y P B if and only if x P A1 and y P B1. A
graph is prime (with respect to the split decomposition) if it has no
splits. These concepts were introduced by Cunningham [7].

Alternatively, a split can be understood with the cut-rank function
ρG. A partition pA,Bq of V pGq is a split if and only if |A|, |B| ě 2 and
yet ρGpAq ď 1.

The following lemma is natural.

Lemma 2.6. If a prime graph H on at least 5 vertices is a vertex-
minor of a graph G, then G has a prime induced subgraph G0 such that
G0 has a vertex-minor isomorphic to H.

Proof. We may assume that G is connected. It is enough to prove the
following claim: if G has a split pA,Bq, then there exists a vertex v
such that H is isomorphic to a vertex-minor of Gzv. Let G1 be a graph
locally equivalent to G such that H is an induced subgraph of G1. We
have ρHpV pHq XAq “ ρ˚G1pV pHq XA, V pHq XBq ď ρ˚G1pA,Bq ď 1 and
therefore |V pHq X A| ď 1 or |V pHq X B| ď 1 because H is prime. By



UNAVOIDABLE VERTEX-MINORS 7

symmetry, let us assume |V pHq X B| ď 1. Let us choose x P B such
that x has a neighbor in A and x P V pHq if V pHq XB is nonempty.

Let H 1 be a vertex-minor of G on AYtxu such that H is isomorphic
to a vertex-minor of H 1. Then H 1 “ G˚v1 ˚v2 ¨ ¨ ¨ ˚vnzpBztxuq for some
sequence v1, v2, . . . , vn of vertices. We may choose H 1 and n so that n
is minimized.

Suppose n ą 0. Then vn P Bztxu. Let H0 “ G ˚ v1 ˚ v2 ¨ ¨ ¨ ˚
vn´1zpBztx, vnuq. Since pA, tx, vnuq is a split of H0, one of the following
holds.

(i) The two vertices vn and x have the same set of neighbors in A.
(ii) The vertex vn has no neighbors in A.

(iii) The vertex x has no neighbors in A.

If we have the case (i), then pH0zvnq ˚ x “ H 1 and therefore H is
isomorphic to a vertex-minor of H0zvn, contradicting our assumption
that H is chosen to minimize n. If we have the case (ii), then H0zvn “
H 1, contradicting the assumption too. Finally if we have the case (iii),
then x is adjacent to vn in G because G is connected. Then H0 ˚ vnzvn
is isomorphic to H0 ˚ vnzx. Then H0zx has a vertex-minor isomorphic
to H, contradicting our assumption that n is minimized. �

2.4. Constructions of graphs. For two graphs G and H on the same
set of n vertices, we would like to introduce operations to construct
graphs on 2n vertices by making the disjoint union of them and adding
some edges between two graphs. Roughly speaking, G a H will add a
perfect matching, GbH will add the complement of a perfect matching,
and G m H will add a bipartite chain graph. Formally, for two graphs
G and H on tv1, v2, . . . , vnu, let G a H, G b H, G m H be graphs on
tv11, v

1
2, . . . , v

1
n, v

2
1, v

2
2, . . . , v

2
nu such that for all i, j P t1, 2, . . . , nu,

(i) v1i v
1
j P EpG a Hq if and only if vivj P EpGq,

(ii) v2i v
2
j P EpG a Hq if and only if vivj P EpHq,

(iii) v1i v
2
j P EpG a Hq if and only if i “ j,

(iv) v1i v
1
j P EpG b Hq if and only if vivj P EpGq,

(v) v2i v
2
j P EpG b Hq if and only if vivj P EpHq,

(vi) v1i v
2
j P EpG b Hq if and only if i ‰ j,

(vii) v1i v
1
j P EpG m Hq if and only if vivj P EpGq,

(viii) v2i v
2
j P EpG m Hq if and only if vivj P EpHq,

(ix) v1i v
2
j P EpG m Hq if and only if i ě j.

See Figure 3 for K5 a K5, K5 b K5, and K5 m K5.
We will use the following lemmas.

Lemma 2.7. Let n ě 3 be an integer.
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v11 v21
v12 v22
v13 v23
v14 v24
v15 v25

v11 v21
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v11 v21
v12 v22
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Figure 3. K5 a K5, K5 b K5, and K5 m K5.

(1) Kn b Kn has a vertex-minor isomorphic to Kn´1 a Kn´1.
(2) Kn b Kn has a vertex-minor isomorphic to Kn´2 a Kn´2.

Proof. (1) Let V pKnq “ V pKnq “ tvi : 1 ď i ď nu. The graph
pKn b Knq ˚ v

1
1 ˚ v

2
1zv

1
1zv

2
1 is isomorphic to Kn´1 a Kn´1.

(2) Let V pKnq “ tv1, v2, . . . , vnu. The graph pKn b Knq ˚ v
1
1zv

1
1zv

2
1

is isomorphic to Kn´1 a Kn´1. By (1), Kn b Kn has a vertex-minor
isomorphic to Kn´2 a Kn´2. �

Lemma 2.8. Let n be a positive integer.

(1) The graph Kn m Kn is pivot-equivalent to P2n.
(2) The graph Kn m Kn is locally equivalent to P2n.

Proof. (1) Let P “ p1p2 . . . p2n. We can check that Kn m Kn can be
obtained from P by pivoting pipi`1 for all i “ 1, 3, . . . , 2n´ 1.

(2) Let V pKnq “ V pKnq “ tv1, v2, . . . , vnu. Since pKn m Knq ˚ v
2
1 is

isomorphic to Kn m Kn, the result follows from (1). �

2.5. Ramsey numbers. A clique is a set of pairwise adjacent vertices.
A stable set or an independent set is a set of pairwise non-adjacent
vertices.

We write Rpn1, n2, . . . , nkq to denote the minimum number N such
that in every k coloring of the edges of KN , there exist i and a clique of
size ni whose edges are all colored with the i-th color. Such a number
exists by Ramsey’s theorem [19].

3. Unavoidable vertex-minors in large graphs

We present three simple statements on unavoidable vertex-minors.
These are optimal as discussed in Section 1.

Theorem 3.1. (1) For every n, there exists N such that every
graph on at least N vertices has a vertex-minor isomorphic to
Kn.
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p1 p2 p3 p4 p5 p6 p7 p8 p9

q1 q2 q3 q4 q5 q6 q7 q8

Figure 4. An example of a generalized ladder.

(2) For every n, there exists N such that every connected graph
having at least N vertices has a vertex-minor isomorphic to
Kn.

(3) For every n, there exists N such that every graph having at least
N edges has a vertex-minor isomorphic to Kn or Kn a Kn.

Proof. (1) If a graph has no Kn as a vertex-minor, then it has no
vertex-minor isomorphic to Kn`1. So we can take N “ Rpn, n` 1q.

(2) Let us assume that G has no vertex-minor isomorphic to Kn.
Then the maximum degree of G is less than ∆ “ Rpn ´ 1, n ´ 1q by
Ramsey theorem. If |V pGq| is big enough, then it contains an induced
path P of length 2n´ 3 because the maximum degree is bounded. By
Lemma 2.8, P2n´2 has a vertex-minor isomorphic to K1,n´1, that is
locally equivalent to Kn.

(3) Let G be a graph having no vertex-minor isomorphic to Kn or
Kn a Kn. Each component of G has bounded number of vertices, say
M , by (2). Since Kn aKn is not a vertex-minor of G, G has less than
n non-trivial components. (A component is trivial if it has no edges.)
So G has at most

`

M
2

˘

pn´ 1q edges. �

4. Obtaining a long cycle in a huge generalized ladder

A generalized ladder is a graph G with two vertex-disjoint paths
P “ p1p2 . . . pa, Q “ q1q2 . . . qb (a, b ě 1) with additional edges, called
chords, each joining a vertex of P with a vertex of Q such that V pP qY
V pQq “ V pGq, p1 is adjacent to q1, pa is adjacent to qb, and no two
chords cross. Two chords piqj and pi1qj1 (i ă i1) cross if and only if
j ą j1. We remark that a generalized ladder is a outerplanar graph
whose weak dual is a path. We call p1q1 the first chord and paqb the
last chord of G. Since no two chords cross, p1 or q1 has degree at most
2. Similarly, pa or qb has degree at most 2. See Figure 4 for an example.

We will prove the following proposition.

Proposition 4.1. Let n ě 2. Every generalized ladder having at least
4608n5 vertices has a cycle of length 4n` 3 as a vertex-minor.
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4.1. Lemmas on a fan. Let Fn be a graph on n vertices with a speci-
fied vertex c, called the center, such that Fnzc is a path on n´1 vertices
and c is adjacent to all other vertices. We call Fn a fan on n vertices.

Lemma 4.2. A fan F3n has a vertex-minor isomorphic to a cycle of
length 2n` 1.

Proof. Let c be the center of F3n. Let v1, v2, . . . , v3n´1 be the non-center
vertices in F3n forming a path. Let G “ F3n ˚ v3 ˚ v6 ˚ v9 ¨ ¨ ¨ ˚ v3n´3.
Clearly c is adjacent to vi in G if and only if i P t1, 3n ´ 1u or i ” 0
pmod 3q and furthermore v3i´1 is adjacent to v3i`1 in G for all i. Let
H “ Gztv3, v6, . . . , v3n´3u. Then H is a cycle of length 3n´pn´1q. �

Lemma 4.3. Let n ě 2. Let G be a graph with a vertex c such that
Gzc is isomorphic to an induced path P whose both ends are adjacent
to c. If |V pGq| ě 6pn´ 1q2 ´ 3, then G has a vertex-minor isomorphic
to a cycle of length 2n` 1.

Proof. We may assume that n ě 3. Let P “ v1v2 . . . vk with k ě 6.
We may assume that v2 is adjacent to c because otherwise we replace
G with G ˚ v1. Similarly we may assume that vk´1 is adjacent to c.
We may also assume v3 is adjacent to c because otherwise we replace
G with G^ v1v2. Similarly we may assume that vk´2 is adjacent to c.

If c is adjacent to at least 3n´ 1 vertices on P , then G has a vertex-
minor isomorphic to F3n. So by Lemma 4.2, G has a vertex-minor
isomorphic to a cycle of length 2n` 1. Thus we may assume that the
number of neighbors of c is at most 3n ´ 2. The neighbors of c gives
a partition of P into at most 3n ´ 3 subpaths. We already have 4
subpaths at both ends having length 1. Since

|EpP q| ě 6pn´ 1q2 ´ 3´ 2 ą p2n´ 2qpp3n´ 3q ´ 4q ` 4,

there exists a subpath P 1 of P having length at least 2n´ 1 such that
no internal vertex of P 1 is adjacent to c and the ends of P 1 are adjacent
to c. This together with c gives an induced cycle of length at least
2n` 1. �

4.2. Generalized ladders of maximum degree at most 3.

Lemma 4.4. Let G be a generalized ladder of maximum degree 3. If G
has at least 6n vertices of degree 3, then G has a cycle of length 4n` 3
as a vertex-minor.

Proof. We proceed by induction on |V pGq|. Let P , Q be two defining
paths of G. We may assume that all internal vertices of P or Q has
degree 3, because if P or Q has an internal vertex v of degree 2, then
we apply the induction hypothesis to G ˚ vzv. Since p1 or q1 has degree
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2, we may assume that p1 has degree 2 by symmetry. We may assume
that q1 has degree 3 because otherwise we can apply the induction
hypothesis to G ˚ q1zq1. Consequently q1 is adjacent to p2 and thus for
each internal vertex qi of Q, qi is adjacent to pi`1 and each internal
vertex pi`1 of P is adjacent to qi. Thus either a “ b and pa has degree
3 or a “ b ` 1 and pa has degree 2. But if a “ b ` 1 and pa has
degree 2, then we can apply the induction hypothesis to G ˚ pazpa.
Thus we may assume that a “ b and pa has degree 3. Since G has at
least 6n vertices of degree 3, a ą 3n and b ą 3n. If a “ b ą 3n ` 1,
then we can apply the induction hypothesis to Gzqb. Thus we may
assume that a “ b “ 3n ` 1 and pa has degree 3 and qb has degree
2. Note that pi is adjacent to qi´1 for all i “ 2, . . . , 3n ` 1. Then G ˚
p1 ^ p4q3 ^ p7q6 ¨ ¨ ¨ ^ p3n`1q3nztp4, p7, . . . , p3n´2, q3, q6, . . . , q3n´3, q3n`1u
is isomorphic to a cycle of length 4n` 3. �

Lemma 4.5. Let G be a generalized ladder of maximum degree 3. If
|V pGq| ě 12n2, then G has a cycle of length 4n` 3 as a vertex-minor.

Proof. Let P , Q be two defining paths of G. We may assume a ą 1
and b ą 1 because otherwise G has an induced cycle of length at least
6n2 ` 1 ě 4n` 3.

Let pxqy be the unique chord other than p1q1 with minimum x ` y.
We claim that we may assume px´1q`py´1q ď 2. Suppose not. Then
pxqy, p1q1 and subpaths of P and Q form a cycle of length x ` y ě 5
and p1, p2, . . . , px´1, q1, q2, . . . , qy´1 have degree 2. By moving the first
few vertices of P to Q or Q to P , we may assume that x ě 3 and y ě 2.
Then we may replace G with G ˚ p1. This proves the claim.

Thus the induced cycle containing p1q1 has at most 2 edges from
EpP q Y EpQq. Similarly we may assume that the induced cycle con-
taining paqb has at most 2 edges from EpP q Y EpQq.

If G has at least 6n vertices of degree 3, then by Lemma 4.4, we
obtain a desired vertex-minor. So we may assume that G has at most
6n ´ 1 vertices of degree 3. Thus G has at most 3n ´ 1 chords other
than p1q1 and paqb. These chords give at most 3n induced cycles of G
where each edge in EpP q Y EpQq appears in exactly one of them. If
every such induced cycle has length at most 4n` 2, then

|EpP q Y EpQq| ď p3n´ 2qp4nq ` 4 “ 12n2
´ 8n` 4 ă 12n2

´ 2.

Since |V pGq| ě 12n2, we have |EpP q Y EpQq| ě 12n2 ´ 2. This leads
to a contradiction. �

4.3. Generalized ladders of maximum degree 4.
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Lemma 4.6. Let G be a generalized ladder of maximum degree at most
4. Let α be the number of vertices of G having degree 3 or 4. Then G
has a vertex-minor H that is a generalized ladder of maximum degree
at most 3 such that |V pHq| ě α{4.

Proof. Let P “ p1p2 . . . pa, Q “ q1q2 . . . qb be the paths defining a
generalized ladder G. Let Xi,j “ tp1, p2, . . . , pi, q1, q2, . . . , qju. We may
assume α ą 8.

If a “ 1, then p1 has at least α ´ 1 neighbors but the maximum
degree is 4 and therefore α ď 5, contradicting our assumption. Thus
a ą 1. Similarly b ą 1.

We may also assume that no internal vertex of P or Q has degree 2,
because otherwise we can apply local complementation and remove it.

Let αi,jpGq be the number of vertices in V pGqzXi,j having degree 3
or 4. We will prove the following.

Claim 1. Suppose that there exist 1 ď i ă a and 1 ď j ă b such that
δGpXi,jq has exactly two edges and every vertex in Xi,j has degree 2 or
3 in G. Then G has a vertex-minor H that is a generalized ladder of
maximum degree at most 3 such that |V pHq| ě |Xi,j|` αi,jpGq{4.

Before proving Claim 1, let us see why this claim implies our lemma.
First we would like to see why there exist i and j such that δGpXi,jq has
exactly two edges. If p1 has degree bigger than 2, then p1 is adjacent
to q2 and so G ˚ q1 “ Gzp1q2. Thus we may assume that both p1 and
q1 have degree 2. Keep in mind that the number of vertices of degree
3 or 4 in X1,1 may be decreased by 1 by replacing G with G ˚ q1 and
so α1,1pGq ě α ´ 2.

By applying Claim 1 with i “ j “ 1, we obtain a generalized ladder
H of maximum degree at most 3 as a vertex-minor such that |V pHq| ě
2`pα´ 2q{4 ě α{4. This completes the proof of the lemma, assuming
Claim 1.

We now prove Claim 1 by induction on |V pGq|´ |Xi,jpGq|. We may
assume that every vertex in V pGqzpXi,j Y tpa, qbuq has degree 3 or 4
because otherwise we can apply local complementation and delete it
while keeping αi,j. Then pi`1 is obviously adjacent to qj`1.

We may assume that i ă a´ 1 because otherwise G is a generalized
ladder of maximum degree 3 if pa has degree 3 and Gzqb is a generalized
ladder of maximum degree 3 otherwise. Similarly we may assume j ă
b´ 1. Either pi`1 or qj`1 has degree 4, because otherwise δGpXi`1,j`1q

has exactly two edges. By symmetry, we may assume that pi`1 has
degree 3 and qj`1 has degree 4 and therefore qj`1 is adjacent to pi`2.
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If αi,jpGq ď 12, then H “ GrXi`2,j`1s is a generalized ladder of
maximum degree at most 3. Thus we may assume that αi,jpGq ą 12.
If b´ j ď 4, then a´ i ď 8 because each vertex in qj`1, qj`2, . . . , qb has
degree at most 4 and each vertex in pi`1, pi`2, . . . , pa´1 has degree at
least 3. This contradicts our assumption that αi,jpGq ą 12. So we may
assume that b´ j ě 5 and similarly a´ i ě 5.

Let R be the component of GzpEpP q Y EpQqq containing pi`1. Be-
cause of the degree condition, R is a path. We now consider six cases,
see Figure 5.

(a) If R has length 2 and pi`3 has degree 3 in G, then G1 “ G ˚
pi`2zpi`2 “ pGzpi`2` pi`1pi`3` qj`1pi`3qzpi`1qj`1 is a generalized
ladder of maximum degree at most 4. Every vertex in G1 not in Xi,j

has degree at most 4. Furthermore pi`1 has degree 2 in G1. Thus,
δG1pXi`1,jq has exactly 2 edges. Then |Xi`1,j| ` αi`1,jpG

1q{4 ě

p|Xi,j|` 1q ` pαi,jpGq ´ 2q{4 ě |Xi,j|`αi,jpGq{4. By the induction
hypothesis, we find a desired vertex-minor H in G1.

(b) If R has length 2 and pi`3 has degree 4 in G, then the vertex qj`2
has degree 3. Then G1 “ G ˚ pi`2 ˚ qj`2zpi`2zqj`2 is a generalized
ladder of maximum degree at most 4. Then δG1pXi`1,j`1q has ex-
actly two edges and αi`1,j`1pG

1q ě αi,jpGq ´ 6. Again, |Xi`1,j`1|`
αi`1,j`1pG

1q{4 ě |Xi,j|`2`pαi,jpGq´6q{4 ě |Xi,j|`αi,jpGq{4 and
therefore we are done.

(c) If R has length 3 and qj`3 has degree 3 in G, then G1 “ G ˚
qj`2zqj`2 is a generalized ladder of maximum degree at most 4.
Then δG1pXi`1,j`1q has exactly two edges and αi`1,j`1pG

1q ě αi,jpGq´
3. We deduce that |Xi`1,j`1|`αi`1,j`1pG

1q{4 ě |Xi,j|`2`pαi,jpGq´
3q{4 ě |Xi,j|` αi,jpGq{4.

(d) If R has length 3 and qj`3 has degree 4 in G, then pi`3 has de-
gree 3 and G1 “ G ˚ qj`2 ˚ pi`3zqj`2zpi`3 is a generalized ladder of
maximum degree at most 4. Then δG1pXi`2,j`1q has exactly two
edges and αi`2,j`1pG

1q ě αi,jpGq ´ 7. We deduce that |Xi`2,j`1|`
αi`2,j`1pG

1q{4 ě |Xi,j| ` 3 ` pαi,jpGq ´ 7q{4 ě |Xi,j| ` αi,jpGq{4.
By the induction hypothesis, G1 has a desired vertex-minor and so
does G.

(e) If R has length 4, then G1 “ G^ pi`2qj`2 ˚ pi`3zpi`2zpi`3zqj`2 is a
generalized ladder of maximum degree at most 4. Then δG1pXi`1,j`1q

has exactly two edges and αi`1,j`1pG
1q ě αi,jpGq ´ 7 and there-

fore |Xi`1,j`1| ` αi`1,j`1pG
1q{4 ě |Xi,j| ` 2 ` pαi,jpGq ´ 7q{4 ě

|Xi,j| ` αi,jpGq{4. Our induction hypothesis implies that G1 has a
desired vertex-minor.
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(c) Apply G ˚ qj`2zqj`2

pi

qj

pi`1 pi`2 pi`3 pi`4

qj`1 qj`2 qj`3

Xi,j

pi

qj

ñ Xi`2,j`1

pi`1 pi`2 pi`4

qj`1 qj`3

(d) Apply G ˚ qj`2 ˚ pi`3zqj`2zpi`3
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Figure 5. Cases in the proof of Lemma 4.6.
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(f) If R has length at least 5, then G1 “ G ^ pi`2qj`2zpi`2zqj`2 is a
generalized ladder of maximum degree at most 4. Then δG1pXi,j`1q

has exactly two edges and αi,j`1pG
1q ě αi,jpGq ´ 4 and therefore

|Xi,j`1| ` αi,j`1pG
1q{4 ě |Xi,j| ` 1 ` pαi,jpGq ´ 4q{4 “ |Xi,j| `

αi,jpGq{4. Our induction hypothesis implies that G1 has a desired
vertex-minor.

In all cases, we find the desired vertex-minor H. This completes the
proof of Claim 1. �

Lemma 4.7. Let G be a generalized ladder of maximum degree at most
4. If |V pGq| ě 192n3, then G has a cycle of length 4n` 3 as a vertex-
minor.

Proof. Let P , Q be two defining paths of G. We may assume a ą 1
and b ą 1 because p192n3 ´ 2q{3` 2 ě 4n` 3.

Let pxqy be the unique chord other than p1q1 with minimum x ` y.
We claim that we may assume px´1q`py´1q ď 2. Suppose not. Then
pxqy, p1q1 and subpaths of P and Q form a cycle of length x ` y ě 5
and p1, p2, . . . , px´1, q1, q2, . . . , qy´1 have degree 2. By moving the first
few vertices of P to Q or Q to P , we may assume that x ě 3 and y ě 2.
Then we may replace G with G ˚ p1. This proves the claim.

Thus the induced cycle containing p1q1 has at most 2 edges from
EpP q Y EpQq. Similarly we may assume that the induced cycle con-
taining paqb has at most 2 edges from EpP q Y EpQq.

If G has at least 48n2 vertices of degree 3 or 4, then by Lemma 4.6, G
has a generalized ladder H as a vertex-minor such that |V pHq| ě 12n2

and H has maximum degree at most 3. By Lemma 4.5, H has a cycle
of length 4n` 3 as a vertex-minor.

Thus we may assume that G has less than 48n2 vertices of degree
3 or 4. We may assume that G has at least one vertex of degree at
least 3. The cycle formed by edges in EpP q Y EpQq Y tp1q1, paqbu
is partitioned into less than 48n2 paths whose internal vertices have
degree 2 in G. One of the paths has length greater than 192n3{p48n2q “

4n. Then there is an induced cycle C of G containing this path. Since
C does not contain p1q1 or paqb, C must contain two edges not in
EpP qYEpQqYtp1q1, paqbu. Thus the length of C is at least 4n`3. �

4.4. Treating all generalized ladders.

Lemma 4.8. Let G be a generalized ladder. If G has n vertices of
degree at least 4, then G has a vertex-minor H that is a generalized
ladder such that the maximum degree of H is at most 4 and H has at
least n vertices.
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Proof. Let S be the set of vertices having degree at least 4. For each
vertex v in S, let Pv be the minimal subpath of Q containing all neigh-
bors of v in Q if v P V pP q and let Pv be the minimal subpath of P
containing all neighbors of v in P if v P V pQq.

Then each internal vertex of Pv has degree 2 or 3 and has degree 3
if and only if it is adjacent to v. We apply local complementation to
each internal vertex and delete all internal vertices of Pv. It is easy to
see that the resulting graph H is a generalized ladder and moreover
S Ď V pHq and every vertex in S has degree at most 4 in H. �

We are now ready to prove the main proposition of this section.

Proof of Proposition 4.1. Let G be such a graph. If G has at least
192n3 vertices of degree at least 4, then by Lemma 4.8, G has a vertex-
minor H having at least 192n3 vertices such that H is a generalized
ladder of maximum degree at most 4. By Lemma 4.7, H has a cycle of
length 4n` 3 as a vertex-minor.

Thus we may assume that G has less than 192n3 vertices of degree
at least 4. For a vertex v in P having degree at least 5, let qi, qj
be two neighbors of v in Q such that if qk is a neighbor of v in Q,
then i ď k ď j. By Lemma 4.3, if j ´ i ` 2 ě 24n2 ´ 3, then G
contains a cycle of length 4n ` 3 as a vertex-minor. Thus we may
assume j ´ i ď 24n2 ´ 6. The subpath of Q from qi to qj contains
j´i´1 ď 24n2´7 internal vertices. Similarly the same bound holds for
a vertex v in Q having degree at least 5. As in the proof of Lemma 4.8,
we apply local complementation and delete all internal vertices of the
minimal path spanning the neighbors of each vertex of degree at least
5 to obtain H. Then each vertex of degree at least 5 in G will have
degree at most 4 in H. Since we remove at most p192n3´ 1qp24n2´ 7q
vertices,

|V pHq| ě |V pGq|´ p192n3
´ 1qp24n2

´ 7q ą 192n3.

By Lemma 4.7, H has a cycle of length 4n` 3 as a vertex-minor. �

5. Blocking sequences

Let A,B be two disjoint subsets of the vertex set of a graph G. By
the definition of ρ˚G and ρG, it is clear that

if A Ď X Ď V pGqzB, then ρ˚GpA,Bq ď ρGpXq.

What prevents us to achieve the equality for some X? We now present
a tool called a blocking sequence, that is a certificate to guarantee that
no such X exists. Blocking sequences were introduced by Geelen [13].
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A sequence v1, v2, . . . , vm (m ě 1) is called a blocking sequence of a
pair pA,Bq of disjoint subsets A, B of V pGq if

(a) ρ˚GpA,B Y tv1uq ą ρ˚GpA,Bq,
(b) ρ˚GpAY tviu, B Y tvi`1uq ą ρ˚GpA,Bq for all i “ 1, 2, . . . ,m´ 1,
(c) ρ˚GpAY tvmu, Bq ą ρ˚GpA,Bq,
(d) no proper subsequence of v1, . . . , vm satisfies (a), (b), and (c).

The condition (d) is essential for the following standard lemma.

Lemma 5.1. Let v1, v2, . . . , vm be a blocking sequence for pA,Bq in a
graph G. Let X, Y be disjoint subsets of tv1, v2, . . . , vmu such that if
vi P X and vj P Y , then i ă j. Then

ρ˚GpAYX,B Y Y q “ ρ˚GpA,Bq

if and only if v1 R Y , vm R X, and for all i P t1, 2, . . . ,m ´ 1u, either
vi R X or vi`1 R Y .

Proof. The forward direction is trivial. Let us prove the backward
implication. Let k “ ρ˚GpA,Bq. It is enough to prove ρ˚GpA Y X,B Y
Y q ď k. Suppose that v1 R Y , vm R X, and for all i P t1, 2, . . . ,m´ 1u,
either vi R X or vi`1 R Y and yet ρ˚GpA Y X,B Y Y q ą k. We may
assume that |X| ` |Y | is chosen to be minimum. If |X| ě 2, then
we can partition X into two nonempty sets X1 and X2. Then by
the hypothesis, ρ˚GpA Y X1, B Y Y q “ ρ˚GpA Y X2, B Y Y q “ k. By
Lemma 2.2, we deduce that ρ˚GpAYX1, BYY q`ρ

˚
GpAYX2, BYY q ě

k`ρ˚GpAYX,BYY q and therefore we deduce that ρ˚GpAYX,BYY q ď k.
So we may assume |X| ď 1. By symmetry we may also assume |Y | ď 1.
Then by the condition (d), this is clear. �

The following proposition states that a blocking sequence is a certifi-
cate that ρGpXq ą ρ˚GpA,Bq for all A Ď X Ď V pGqzB. This appears
in almost all applications of blocking sequences. The proof uses the
submodular inequality (Lemma 2.2).

Proposition 5.2 (Geelen [13, Lemma 5.1]; see Oum [17]). Let G be
a graph and A, B be two disjoint subsets of V pGq. Then G has a
blocking sequence for pA,Bq if and only if ρGpXq ą ρ˚GpA,Bq for all
A Ď X Ď V pGqzB.

The following proposition allows us to change the graph to reduce
the length of a blocking sequence. This was pointed out by Geelen
[private communication with the second author, 2005]. A special case
of the following proposition is presented in [17].
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Proposition 5.3. Let G be a graph and A, B be disjoint subsets of
V pGq. Let v1, v2, . . . , vm be a blocking sequence for pA,Bq in G. Let
1 ď i ď m.

‚ If m ą 1, then ρ˚G˚vipA,Bq “ ρ˚GpA,Bq and a sequence

v1, v2, . . . , vi´1, vi`1, . . . , vm

obtained by removing vi from the blocking sequence is a blocking
sequence for pA,Bq in G ˚ vi.

‚ If m “ 1, then ρ˚G˚vipA,Bq “ ρ˚GpA,Bq ` 1.

Proof. Let k “ ρ˚GpA,Bq and H “ G ˚ vi.
If m “ 1, then by Lemma 2.5,

ρ˚HpA,Bq` ρ
˚
GpA,Bq ě ρ˚GpAYtv1u, Bq` ρ

˚
GpA,BYtv1uq´ 1 ě 2k` 1

and therefore ρ˚HpA,Bq ě k ` 1. Since ρ˚HpA,Bq ď ρ˚HpA,B Y tv1uq “
ρ˚GpA,B Y tv1uq ď k ` 1, we deduce that ρ˚HpA,Bq “ k ` 1 if m “ 1.

Now we assume thatm ‰ 1. First it is easy to observe that ρ˚HpX, Y q ď
ρ˚GpX, Y Ytviuq and ρ˚HpX, Y q ď ρ˚GpXYtviu, Y q wheneverX, Y are dis-
joint subsets of V pGqztviu, because the local complementation does not
change the cut-rank function of GrXYY Ytvius. This with Lemma 5.1
implies that

‚ ρ˚HpA,Bq ď k,
‚ ρ˚HpAY tvju, Bq ď k for all j P t1, 2, . . . ,muzti´ 1,mu,
‚ ρ˚HpAY tvi´1u, Bq ď k if i ‰ 1,m.
‚ ρ˚HpA,B Y tvjuq ď k for all j P t1, 2, . . . ,muzt1, i` 1u.
‚ ρ˚HpA,B Y tvi`1uq ď k if i ‰ 1,m.
‚ ρ˚HpA Y tvju, B Y tv`uq ď k for all j, ` P t1, 2, . . . ,muztiu with
`´ j ą 1, unless j ` 1 “ i “ `´ 1.

Let B1 “ B Y tvi`1u if i ă m and B1 “ B otherwise. Then ρ˚GpA Y
tviu, B

1q “ k ` 1 and ρ˚GpA,B
1q “ k.

(1) We claim that if i ą 1, then ρ˚HpA,BYtv1uq ą k. By Lemma 2.5,

ρ˚HpA,B
1
Ytv1uq`ρ

˚
GpA,B

1
q ě ρ˚GpA,B

1
Ytv1, viuq`ρ

˚
GpAYtviu, B

1
q´1,

and therefore we deduce that ρ˚HpA,B
1Ytv1uq ě ρ˚GpA,B

1Ytv1, viuq ą
k. By Lemma 2.2, ρ˚HpA,B

1 Y tviuq ` ρ˚HpA,B Y tv1uq ě ρ˚HpA,B
1 Y

tv1, viuq`ρ
˚
HpA,Bq ą 2k. We deduce that ρ˚HpA,BYtv1uq ą k because

ρ˚HpA,B
1 Y tviuq “ ρ˚GpA,B

1 Y tviuq “ k by Lemma 5.1.
(2) By (1) and symmetry between A and B, if i ă m, then ρ˚HpA Y

tvmu, Bq ą k.
Then we deduce that ρ˚HpA,Bq ě k and therefore ρ˚HpA,Bq “ k.
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(3) We claim that if j ă i ´ 1, then ρ˚HpA Y tvju, B Y tvj`1uq ą k.
By Lemma 2.5,

ρ˚HpAY tvju, B
1
Y tvj`1uq ` ρ

˚
GpAY tvju, B

1
q

ě ρ˚GpAY tvju, B
1
Y tvj`1, viuq ` ρ

˚
GpAY tvj, viu, B

1
q ´ 1 ą 2k,

and therefore ρ˚HpA Y tvju, B
1 Y tvj`1uq ą k. By Lemma 2.2, ρ˚HpA Y

tvju, BYtvj`1uq`ρ
˚
HpAYtvju, B

1q ě ρ˚HpAYtvju, B
1Ytvj`1uq`ρ

˚
HpAY

tvju, Bq ą 2k. Note that ρ˚HpA Y tvju, Bq ě ρ˚HpA,Bq “ k. Since
ρ˚HpAYtvju, B

1q ď ρ˚HpAYtvju, B
1Ytviuq “ ρ˚GpAYtvju, B

1Ytviuq ď k,
we deduce that ρ˚HpAY tvju, B Y tvj`1uq ą k.

(4) By symmetry, we deduce from (3) that if i ă j ă m, then
ρ˚HpAY tvju, B Y tvj`1uq ą k.

(5) We claim that ρ˚HpAY tvi´1u, B
1q ą k. By Lemma 2.5,

ρ˚HpAY tvi´1u, B
1
q ` ρ˚GpAY tvi´1u, B

1
q

ě ρ˚GpAY tvi´1u, B
1
Y tviuq ` ρ

˚
GpAY tvi´1, viu, B

1
q ´ 1 ą 2k.

Since ρ˚GpAY tvi´1u, B
1q “ k, we have ρ˚HpAY tvi´1u, B

1q ą k.
This completes the proof of the lemma that v1, v2, . . . , vi´1, vi`1, . . . , vm

is a blocking sequence of pA,Bq in G ˚ vi. �

Corollary 5.4. Let G be a graph and A, B be disjoint subsets of V pGq.
Let v1, v2, . . . , vm be a blocking sequence for pA,Bq in G. Let 1 ď i ď m.
Suppose that vi has a neighbor w in AYB.

‚ If m ą 1, then ρ˚G^viwpA,Bq “ ρ˚GpA,Bq and the sequence
v1, v2, . . . , vi´1, vi`1, . . . , vm obtained by removing vi from the
blocking sequence is a blocking sequence for pA,Bq in G^ viw.

‚ If m “ 1, then ρ˚G^viwpA,Bq “ ρ˚GpA,Bq ` 1.

Proof. It follows easily from the facts that G^ viw “ G ˚w ˚ vi ˚w and
ρ˚GpX, Y q “ ρ˚G˚wpX, Y q for all graphs G with w P X Y Y . �

Corollary 5.5. Let G be a graph and A, B be disjoint subsets of V pGq.
Let v1, v2, . . . , vm be a blocking sequence for pA,Bq in G. Let 1 ď i ď m.
Suppose that vi and vi1 are adjacent and i ă i1.

‚ If m ą 2, then ρ˚G^vivi1 pA,Bq “ ρ˚GpA,Bq and the sequence
v1, v2, . . . , vi´1, vi`1, . . . , vi1´1, vi1`1, . . . , vm obtained by removing
vi and vi1 from the blocking sequence is a blocking sequence for
pA,Bq in G^ vivi1.

‚ If m “ 2, then ρ˚G^vivi1 pA,Bq “ ρ˚GpA,Bq ` 1.

Proof. If vi has a neighbor w in AYB, then G^ vivi1 “ G^ viw^wvi1
and this corollary follows from Corollary 5.4. So we may assume that vi
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has no neighbors in AYB and similarly vi1 has no neighbors in AYB.
Thus i, i1 R t1,mu and m ě 4.

Since vi and vi1 are adjacent, we may assume that i1 “ i ` 1. Let
H “ G^ vivi`1 and k “ ρ˚GpA,Bq. Since vi and vi`1 have no neighbors
in AYB, ρ˚HpA,Bq “ k.

Then v1, v2, . . . , vi is a blocking sequence for pA,B Y tvi`1uq in G
by Lemma 5.1. Similarly vi`1, vi`2, . . . , vm is a blocking sequence for
pAY tviu, Bq in G.

By Corollary 5.4, v1, v2, . . . , vi´1 is a blocking sequence for pA,B Y
tvi`1uq in H. Then ρ˚HpA,B Y tv1uq “ ρ˚HpA,B Y tv1, vi`1uq ą k,
because vi`1 has no neighbors of H in A.

For 1 ď j ă i´1, ρ˚HpAYtvju, BYtvj`1uq`ρ
˚
HpAYtvju, BYtvi`1uq ě

ρ˚HpAY tvju, B Y tvj`1, vi`1uq ` ρ
˚
HpAY tvju, Bq ą 2k and therefore

ρ˚HpAY tvju, B Y tvj`1uq ą k

because ρ˚HpAY tvju, Bq ď ρ˚HpAY tvju, B Y tvi`1uq ď k.
Similarly vi`2, vi`3, . . . , vm is a blocking sequence for pAYtviu, Bq in

H. By symmetry, we deduce that ρ˚HpA Y tvmu, Bq ą k and ρ˚HpA Y
tvju, B Y tvj`1uq ą k for all i` 1 ă j ă m.

We now claim that ρ˚HpAY tvi´1u, B Y tvi`2uq ą k. By Lemma 2.2,

ρ˚HpAY tvi´1u, B Y tvi`2uq ` ρ
˚
HpAY tvi`1u, B Y tvi`2uq

ě ρ˚HpAY tvi´1, vi`1u, B Y tvi`2uq ` ρ
˚
HpA,B Y tvi`2uq.

Since vi`1 has no neighbors in A Y B, we have ρ˚HpA Y tvi`1u, B Y
tvi`2uq “ ρ˚GpA Y tviu, B Y tvi`2uq “ k and ρ˚HpA,B Y tvi`2uq “
ρ˚GpA,B Y tvi`2uq “ k. Therefore

ρ˚HpAY tvi´1u, B Y tvi`2uq ě ρ˚HpAY tvi´1, vi`1u, B Y tvi`2uq.

By Lemma 2.5,

ρ˚HpAY tvi´1, vi`1u, B Y tvi`2uq ` ρ
˚
GpAY tvi´1u, B Y tvi`1, vi`2uq

ě ρ˚GpAY tvi´1u, B Y tvi, vi`1, vi`2uq

` ρ˚GpAY tvi´1, vi, vi`1u, B Y tvi`2uq ´ 1.

By Lemma 5.1, ρ˚GpA Y tvi´1, vi, vi`1u, B Y tvi`2uq ą k and ρ˚GpA Y
tvi´1u, B Y tvi`1, vi`2uq “ k. Therefore ρ˚HpA Y tvi´1u, B Y tvi`2uq ě
ρ˚HpAYtvi´1, vi`1u, BYtvi`2uq ě ρ˚GpAYtvi´1u, BYtvi, vi`1, vi`2uq ą k.
This proves the claim.

So far we have shown that the sequence v1, v2, . . . , vi´1, vi`2, . . . , vm
satisfies (a), (b), (c) of the definition of blocking sequences. It remains
to show (d). For j P t2, 3, . . . ,muzti, i`1u, ρ˚HpA,BYtvjuq “ ρ˚GpA,BY
tvjuq “ k because vi and vi`1 have no neighbors in A Y B. Similarly
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ρ˚HpAYtvju, Bq “ ρ˚GpAYtvju, Bq “ k for j P t1, 2, . . . ,m´1uzti, i`1u.
For j, ` P t1, 2, . . . ,muzti, i` 1u with `´ j ą 1, either ρ˚GpAYtvju, BY
tv`, vi, vi`1uq “ k or ρ˚GpA Y tvj, vi, vi`1u, B Y tv`uq “ k and therefore
ρ˚HpA Y tvju, B Y tv`uq ď k, unless j “ i ´ 1 and ` “ i ` 2. This
completes the proof. �

We will now prove that without loss of generality, a blocking sequence
for pA,Bq is short by applying local complementation while keeping the
subgraph induced on AYB.

Proposition 5.6. Let G be a prime graph and let A, B be disjoint sub-
sets of V pGq with |A|, |B| ě 2. Suppose that there exist two nonempty
sets A0 Ď A and B0 Ď B such that the set of all edges between A and
B is txy : x P A0, y P B0u. Let

`0 “

$

’

&

’

%

3 if |A0| “ |B0| “ 1,

4 if |A0| “ 1 or |B0| “ 1,

6 otherwise.

Then there exists a graph G1 locally equivalent to G satisfying the fol-
lowing.

(i) GrAYBs “ G1rAYBs.
(ii) G1 has a blocking sequence b1, b2, . . . , b` of length at most `0 for

pA,Bq.

Proof. Since G is prime, G has a blocking sequence for pA,Bq by Propo-
sition 5.2. Let G be the set of all graphs G1 locally equivalent to G such
that G1rAYBs “ GrAYBs. We assume that G is chosen in G so that
the length ` of a blocking sequence b1, b2, . . . , b` for pA,Bq is minimized.

For 1 ď i ă `, NGpbiq X B “ B0 or H because ρGpA Y tbiu, Bq “ 1.
For 1 ă i ď `, NGpbiq X A “ A0 or H because ρGpA,B Y tbiuq “ 1.

Suppose that NGpbiq X pA Y Bq “ NGpbjq X pA Y Bq for some 1 ă
i ă j ă `. If bi and bj are adjacent, then G1 “ G ^ bibj P G. If bi and
bj are non-adjacent, then G1 “ G ˚ bi ˚ bj P G. In both cases, we found
a graph in G having a shorter blocking sequence by Proposition 5.3 or
Corollary 5.5, contradicting our assumption.

If |B0| “ 1, then for all 1 ă i ă `, NGpbiq X A “ A0 because
otherwise G˚bi P G has a shorter blocking sequence by Proposition 5.3,
contradicting our assumption. Similarly if |A0| “ 1, then NGpbiqXB “
B0 for all 1 ă i ă `.

By the pigeonhole principle, we deduce that ` ď `0. �

6. Obtaining a long cycle from a huge induced path

In this section we aim to prove the following theorem.
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v0 v1 v2 v3 v4 v5 v6 v7 v8

w1 w2 w3 w4

Figure 6. An example of a 4-patched path of length 8.

Theorem 6.1. If a prime graph has an induced path of length r6.75n7s,
then it has a cycle of length n as a vertex-minor.

The main idea is to find a big generalized ladder, defined in Section 4
as a vertex-minor by using blocking sequences in Section 5.

6.1. Patching a path. For 1 ď k ď n ´ 2, a k-patch of an induced
path P “ v0v1 ¨ ¨ ¨ vn of a graph G is a sequence Q “ w1, w2, . . . , wk of
distinct vertices not on P such that for each i P t1, 2, . . . , ku,

(i) vi`2 is the only vertex adjacent to wi among vi`1, vi`2, . . ., vn,
(ii) H ‰ NGpwiq X tv0, . . . , vi, w1, . . . , wi´1u ‰ tvi, wi´1u if i ą 1,

(iii) NGpw1q X tv0, v1u “ tv0u.

An induced path is called k-patched if it has a k-patch. An induced
path of length n is called fully patched if it is equipped with a pn´ 2q-
patch. See Figure 6 for an example.

Our goal is to find a fully patched long induced path in a vertex-
minor of a prime graph having a very long induced path.

Lemma 6.2. Let P “ v0v1 . . . vm be an induced path from s “ v0 to
t “ vm in a graph G and let H be a connected induced subgraph of
GzV pP q. Let v be a vertex in V pGqzpV pHq Y V pP qq. Suppose that
NGpV pHqq X V pP q “ tsu, |EpP q| ě 6pn´ 1q2´ 5, and v has neighbors
in both V pP qztsu and V pHq.

If G has no cycle of length 2n`1 as a vertex-minor, then there exist
a graph G1 locally equivalent to G and an induced path P 1 from s to t
of G1 disjoint from V pHq satisfying the following.

(i) GrV pHq Y tsus “ G1rV pHq Y tsus,
(ii) NGpvq X V pHq “ NG1pvq X V pHq,

(iii) P 1 “ v0vivi`1vi`2 ¨ ¨ ¨ vm for some i,
(iv) vi is the only vertex on V pP 1q adjacent to v in G1,
(v) |EpP 1q| ě |EpP q|´ 6pn´ 1q2 ` 6.

Proof. Since G has a cycle using H with s and P , G is not a forest and
therefore n ě 2. Let v0 “ s, v1, v2, . . . , vm “ t be vertices in P . Let vk
be the neighbor of v with maximum k. Then G has a fan having at
least k` 3 vertices because H is connected and v has a neighbor in H.
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If k ě 6pn ´ 1q2 ´ 6, then G has a fan having at least 6pn ´ 1q2 ´ 3
vertices and by Lemma 4.3, G contains a cycle of length 2n ` 1 as a
vertex-minor. This contradicts to our assumption that G has no such
vertex-minor. Thus, k ď 6pn´ 1q2 ´ 7.

Let G0 “ G ˚ v1 ˚ v2 ˚ v3 ¨ ¨ ¨ ˚ vk´2 and let P0 “ v0vk´1vkvk`1 ¨ ¨ ¨ vm.
(If k ď 2, then let G0 “ G and P0 “ P .) Then clearly P0 is an induced
path of G0 and vk P NG0pvq X V pP0q Ď tv0, vk´1, vku.

If NG0pvqXV pP0q “ tvku, then we are done by taking G1 “ G0 ˚vk´1
and P 1 “ v0vkvk`1 ¨ ¨ ¨ vm.

If NG0pvq X V pP0q “ tvk´1, vku, then we can take G1 “ G0 ˚ vk ˚ vk´1
and P 1 “ v0vk`1vk`2 ¨ ¨ ¨ vm.

If NG0pvq X V pP0q “ tv0, vku, then we can take G1 “ G0 ˚ vk´1 ˚ vk
and P 1 “ v0vk`1vk`2 ¨ ¨ ¨ vm.

Finally, if NG0pvq X V pP0q “ tv0, vk´1, vku, then we can take G1 “
G0 ˚ vk ˚ vk´1 ˚ vk`1 and P 1 “ v0vk`2vk`3 ¨ ¨ ¨ vm.

In all cases, |EpP 1q| ě |EpP q|´pk` 1q ě |EpP q|´ 6pn´ 1q2` 6. �

Lemma 6.3. Let n ě 2. Let G be a prime graph having an induced
path of length t. If t ě 6pn´1q2´3, then there exists a graph G1 locally
equivalent to G having a 1-patched induced path of length t´6pn´1q2`6,
unless G has a cycle of length 2n` 1 as a vertex-minor.

Proof. We may choose G so that the length t of an induced path P is
maximized among all graphs locally equivalent to G. Let v0, v1, . . . , vm
be vertices of P in this order. Since G is prime, v0 has a neighbor v
other than v1. We may assume that v is non-adjacent to v1 because
otherwise we can replace G with G ˚ v0.

Since P is a longest induced path, v must have some neighbors in
V pP qztv0, v1u. We now apply Lemma 6.2 with H “ Grtv0, v1us, de-
ducing that there exists a graph G1 locally equivalent to G having a
1-patched induced path of length t´6pn´1q2`6, unless G has a cycle
of length 2n` 1 as a vertex-minor. �

Lemma 6.4. Let n ě 2. Let G be a prime graph and let P be a k-
patched induced path v0v1 ¨ ¨ ¨ vt. If t ě 6pn´1q2`k, then there exists a
graph G1 locally equivalent to G having a pk ` 1q-patched induced path
v0v1 ¨ ¨ ¨ vk`2vivi`1 ¨ ¨ ¨ vt of length at least t ´ 6pn ´ 1q2 ` 3 with some
i ą k ` 2, unless G has a cycle of length 2n` 1 as a vertex-minor.

Proof. Let P “ v0v1 . . . vt be an induced path of length t in G and
Q “ w1, w2, . . . , wk be its k-patch. Suppose that G has no vertex-
minor isomorphic to a cycle of length 2n` 1.

Let A “ tv0, v1, . . . , vk`1u YQ. By Proposition 5.6, we may assume
that G has a blocking sequence b1, b2, . . . , b` of length at most 4 for
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pA, V pP qzAq because vk`2 is the only vertex in V pP qzA having neigh-
bors in A.

Notice that P zA is an induced path of G. We say that a blocking
sequence b1, b2, . . . , b` for pA, V pP qzAq is nice if b` has a unique neighbor
in V pP qzA, that is also a unique neighbor of vk`2 in V pP qzA.

We know that b` has neighbors in tvk`3, . . . , vtu by the definition
of a blocking sequence. We take H “ GrA Y Q Y tb1, b2, . . . , b`´1us.
By Lemma 6.2, there exist a graph G` locally equivalent to G and
an induced path P` “ v0v1 ¨ ¨ ¨ vk`2vivi`1 ¨ ¨ ¨ vt of G` for some i with
a k-patch Q such that G`rA Y tvk`2us “ GrA Y tvk`2us, a sequence
b1, b2, . . . , b` is a nice blocking sequence for pA, V pP`qzAq in G`, and
|EpP`q| ě t´ 6pn´ 1q2 ` 6.

Let r ě 1 be minimum such that there exist a graph G1 locally
equivalent to G and an induced path P 1 “ v0v1 ¨ ¨ ¨ vk`2vivi`1 ¨ ¨ ¨ vm for
some i with a k-patch Q in G1 such that G1rAYtvk`2us “ GrAYtvk`2us,
a sequence b1, b2, . . . , br is a nice blocking sequence for pA, V pP 1qzAq in
G1, and |EpP 1q| ě t ´ 6pn ´ 1q2 ` 6 ` r ´ `. Such r exists because G`

and P` satisfy the condition when r “ `.
We claim that r “ 1. Suppose r ą 1.
Suppose that br is non-adjacent to vk`1 in G1. Then vi is the only

neighbor of br in V pP 1q in G1 and br is adjacent to br´1 in G1. If br´1 is
non-adjacent to vk`2, then take G2 “ G1 ˚ br and P 2 “ P 1; in G2, a se-
quence b1, b2, . . . , br´1 is a nice blocking sequence for pA, V pP 1qzAq and
the length of P 1 is at least t´6pn´1q2`6`r´`. This leads a contradic-
tion to the assumption that r is minimized. Therefore br´1 is adjacent
to vk`2. Then take G2 “ G1 ˚ br ˚ vi with P 2 “ v0v1 ¨ ¨ ¨ vk`2vi`1 ¨ ¨ ¨ vm.
Then b1, b2, . . . , br´1 is a nice blocking sequence for pA, V pP 2qzAq in G2

and the length of P 2 is at least t ´ 6pn ´ 1q2 ` 6 ` r ´ ` ´ 1. This
contradicts to the assumption that r is chosen to be minimum.

Therefore br is adjacent to vk`1 in G1. Since br is the last vertex
in the blocking sequence, br is also adjacent to wk in G1. If br´1 is
non-adjacent to vk`2, then take G2 “ G1 ˚ vk`2 ˚ br and P 2 “ P 1; in G2,
a sequence b1, b2, . . . , br´1 is a nice blocking sequence for pA, V pP 2qzAq
and the length of P 2 is at least t´ 6pn´ 1q2 ` 6` r´ `, contradicting
our assumption on r. So br´1 is adjacent to vk`2. Then we take G2 “
G1 ˚ vk`2 ˚ br ˚ vi with P 2 “ v0v1 ¨ ¨ ¨ vk`2vi`1 ¨ ¨ ¨ vm. Then b1, b2, . . . , br´1
is a nice blocking sequence for pA, V pP 2qzAq in G2 and the length of
P 2 is at least t ´ 6pn ´ 1q2 ` 6 ` r ´ ` ´ 1. This again contradicts to
the assumption on r. This proves that r “ 1.

Since b1 is a nice blocking sequence for pA, V pP 1qzAq in G1, b1 has a
neighbor in A in G1 and NG1pb1qXA ‰ tvk`1, wku. In addition, vi is the
only neighbor of b1 among V pP 1qzA in G1. Now it is easy to see that
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w1, w2, w3, . . . , wk, b1 is a pk ` 1q-patch of P 1 in G1. And, since ` ď 4,
we have |EpP 1q| ě t´ 6pn´ 1q2 ` 3. �

Proposition 6.5. Let N ě 4 be an integer. If a prime graph G on at
least 5 vertices has an induced path of length L “ p6pn´ 1q2 ´ 2qpN ´
2q´1, then there exists a graph G1 locally equivalent to G having a fully
patched induced path of length N , unless G has a cycle of length 2n` 1
as a vertex-minor.

Proof. Suppose that G has no cycle of length 2n` 1 as a vertex-minor.
Then n ě 3 by Theorem 1.1. By Lemma 6.3, we may assume that G
has a 1-patched path of length L ´ 6pn ´ 1q2 ` 6. By Lemma 6.4, we
may assume that G has an pN ´ 2q-patched path of length

L´ 6pn´ 1q2 ` 6´ pN ´ 3qp6pn´ 1q2 ´ 3q “ N

Thus G has a fully patched induced path of length N . �

6.2. Finding a cycle from a fully patched path. We aim to find
a cycle as a vertex-minor in a sufficiently long fully patched path.

Let P “ v0v1 ¨ ¨ ¨ vn be an induced path of a graph G with a pn´ 2q-
patch Q “ w1w2w3, . . . wn´2. Let A1 “ tv0, v1u and for i “ 2, . . . , n´2,
let Ai “ tv0, v1, . . . , vi, w1, w2, . . . , wi´1u and Bi “ V pP qzAi for all
i P t1, 2, . . . , n´ 2u.

For i ě 1, let Lpwiq be the minimum j ě 0 such that

ρ˚GpAj`1, Bj`1 Y twiuq ą 1.

Since wi is a blocking sequence for pAi, Biq, Lpwiq is well defined and
Lpwiq ă i.

We classify vertices in Q as follows.

‚ A vertex wi has Type 0 if Lpwiq “ 0 and wi is adjacent to v0.
‚ A vertex wi has Type 1 if Lpwiq ě 1 and wi has no neighbor in
ALpwiq and wi is adjacent to exactly one of vLpwiq`1 and wLpwiq.

‚ A vertex wi has Type 2 if Lpwiq “ 1 and wi is adjacent to v1,
non-adjacent to v0.

‚ A vertex wi has Type 3 if Lpwiq ě 2 and wi has no neighbor in
ALpwiq´1 and wi is adjacent to both vLpwiq and wLpwiq´1.

By the definition of fully patched paths, we can deduce the following
lemma easily.

Lemma 6.6. Each vertex in Q has Type 0, 1, 2, or 3.

Proof. If wi is adjacent to v0, then ρ˚GpA1, B1Ytwiuq ą 1 and therefore
Lpwiq “ 0, implying that wi has Type 0. We may now assume that wi

is non-adjacent to v0 and so Lpwiq ą 0.
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If wi has no neighbors in ALpwiq, then ρ˚GpALpwiq`1, BLpwiq`1Ytwiuq “

ρ˚GpALpwiq`1zALpwiq, BLpwiq`1 Y twiuq ą 1. Thus vLpwiq`2 and wi cannot
have the same set of neighbors in ALpwiq`1zALpwiq “ tvLpwiq`1, wLpwiqu.
By the definition of fully patched paths, vLpwiq`2 is adjacent to both
vLpwiq`1 and wLpwiq. It follows that wi is adjacent to exactly one of
vLpwiq`1 and wLpwiq. So wi has Type 1.

Now we may assume that wi has some neighbors in ALpwiq. By defi-
nition,

ρ˚GpALpwiq, BLpwiq Y twiuq ď 1

and therefore wi and vLpwiq`1 have the same set of neighbors in ALpwiq.
Therefore, if Lpwiq “ 1, then wi is adjacent to v1, implying that wi has
Type 2. If Lpwiq ą 1, then wi is adjacent to both vLpwiq and wLpwiq´1,
and so wi has Type 3. �

We say that a pair of paths P i
1 and P i

2 from tv0, v1u to tvi`1, wiu is
good if

(i) P i
1 and P i

2 are vertex-disjoint induced paths on Ai`1,
(ii) for each j P t1, 2, . . . , i´1u, wj P V pP

i
1qYV pP

i
2q or vj`1 P V pP

i
1qY

V pP i
2q,

(iii) GrV pP i
1qYV pP

i
2qs`vi`1wi is a generalized ladder with two defining

paths P i
1 and P i

2.

Lemma 6.7. For all i P t1, 2, . . . , n ´ 2u, G has a good pair of paths
P i
1 and P i

2 from tv0, v1u to tvi`1, wiu.

Proof. We proceed by induction on i. If wi has Type 0, then let P i
1 “

v1v2 ¨ ¨ ¨ vi`1 and P i
2 “ v0wi. Since v0 has no neighbors in tv2, v3, . . . , vi`1u,

GrV pP i
1q Y V pP i

2qs ` vi`1wi is a generalized ladder with two defin-
ing paths P i

1 and P i
2. Also, V pP i

1q Y V pP i
2q Ď Ai`1 and for all j P

t1, 2, . . . , i´ 1u, vj`1 P V pP
i
1q. Thus, the pair pP i

1, P
i
2q is good.

If wi has Type 2, then let P i
1 “ v0w1v3v4 ¨ ¨ ¨ vi`1 and P i

2 “ v1wi.
By the definition of a patched path, v1 is not adjacent to w1. So,
v1 has no neighbors in tw1, v3, v4, . . . , vi`1u, and therefore GrV pP i

1q Y

V pP i
2qs ` vi`1wi is a generalized ladder with two defining paths P i

1 and
P i
2. Clearly, V pP i

1q Y V pP i
2q Ď Ai`1. Moreover, w1 P V pP

i
1q and for

each j P t2, . . . , i ´ 1u, vj`1 P V pP
i
1q. Therefore, the pair pP i

1, P
i
2q is

good.
Now, we may assume that wi has Type 1 or Type 3. Since Lpwiq ě 1,

by the induction hypothesis, G has a good pair of paths P
Lpwiq

1 , P
Lpwiq

2

from tv0, v1u to tvLpwiq`1, wLpwiqu.
Suppose wi has Type 1 and therefore wi is adjacent to exactly one

of vLpwiq`1 and wLpwiq. Let tx, yu “ tvLpwiq`1, wLpwiqu such that x is
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wi (Type 1)

vi`1

x

y vLpwiq`2 vLpwiq`3 ¨ ¨ ¨

(a)P
i
2

P i
1

x P tvLpwiq`1, wLpwiqu

y P tvLpwiq`1, wLpwiquztxu

wi (Type 3)

vi`1

x

y
vLpwiq`1

wLpwiq

vLpwiq`2 ¨ ¨ ¨

(b)P
i
2

P i
1

x P tvLpwiq, wLpwiq´1u

Figure 7. Constructing a generalized ladder in a fully
patched path. The vertex wi has Type 1 in (a) and has
Type 3 in (b).

adjacent to wi. We may assume that the paths P
Lpwiq

1 and P
Lpwiq

2 end
at y and x, respectively. Let P i

1 be a path

P
Lpwiq

1 ` yvLpwiq`2vLpwiq`3 ¨ ¨ ¨ vi`1

and let P i
2 be a path P

Lpwiq

2 ` xwi. See Figure 7. By the induction

hypothesis, V pP
Lpwiq

1 q Y V pP
Lpwiq

2 q Ď ALpwiq`1 Ď Ai`1, and for each j P

t1, 2, . . . , Lpwiq ´ 1u, V pP
Lpwiq

1 q Y V pP
Lpwiq

2 q contains wj or vj`1. Thus
it follows that V pP i

1q Y V pP
i
2q Ď Ai`1 and for each j P t1, 2, . . . , i´ 1u,

V pP i
1q Y V pP

i
2q contains wj or vj`1.

We claim that GrV pP i
1q Y V pP i

2qs ` vi`1wi is a generalized ladder
with the defining paths P i

1 and P i
2. By the induction hypothesis, it is

enough to show that there are no two crossing chords xa and wib for
some a, b P V pP i

1q. Since wi has no neighbor in ALpwiq and wi and y
are non-adjacent, b P X “ tvk : k P tLpwiq ` 2, Lpwiq ` 3, . . . , i ` 1uu.
Since x has no neighbor in XztvLpwiq`2u, we deduce that xa and wib
cannot cross and therefore GrV pP i

1q Y V pP
i
2qs ` vi`1wi is a generalized

ladder. This proves that if wi has Type 1, then pP i
1, P

i
2q is a good pair.
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Finally, suppose that wi has Type 3 and so wi is adjacent to both

vLpwiq and wLpwiq´1. By symmetry, we may assume that P
Lpwiq

2 ends at

vLpwiq`1. Let x be the predecessor of vLpwiq`1 in P
Lpwiq

2 . Since P
Lpwiq

2

is on ALpwiq`1 and vLpwiq`1 has only two neighbors vLpwiq, wLpwiq´1 in
ALpwiq`1, either x “ vLpwiq or x “ wLpwiq´1. Let y be the predecessor of

wLpwiq in P
Lpwiq

1 . Let P i
1 be a path

P
Lpwiq

1 ` wLpwiqvLpwiq`2vLpwiq`3 ¨ ¨ ¨ vi`1

and let P i
2 be a path obtained from P

Lpwiq

2 by removing vLpwiq`1 and
adding xwi. See Figure 7(b). It follows from our construction and the
induction hypothesis that V pP i

1q Y V pP i
2q Ď Ai`1 and V pP i

1q Y V pP i
2q

contains wj or vj`1 for each j P t1, 2, . . . , i´ 1u.
We claim that GrV pP i

1q Y V pP i
2qs ` vi`1wi is a generalized ladder

with the defining paths P i
1 and P i

2. By the induction hypothesis, it is
enough to prove that there are no two chords xa and wib such that
a, b P V pP i

1q and b precedes a in P i
1. Suppose not. Since wi has no

neighbor in ALpwiq´1, neighbors of wi in P i
1 are in ty, wLpwiqu Y tvk :

k P tLpwiq ` 2, Lpwiq ` 3, . . . , i ` 1uu. Since x has no neighbor in
tvk : k P tLpwiq ` 2, Lpwiq ` 3, . . . , i ` 1uu, we deduce that a “ wLpwiq

and b “ y. Since wi has no neighbor in ALpwiq´1, b is one of vLpwiq

and wLpwiq´1 other than x. Thus wLpwiq is adjacent to both vLpwiq and
wLpwiq´1. This contradicts (iii) because vLpwiq`1 is also adjacent to both

vLpwiq and wLpwiq´1 and so GrV pP
Lpwiq

1 qYV pP
Lpwiq

2 qs` vLpwiq`1wLpwiq is
not a generalized ladder. �

Lemma 6.8. If a graph has a fully patched induced path of length n,
then it has a generalized ladder having at least n ` 2 vertices as an
induced subgraph.

Proof. Let P “ v0v1 ¨ ¨ ¨ vn be the induced path of length n with an pn´
2q-patch Q “ w1w2 ¨ ¨ ¨wn´2. Lemma 6.7 provides a good pair of paths
P n´2
1 and P n´2

2 from tv0, v1u to tvn´1, wn´2u such that GrV pP n´2
1 q Y

V pP n´2
2 qs ` vn´1wn´2 is a generalized ladder and V pP n´2

1 q Y V pP n´2
2 q

contains wj or vj`1 for each j P t1, 2, . . . , n ´ 3u. Since vn is only
adjacent to vn´1 and wn´2 in G, G1 “ GrV pP n´2

1 q Y V pP n´2
2 q Y tvnus

is a generalized ladder. Since v0, v1, vn, vn´1, wn´2 P V pG
1q, G1 has at

least pn´ 3q ` 5 “ n` 2 vertices. �

Now we are ready to prove the main theorem of this section.

Lemma 6.9. Let n ě 1. If a prime graph has an induced path of length
110592n7, then it has a cycle of length 4n` 3 as a vertex-minor.
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Proof. Let G be a prime graph having an induced path of length
110592n7. Suppose that G has no cycle of length 4n ` 3 as a vertex-
minor. Let N “ 4608n5. Then

p6p2nq2 ´ 2qpN ´ 2q ´ 1 ă 110592n7.

Thus by Proposition 6.5, there exists a graph G1 locally equivalent to
G having a fully patched induced path of length N . By Lemma 6.8,
G1 must have a generalized ladder having at least N ` 2 vertices as an
induced subgraph. By Proposition 4.1, we deduce that G1 has a cycle
of length 4n` 3 as a vertex-minor. �

Proof of Theorem 6.1. Let k “ tn{4u. Let G be a prime graph having a
path of length at least 6.75n7. Then G has a path of length 6.75p4kq7 “
110592k7, and by Lemma 6.9, G has a cycle of length 4k ` 3 ě n as a
vertex-minor. �

7. Main Theorem

In this section, we prove the following.

Theorem 7.1. For every n, there is N such that every prime graph on
at least N vertices has a vertex-minor isomorphic to Cn or Kn a Kn.

By Theorem 6.1, it is enough to prove the following proposition.

Proposition 7.2. For every c, there exists N such that every prime
graph on at least N vertices has a vertex-minor isomorphic to either
Pc or Kc a Kc.

Here is the proof of Theorem 7.1 assuming Proposition 7.2.

Proof of Theorem 7.1. We take c “ r6.75n7s and apply Proposition 7.2
and Theorem 6.1. �

For integers h,w, ` ě 1, a ph,w, `q-broom of a graph G is a connected
induced subgraph H of G such that

(i) H has an induced path P of length h from some vertex v called
the center,

(ii) P zv is a component of Hzv,
(iii) HzV pP q has w components, each having exactly ` vertices.

The path P is called a handle of H and each component of HzV pP q is
called a fiber of H. If H “ G, then we say that G is a ph,w, `q-broom.
We call h, w, ` the height, width, length, respectively, of a ph,w, `q-
broom. See Figure 8. Observe that v has one or more neighbors in
each fiber.
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center

height h :“ number of edges in the handle

width w :“number of fibers

length ` :“number of vertices in each fiber

Figure 8. A ph,w, `q-broom.

Here is the rough sketch of the proof. If a prime graph G has no
vertex-minor isomorphic to Pc or Kc a Kc and G has a broom having
huge width as a vertex-minor, then it has a vertex-minor isomorphic to
a broom with larger length and sufficiently big width. So, we increase
the length of a broom while keeping its width big. If we obtain a broom
of big length by repeatedly applying this process, then we will obtain
a broom of larger height. By growing the height, we will eventually
obtain a long induced path.

To start the process, we need an initial broom with sufficiently big
width. For that purpose, we use the following Ramsey-type theorem.

Theorem 7.3 (folklore; see Diestel [8, Proposition 9.4.1]). For positive
integers c and t, there exists N “ g0pc, tq such that every connected
graph on at least N vertices must contain Kt`1, K1,t, or Pc as an
induced subgraph.

By Theorem 7.3, if G is prime and |V pGq| ě g0pc, t` 1q, then either
G has an induced subgraph isomorphic to Pc or G has a vertex-minor
isomorphic to K1,t`1. Since a p1, t, 1q-broom is isomorphic to K1,t`1,
we conclude that every sufficiently large prime graph has a vertex-
minor isomorphic to a p1, t, 1q-broom, unless it has an induced subgraph
isomorphic to Pc.

7.1. Increasing the length of a broom. We now show that if a
prime graph has a broom having sufficiently large width, we can find a
broom having larger length after applying local complementation and
shrinking the width.

In the following proposition, we want to find a wide broom of length
2 when we are given a sufficiently wide broom of length 1, when the
graph has no Pc or Kc a Kc as a vertex-minor.
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Proposition 7.4. For all integers c ě 3 and t ě 1, there exists N “

g1pc, tq such that for each h ě 1, every prime graph having a ph,N, 1q-
broom has a vertex-minor isomorphic to a ph, t, 2q-broom, Kc aKc, or
Pc.

We will use the following theorem.

Theorem 7.5 (Ding, Oporowski, Oxley, Vertigan [10]). For every pos-
itive integer n, there exists N “ fpnq such that for every bipartite graph
G with a bipartition pS, T q, if no two vertices in S have the same set
of neighbors and |S| ě N , then S and T have n-element subsets S 1 and
T 1, respectively, such that GrS 1, T 1s is isomorphic to KnaKn, KnmKn,
or Kn b Kn.

Proof of Proposition 7.4. Let N “ fpRpw,wqq where f is the function
in Theorem 7.5, and w “ maxpt` pc´ 1qpc´ 3q, 2c´ 1q. Suppose that
G has a ph, g1pc, tq, 1q-broom H. Note that every fiber of H is a single
vertex.

Let S be the union of the vertex sets of all fibers of H, and x be the
center of H. Let NGpSqztxu “ T . Since G is prime, no two vertices
in G have the same set of neighbors, and so two distinct vertices in
S have different sets of neighbors in T . Since |S| “ N “ fpRpw,wqq,
by Theorem 7.5, there exist S0 Ď S, T0 Ď T such that GrS0, T0s is
isomorphic to KRpw,wqaKRpw,wq, KRpw,wqmKRpw,wq or KRpw,wqbKRpw,wq.
Since |T0| ě Rpw,wq, by Ramsey’s theorem, there exist S 1 Ď S0 and
T 1 Ď T0 such that GrS 1, T 1s is isomorphic to Kw a Kw, Kw m Kw,
or Kw b Kw, and T 1 is a clique or a stable set in G. If GrS 1, T 1s is
isomorphic to Kw m Kw or Kw b Kw, then by Lemmas 2.7 and 2.8, G
has a vertex-minor isomorphic to either P2w or Kw´2 a Kw´2. Since
w ě 2c ´ 1 and c ě 3, we have Pc or Kc a Kc. Thus we may assume
that GrS 1, T 1s is isomorphic to Kw a Kw.

If T 1 is a clique inG, then we can remove the edges connecting T 1 with
x by applying local complementation at some vertices in S 1. Thus, we
can obtain a vertex-minor isomorphic to KwaKw from GrS 1YT 1Ytxus
by applying local complementation at x and deleting x. Therefore we
may assume that T 1 is a stable set in G.

We claim that each vertex y ‰ x in the handle of H is adjacent to at
most c vertices in T 1, or G has KcaKc as a vertex-minor. Suppose not.
If y is a neighbor of x, then by pivoting an edge of GrS 1, T 1s, we can
delete the edge xy. From there, we obtain a vertex-minor isomorphic
to Kc a Kc by applying local complementation at x and y. If y is not
adjacent to x, then we obtain a vertex-minor isomorphic to Kc a Kc
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x, y x, y x, y x, y

Figure 9. Dealing with 4-vertex graphs in Lemma 7.6.

by deleting all vertices in the handle other than x and y, and applying
local complementation at x and y. This proves the claim.

By deleting at most pc´ 1qh vertices in T 1 and their pairs in S 1, we
can assume that no vertex other than x in the handle has a neighbor
in T 1 and this broom has width at least w ´ pc ´ 1qh. If h ` 2 ě c,
then we have Pc as an induced subgraph. Thus we may assume that
h ď c ´ 3. Since w ´ pc ´ 1qh ě w ´ pc ´ 1qpc ´ 3q ě t, we obtain a
vertex-minor isomorphic to a ph, t, 2q-broom. �

We now aim to increase the length of a broom when the broom has
length at least 2. For a fiber F of a broom H, we say that a vertex
v P V pGqzV pHq blocks F if

ρ˚GpV pF q, pV pHqzV pF qq Y tvuq ą 1.

If G is prime and F has at least two vertices, then G has a blocking se-
quence for pV pF q, V pHqzV pF qq by Proposition 5.2 and therefore there
exists a vertex v that blocks F because we can take the first vertex in
the blocking sequence.

Lemma 7.6. Let G be a graph and let x, y be two vertices such that
ρGptx, yuq “ 2 and Gzxzy is connected. Then there exists some se-
quence v1, v2, . . . , vn P V pGqztx, yu of (not necessarily distinct) vertices
such that G ˚ v1 ˚ v2 ¨ ¨ ¨ ˚ vn has an induced path of length 3 from x to y.

Proof. We proceed by induction on |V pGq|. If |V pGq| “ 4, then it is
easy to check all cases to obtain a path of length 3. To do so, first ob-
serve that up to symmetry, there are 2 cases in Grtx, yu, V pGqztx, yus;
either it is a matching of size 2 or a path of length 3. In both cases, one
can find a desired sequence of vertices to apply local complementation,
see Figure 9 for all possible graphs on 4-vertices up to isomorphism.

Now we may assume that G has at least 5 vertices. Let A1 “

NGpxqzpNGpyqYtyuq, A2 “ NGpxqXNGpyq, and A3 “ NGpyqzpNGpxqY
txuq. Clearly ρGptx, yuq “ 2 is equivalent to say that at least two of
A1, A2, A3 are nonempty.

We say a vertex t in Gzxzy deletable if Gzxzyzt is connected. If there
is a deletable vertex not in A1YA2YA3, then ρGztptx, yuq “ 2 and we
apply the induction hypothesis to find an induced path. Thus we may
assume that all deletable vertices are in A1 Y A2 Y A3.
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If |Ai| ą 1 and Ai has a deletable vertex t for some i “ 1, 2, 3, then
ρGztptx, yuq “ 2 and so we obtain a sequence by applying the induction
hypothesis. So we may assume that if Ai has a deletable vertex, then
|Ai| “ 1.

If there are three deletable vertices t1, t2, t3 in Gzxzy, then we may
assume Ai “ ttiu. However, ρGzt1ptx, yuq “ 2 because A2, A3 are
nonempty and therefore we obtain an induced path from x to y by the
induction hypothesis.

Thus we may assume that Gzxzy has at most 2 deletable vertices.
So Gzxzy has maximum degree at most 2 because otherwise we can
choose leaves of a spanning tree of Gzxzy using all edges incident with
a vertex of the maximum degree. If Gzxzy is a cycle, then every vertex
is deletable and so Gzxzy is a path. Let w be a degree-2 vertex in
Gzxzy. Then G ˚ w has at least 3 deletable vertices and therefore we
find a desired sequence v1, v2, . . . , vn such that G ˚w ˚ v1 ˚ v2 ¨ ¨ ¨ ˚ vn has
an induced path of length 3 from x to y. �

Lemma 7.7. Let G be a graph and let x, y be two vertices in G, and
let F1, F2, . . . , Fc be the components of Gzxzy. If ρ˚Gptx, yu, Fiq “ 2 for
all 1 ď i ď c, then G has a vertex-minor isomorphic to Kc a Kc.

Proof. We proceed by induction on |V pGq|` |EpGq|.
Suppose that GrV pFiq Y tx, yus is not an induced path of length 3

from x to y. By Lemma 7.6, there exists a sequence v1, v2, . . . , vn P
V pFiq such that GrV pFiq Y tx, yus ˚ v1 ˚ v2 ¨ ¨ ¨ ˚ vn has an induced path
of length 3 from x to y. If |V pFiq| ě 3, then we delete all vertices in Fi

not on this path and apply the induction hypothesis. If |V pFiq| “ 2,
then |EpGrV pFiq Y tx, yusq| ą |EpGrV pFiq Y tx, yus ˚ v1 ˚ v2 ˚ ¨ ¨ ¨ ˚ vnq|
because two vertices in Fi are connected, Grtx, yu, V pFiqs has at least
two edges, and GrV pFiq Y tx, yus is not an induced path of length 3
from x to y. So we apply the induction hypothesis to G˚v1 ˚v2 ˚ ¨ ¨ ¨ ˚vn
to obtain a vertex-minor isomorphic to Kc a Kc.

Therefore we may assume that GrV pFiq Y tx, yus is an induced path
of length 3 from x to y for all i. Thus G˚x˚yzxzy is indeed isomorphic
to Kc a Kc. �

Lemma 7.8. Let t be a positive integer, and G be a bipartite graph
with a bipartition pS, T q such that every vertex in T has degree at least
1. Then either S has a vertex of degree at least t ` 1 or G has an
induced matching of size at least |T |{t.

Proof. We claim that if every vertex in S has degree at most t, then G
has an induced matching of size at least |T |{t. We proceed by induction
on |T |. This is trivial if |T | “ 0. If 0 ă |T | ď t, then we can simply
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pick an edge to form an induced matching of size 1. So we may assume
that |T | ą t.

We may assume that T has a vertex w of degree 1, because otherwise
we can delete a vertex in S and apply the induction hypothesis. Let v
be the unique neighbor of w. By the induction hypothesis, GzvzNGpvq
has an induced matching M 1 of size at least p|T |´ tq{t. Now M 1Ytvwu
is a desired induced matching. �

Lemma 7.9. Let H be a broom in a graph G having n fibers F1, F2, . . . , Fn

given with n vertices v1, v2, . . . , vn in V pGqzV pHq such that

(1) vi blocks Fj if and only if i “ j,
(2) vi has a neighbor in Fj if and only if i ď j.

If n ě Rpc` 1, c` 1q, then G has a vertex-minor isomorphic to Pc.

Proof. If j ą i, then vi has a neighbor in Fj, but vi does not block Fj.
Therefore, vi is adjacent to every vertex in V pFjq X NHpxq for j ą i.
Since n ě Rpc ` 1, c ` 1q, there exist 1 ď t1 ă t2 ¨ ¨ ¨ ă tc`1 ď n such
that tvt1 , vt2 , . . . , vtc`1u is a clique or a stable set of G. For 1 ď i ď c`1,
let wi be a vertex in V pFtiq XNHpxq. Clearly,

Grtvt1 , vt3 , . . . , vt2rc{2s´1
u, tw2, w4, . . . , w2rc{2sus

is isomorphic to Krc{2s m Krc{2s.

By Lemma 2.8, Krc{2s m Krc{2s or Krc{2s m Krc{2s has a vertex-minor
isomorphic to Pc. �

Lemma 7.10. Let H be a broom in a graph G having n fibers F1, F2, . . . , Fn.
Let v1, v2, . . . , vn be vertices in V pGqzV pHq such that

(1) vi blocks Fj if and only if i “ j,
(2) vi has a neighbor in Fj for all i and j.

If n ě Rpc`2, c`2q, then G has a vertex-minor isomorphic to KcaKc.

Proof. If i ‰ j, then vj does not block Fi and therefore NGpvjq X
V pFiq “ NGpxqXV pFiq. Since n ě Rpc` 2, c` 2q, there exist 1 ď t1 ă
t2 ¨ ¨ ¨ ă tc`2 ď n such that tvt1 , vt2 , . . . , vtc`2u is a clique or a stable set
of G.

We claim that for each 1 ď i ď c ` 2, there exist a sequence

w
piq
1 , w

piq
2 , . . . , w

piq
ki

of ki ě 0 vertices in V pFtiqzpNGpxq Y NGpvtiqq and

zi P V pFtiq such that zi is not adjacent to vti in G ˚w
piq
1 ˚w

piq
2 ˚ ¨ ¨ ¨ ˚w

piq
ki

but zi is adjacent to vtj in G ˚ w
piq
1 ˚ w

piq
2 ˚ ¨ ¨ ¨ ˚ w

piq
ki

for all j ‰ i.

Let A
piq
1 “ pNGpvtiqzNGpxqq X V pFtiq, A

piq
2 “ pNGpvtiq X NGpxqq X

V pFtiq and A
piq
3 “ pNGpxqzNGpvtiqq X V pFtiq.
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If A
piq
3 ‰ H, then a vertex zi in A

piq
3 satisfies the claim. So we

may assume A
piq
3 is empty. Then A

piq
1 ‰ H and A

piq
2 ‰ H, otherwise

ρ˚Gptvti , vtju, V pFtiqq ď 1 for all j ‰ i because NGpvtjq X V pFtiq “

NGpxq X V pFtiq. We choose a
piq
1 P A

piq
1 and a

piq
2 P A

piq
2 so that the

distance from a
piq
1 to a

piq
2 in Fi is minimum.

Let Pi be a shortest path from a
piq
1 to a

piq
2 in Fti . Note that each

internal vertex of Pi is not contained in A
piq
1 Y A

piq
2 . After applying

local complementation at all internal vertices of Pi, a
piq
1 is adjacent to

a
piq
2 and vti , and non-adjacent to vtj for all j ‰ i. So by applying one

more local complementation at a
piq
1 if necessary, we can delete the edges

between a
piq
2 and vtj for all j ‰ i. And then, zi “ a

piq
2 satisfies the claim.

Now, take G1 “ G˚w
p1q
1 ˚¨ ¨ ¨˚w

p1q
k1
˚w

p2q
1 ˚¨ ¨ ¨˚w

p2q
k2
¨ ¨ ¨˚w

pc`2q
1 ˚¨ ¨ ¨˚w

pc`2q
kc`2

.

Since each w
piq
k has no neighbors in tvt1 , vt2 , . . . , vtc`2u in G, applying

local complementation at w
piq
k does not change the adjacency between

any two vertices in tvt1 , vt2 , . . . , vtc`2u. Thus the induced subgraph of

G1 on tz1, z2, . . . , zc`2uYtvt1 , vt2 , . . . , vtc`2u is isomorphic to Kc`2bKc`2

or Kc`2 b Kc`2, and by Lemma 2.7, G has a vertex-minor isomorphic
to Kc a Kc. �

Lemma 7.11. Let H be a ph, n, `q-broom in a graph G having n fibers
F1, F2, . . . , Fn given with n vertices v1, v2, . . . , vn in V pGqzV pHq such
that

(1) vi blocks Fj if and only if i “ j,
(2) if i ‰ j, then vi has no neighbor in Fj.

If n ě Rpt ` pc ´ 1qpc ´ 3q, cq, then G has a vertex-minor isomorphic
to Pc, Kc a Kc, or a ph, t, `` 1q-broom.

Proof. Since n ě Rpt ` pc ´ 1qpc ´ 3q, cq, there exist 1 ď t1 ă t2 ¨ ¨ ¨ ă
tk ď n such that either

(1) k “ c and tvt1 , vt2 , . . . , vtku is a clique in G, or
(2) k “ t` pc´ 1qpc´ 3q and tvt1 , vt2 , . . . , vtku is a stable set in G.

First, we assume that k “ c and tvt1 , vt2 , . . . , vtku is a clique. For
each ti, since ρ˚Gptx, vtiu, V pFtiqq ě 2, by Lemma 7.6, there exists some
sequence w1, w2, . . . , wn P V pFtiq of (not necessarily distinct) vertices
such that GrV pFtiq Y tx, vtius ˚ w1 ˚ w2 ¨ ¨ ¨ ˚ wn has an induced path of
length 2 from vti to x. By applying local complementation at x, we
have a vertex-minor isomorphic to Kc a Kc.

Now, suppose that k “ t ` pc ´ 1qpc ´ 3q and tvt1 , vt2 , . . . , vtku
is a stable set in G. Let P be the handle of H. If h ` 2 ě c,
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then we have Pc as an induced subgraph. Thus we may assume that
h ď c ´ 3. We assume that a vertex y P V pP qztxu adjacent to c ver-
tices in tv1, v2, . . . , vku. Then since ρ˚Gptx, yuq, V pFiq Y tvtiuq “ 2 for
each i, by Lemma 7.7, we have a vertex-minor isomorphic to Kc aKc.
Thus, every vertex in the handle other than x cannot have more than
c ´ 1 neighbors in tvt1 , vt2 , . . . , vtku. By deleting at most pc ´ 1qh ver-
tices in tvt1 , vt2 , . . . , vtku, we can remove all edges from V pP qztxu to
tvt1 , vt2 , . . . , vtku. Since

k ´ pc´ 1qh ě k ´ pc´ 1qpc´ 3q ě t,

we have a vertex-minor isomorphic to a ph, t, `` 1q-broom. �

Proposition 7.12. For positive integers c and t, there exists N “

g2pc, tq such that for all integers ` ě 2 and h ě 1, every prime graph
having a ph,N, `q-broom has a vertex-minor isomorphic to a ph, t, ``1q-
broom, Pc, or Kc a Kc.

Proof. Let N “ g2pc, tq “ pc ´ 1qm, where m “ Rpm1,m2,m2,m2q,
m1 “ Rpt ` pc ´ 1qpc ´ 3q, cq, and m2 “ Rpc ` 2, c ` 2q. Let H be
a ph,N, `q-broom of G. If a vertex w in V pGqzV pHq blocks c fibers
of H, then for each fiber F of them, ρ˚Gptw, xu, V pF qq “ 2. So by
Lemma 7.7, G has a vertex-minor isomorphic to Kc a Kc. Thus, a
vertex in V pGqzV pHq can block at most c´ 1 fibers of H.

For each fiber F of H, there is a vertex v P V pGqzV pHq that blocks F
because G is prime. Thus, by Lemma 7.8, there are g2pc, tq{pc´ 1q “ m
vertices v1, v2, . . . , vm in V pGqzV pHq and fibers F1, F2, . . . , Fm of H
such that for 1 ď i, j ď m, vi blocks Fj if and only if i “ j. For
i ‰ j, either vi has no neighbor in Fj or vi has a neighbor in Fj but
ρ˚Gptvi, xu, V pFjqq “ 1.

We assume that V pKmq “ t1, 2, . . . ,mu. We color the edges of Km

such that an edge ti, ju is

‚ green if NGpviq X V pFjq ‰ H and NGpvjq X V pFiq ‰ H,
‚ red if NGpviq X V pFjq ‰ H and NGpvjq X V pFiq “ H,
‚ yellow if NGpviq X V pFjq “ H and NGpvjq X V pFiq ‰ H,
‚ blue if NGpviq X V pFjq “ NGpvjq X V pFiq “ H.

Since |V pKmq| “ m “ Rpm1,m2,m2,m2q, by Ramsey’s theorem, either
Km has a green clique of size m1, or Km has a monochromatic clique
of size m2 which is red, yellow, or blue.

If Km has a red clique C of size m2, then for i, j P C, vi has a
neighbor in Fj if and only if i ď j. Since m2 ě Rpc ` 1, c ` 1q, by
Lemma 7.9, G has a vertex-minor isomorphic to Pc.

Similarly, if Km has a yellow clique C of size m2, by Lemma 7.9, G
has a vertex-minor isomorphic to Pc.
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If Km has a blue clique C of size m2, then for distinct i, j P C, vi
has a neighbor in Fj. Since m2 “ Rpc ` 2, c ` 2q, by Lemma 7.10, G
has a vertex-minor isomorphic to Kc a Kc.

If Km has a green clique C of size m1, then for distinct i, j P C,
vi has no neighbor in Fj. Since m1 “ Rpt ` pc ´ 1qpc ´ 3q, cq, by
Lemma 7.11, G has a vertex-minor isomorphic to Pc, Kc a Kc, or a
ph, t, `` 1q-broom. �

7.2. Increasing the height of a broom.

Proposition 7.13. For positive integers c, t, there exists N “ g3pc, tq
such that for h ě 1, every prime graph having a ph, 1, Nq-broom has a
vertex-minor isomorphic to a ph` 1, t, 1q-broom or Pc.

Proof. Let N “ g3pc, tq “ g0pc, 2tq where g0 is given in Theorem 7.3.
Suppose that G has a ph, 1, Nq-broom H and let x be the center of H.
Let F be the fiber of H.

Since F is connected, by Theorem 7.3, F has an induced subgraph
isomorphic to Pc, or F has a vertex-minor isomorphic to K2t`1. We
may assume that F has an induced subgraph F 1 isomorphic to K2t`1.
Let P “ p1p2 . . . pm be a shortest path from p1 “ x to F 1 in H. Note
that m ě 2 and pm´1 is adjacent to at least one vertices of F 1. Let
S “ NHppm´1q X V pF

1q.
We claim that there exists a vertex v P V pF 1q such that pG˚vqrV pF qY

txus has an induced path of length at least m´ 1 from x, and the last
vertex of the path has t neighbors in F 1 which form a stable set in G.

If |S| ď t, then choose pm`1 P V pF
1qzS and we delete Szpm from

F 1. And by applying local complementation at pm`1, we obtain a path
from x to pm`1 such that pm`1 has t neighbors in F 1 which form a
stable set.

If |S| ě t ` 1, then by applying local complementation at pm, we
obtain a path from x to pm such that pm has t neighbors in F 1 which
form a stable set. Thus, we prove the claim.

Since m ě 2, the union of the handle of H and the path in the
claim form a path of length at least h ` 1, and the last vertex of the
path has t neighbors which form a stable set in F 1. Therefore, G has a
vertex-minor isomorphic to a ph` 1, t, 1q-broom. �

Proposition 7.14. For positive integers c, t, there exists N “ g4pc, tq
such that for all h ě 1, every prime graph having a ph,N, 1q-broom has
a vertex-minor isomorphic to a ph` 1, t, 1q-broom, Pc, or Kc a Kc.
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Proof. By Proposition 7.13, there exists N0 depending only on c and
t such that every prime graph having a ph, 1, N0q-broom has a vertex-
minor isomorphic to a ph` 1, t, 1q-broom or Pc. By applying Proposi-
tion 7.12 pN0´2q times, we deduce that there exists N1 such that every
prime graph having a ph,N1, 2q-broom has a vertex-minor isomorphic
to a ph, 1, N0q-broom, Pc, or Kc a Kc. By Proposition 7.4, there ex-
ists N such that every prime graph having a ph,N, 1q-broom has a
vertex-minor isomorphic to a ph,N1, 2q-broom, Pc, or Kc a Kc. �

We are now ready with all necessary lemmas to prove Proposition 7.2.

Proof of Proposition 7.2. By Theorem 1.1, every prime graph on at
least 5 vertices has a vertex-minor isomorphic to C5 and P4 is a vertex-
minor of C5. Therefore we may assume that c ě 5.

By applying Proposition 7.14 pc ´ 3q times, we deduce that there
exists a big integer t depending only on c such that every prime graph
G with a p1, t, 1q-broom has a vertex-minor isomorphic to a pc´2, 1, 1q-
broom, Pc, or Kc aKc. Since a pc´ 2, 1, 1q-broom is isomorphic to Pc

and a p1, t, 1q-broom is isomorphic to K1,t`1, we conclude that every
prime graph having a vertex-minor isomorphic to K1,t`1 has a vertex-
minor isomorphic to Pc or Kc a Kc. By Theorem 3.1, there exists N
such that every connected graph on at least N vertices has a vertex-
minor isomorphic to K1,t`1. This completes the proof. �

8. Why optimal?

Our main theorem (Theorem 7.1) states that sufficiently large prime
graphs must have a vertex-minor isomorphic to Cn or Kn a Kn. But
do we really need these two graphs? To justify why we need both, we
should show that for some n, Cn is not a vertex-minor of KN a KN

for all N and similarly Kn aKn is not a vertex-minor of CN for all N ,
because Cn and Kn a Kn are also prime.

Proposition 8.1. Let n be a positive integer.

(1) K3 a K3 is not a vertex-minor of Cn.
(2) C7 is not a vertex-minor of Kn a Kn.

Since C7 is a vertex-minor of Cn for all n ě 7, the above proposition
implies that Cn is not a vertex-minor ofKNaKN when n ě 7. Similarly
Kn a Kn is not a vertex-minor of CN for all n ě 3.

We can classify all non-trivial prime vertex-minors of a cycle graph.

Lemma 8.2. If a prime graph H on at least 5 vertices is a vertex-minor
of Cn, then H is locally equivalent to a cycle graph.
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Figure 10. The graphs H5 and J5.

Proof. We proceed by induction on n. If n “ 5, then it is trivial. Let
us assume n ą 5. Suppose |V pHq| ă |V pCnq|. By Lemma 2.1, H is a
vertex-minor of Cnzv, Cn ˚ vzv, or Cn ^ vwzv for a neighbor w of v.

If H is vertex-minor of Cn ˚ vzv, then we can apply the induction
hypothesis because Cn ˚ vzv is isomorphic to Cn´1.

By Lemma 2.6, H cannot be a vertex-minor of Cnzv because Cnzv
has no prime induced subgraph on at least 5 vertices.

Thus we may assume that H is a vertex-minor of Cn ^ vwzv for a
neighbor w of v. Again, by Lemma 2.6, H is isomorphic to a vertex-
minor of Cn´2. �

Classifying prime vertex-minors of Kn a Kn turns out to be more
tedious. Instead of identifying prime vertex-minors of Kn a Kn, we
focus on characterizing prime vertex-minors on 7 vertices to prove (2)
of Proposition 8.1.

Instead of Kn a Kn, we will first consider Hn. Let Hn be the graph
having two specified vertices called roots and n internally disjoint paths
of length 3 joining the roots. Let Jn be the graph obtained from Hn by
adding a common neighbor of two roots. Then Hn has 2n` 2 vertices
and Jn has 2n ` 3 vertices, see Figure 10. It is easy to observe the
following.

Lemma 8.3. Let H be a prime vertex-minor of Hn on at least 5 ver-
tices. If |V pHnq| ´ |V pHq| ě 3, then Jn´1 has a vertex-minor isomor-
phic to H.

Proof. We may assume n ě 3. Since at most 2 vertices of Hn have
degree other than 2, there exists v P V pHnqzV pHq of degree 2 in Hn.
Let w be the neighbor of v having degree 2 in Hn. Let av1w1b be a path
of length 3 from a to b in Hn such that tv, wu ‰ tv1, w1u.
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By Lemma 2.1, H is a vertex-minor of either Hnzv, Hn ˚ vzv or
Hn ^ vwzv. If H is a vertex-minor of Hn ˚ vzv, then H is isomorphic
to a vertex-minor of Jn´1, because Hn ˚ vzv is isomorphic to Jn´1.

Since w has degree 1 in Hnzv, by Lemma 2.6, if H is a vertex-minor
of Hnzv, then H is isomorphic to a vertex-minor of Hnzvzw. Since
Hnzvzw is isomorphic to Hn´1 and Hn´1 is an induced subgraph of
Jn´1, H is isomorphic to a vertex-minor of Jn´1.

Similarly, if H is a vertex-minor of Hn^ vwzv, then H is isomorphic
to a vertex-minor of Hn ^ vwzvzw. Clearly, pHn ^ vwzvzwq ^ v1w1 is
isomorphic to Hn´1. Since Hn´1 is an induced subgraph of Jn´1, H is
isomorphic to a vertex-minor of Jn´1, as required. �

Lemma 8.4. Let H be a prime vertex-minor of Jn on at least 5 vertices.
If |V pJnq|´ |V pHq| ě 2, then Hn has a vertex-minor isomorphic to H.

Proof. We may assume n ě 2. Let a, b be the roots of Jn, azb be the
path of length 2, and avwb be a path of length 3 from a to b.

Case 1: Suppose that V pJnqzV pHq has a degree-2 vertex on a path of
length 3 from a to b. We may assume that it is v by symmetry. By
Lemma 2.1, H is a vertex-minor of Jnzv, Jn ˚ vzv, or Jn ^ vwzv.

IfH is a vertex-minor of Jnzv, thenH is isomorphic to a vertex-minor
of Jnzvzw by Lemma 2.6, because w has degree 1 in Jnzv. Similarly,
if H is a vertex-minor of Jn ^ vwzv, then H is isomorphic to a vertex-
minor of Jn ^ vwzvzw. Clearly, Jnzvzw and pJn ^ vwzvzwq ˚ z are
isomorphic to Jn´1, and Jn´1 is a vertex-minor of Hn.

If H is a vertex-minor of Jn˚vzv, then by Lemma 2.6, H is isomorphic
to a vertex-minor of Jn ˚ vzvzw, which is isomorphic to Jn´1, because
w and z have the same set of neighbors in Jn ˚ vzv. Since Jn´1 is a
vertex-minor of Hn, H is isomorphic to a vertex-minor of Hn. This
proves the lemma in Case 1.

Case 2: Suppose that z P V pJnqzV pHq. Then by Lemma 2.1, H is a
vertex-minor of Jnzz, Jn ˚zzz, or Jn^azzz. Since Jnzz and pJn ˚zzzq^
vw are isomorphic to Hn, we may assume that H is a vertex-minor of
Jn ^ azzz. However, Jn ^ azzz has no prime induced subgraph on at
least 5 vertices and therefore by Lemma 2.6, H cannot be a vertex-
minor of Jn ^ azzz, contradicting our assumption.

Case 3: Suppose that a or b is contained in V pJnqzV pHq. By symmetry,
let us assume a P V pJnqzV pHq. By Lemma 2.1, H is a vertex-minor of
Jnza, Jn ˚ aza, or Jn ^ azza.

Since Jnza has no prime induced subgraph on at least 5 vertices, H
cannot be a vertex-minor of Jnza by Lemma 2.6.
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F1 F2 F3

Figure 11. Graphs F1, F2 and F3.

Suppose H is a vertex-minor of Jn ^ azza. By the definition of
pivoting, b is adjacent to all vertices of NJnpaqztzu in Jn ^ azza. We
can remove all these edges between b and NJnpaqztzu by applying local
complementation on all vertices of NJnpbqztzu in Jn^azza. Thus, Hn is
locally equivalent to Jn^ azza, and H is isomorphic to a vertex-minor
of Hn.

Now suppose that H is a vertex-minor of Jn ˚ aza. By the definition
of local complementation, NJnpaq forms a clique in Jn ˚ aza. So, b is
adjacent to all vertices of NJnpaqztzu in pJn ˚ azaq ˚ z. Similarly in
the above case, by applying local complementation on all vertices of
NJnpbqztzu in pJn ˚ azaq ˚ z, we can remove all edges between b and
NJnpaqztzu in pJn ˚ azaq ˚ z. Finally, by pivoting vw, we can remove
the edge bz, and therefore, Jn ˚ aza is locally equivalent to Hn. Thus,
H is isomorphic to a vertex-minor of Hn. �

Let F1, F2, F3 be the graphs in Figure 11.

Lemma 8.5. Let n ě 3 be an integer. If a prime graph H is a vertex-
minor of Hn and |V pHq| “ 7, then H is locally equivalent to F1, F2,
or F3.

Proof. We proceed by induction on n. If n “ 3, then let H be a prime 7-
vertex vertex-minor ofH3. Let axyb be a path from a root a to the other
root b in H3. By symmetry, we may assume that V pH3qzV pHq “ txu or
tau. By Lemma 2.1, H is locally equivalent toH3zx, H3˚xzx, H3^xazx,
H3za, H3 ˚ aza, or H3 ^ abza. The conclusion follows because H3zx,
H3 ^ xyzx, H3za are not prime and H3 ˚ xzx, H3 ^ axza, and H3 ˚ aza
are isomorphic to F1, F2, and F3, respectively.

Suppose n ą 3. By Lemma 8.3, every 7-vertex prime vertex-minor
is also isomorphic to a vertex-minor of Jn´1. By Lemma 8.4, it is
isomorphic to a vertex-minor of Hn´1. The conclusion follows from the
induction hypothesis. �

Lemma 8.6. The graphs F1, F2, F3 are not locally equivalent to C7.

Proof. Suppose that Fi is locally equivalent to C7. Then ρFi
pXq “

ρC7pXq for all X Ď V pC7q by Lemma 2.3. Let x be the vertex in the
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Figure 12. List of all 3-vertex sets having cut-rank 2
containing a fixed vertex x denoted by a square.

center of Fi, see Figure 12. By symmetry of C7, we may assume that
x is mapped to a particular vertex in C7. Figure 12 presents all vertex
subsets of size 3 having cut-rank 2 and containing x in graphs C7, F1,
F2, F3. It is now easy to deduce that no bijection on the vertex set will
map these subsets correctly. �

We are now ready to prove Proposition 8.1.

Proof of Proposition 8.1. (1) By Lemma 8.2, it is enough to check that
K3 a K3 is not locally equivalent to C6. This can be checked easily.

(2) By applying local complementation at roots, we can easily see that
Hn has a vertex-minor isomorphic to Kn aKn. Lemma 8.5 states that
all 7-vertex prime vertex-minors of Hn are F1, F2, and F3. Lemma 8.6
proves that none of them are locally equivalent to C7. Thus Hn has no
vertex-minor isomorphic to C7 and therefore Kn a Kn has no vertex-
minor isomorphic to C7. �

9. Discussions

9.1. Vertex-minor ideals. A set I of graphs is called a vertex-minor
ideal if for all G P I, all graphs isomorphic to a vertex-minor of G
are also contained in I. We can interpret theorems in this paper in
terms of vertex-minor ideals as follows. This formulation allows us to
appreciate why these theorems are optimal.

Corollary 9.1. Let I be a vertex-minor ideal.

Theorem 3.1: Graphs in I have bounded number of vertices if
and only if tKn : n ě 3u Ę I.

Theorem 3.1: Connected graphs in I have bounded number of
vertices if and only if tKn : n ě 3u Ę I.
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Theorem 3.1: Graphs in I have bounded number of edges if and
only if tKn : n ě 3u Ę I and tKn a Kn : n ě 1u Ę I.

Theorem 7.1: Prime graphs in I have bounded number of ver-
tices if and only if tCn : n ě 3u Ę I and tKnaKn : n ě 3u Ę I.

9.2. Rough structure. We can also regard Theorem 7.1 as a rough
structure theorem on graphs having no vertex-minor isomorphic to Cn

or Kn a Kn as follows. The 1-join of two graphs G1, G2 with two
specified vertices v1 P V pG1q, v2 P V pG2q is the graph obtained by
making the disjoint union of G1zv1 and G2zv2 and adding edges to join
neighbors of v1 in G1 with neighbors of v2 in G2.

Corollary 9.2. For each n, there exists N such that every graph having
no vertex-minor isomorphic to Cn or Kn aKn can be built from graphs
on at most N vertices by repeatedly taking 1-join operation.
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