
Main Results Background Classical Results Modern point of view Infinitesimal & Actual Deformations

Deformations of Hyperbolic Coxeter Orbifolds

Gye-Seon Lee

Korea Advanced Institute of Science and Technology
& The University of Melbourne

June 9, 2009



Main Results Background Classical Results Modern point of view Infinitesimal & Actual Deformations

Joint work with Suhyoung Choi.
Gratefully thanks C.D. Hodgson for his valuable advice.

Abstract

Hyperbolic structures are examples of real projective structures
if we use Klein’s model. This talk was motivated by the
following question: Under what conditions can one take the
hyperbolic structure on a 3-dimensional hyperbolic reflection
orbifold and deform it to a family of real projective structures?
We will explain the numerical results in the cases of cubes and
dodecahedra.
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Main Results

• For reflection orbifold based on a cube with edge orders
e1, . . . , e12, i.e. dihedral angle = π/ei .

• Deform a hyperbolic structure to real projective structures.
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Main Results

(e1, e2, . . . , e11, e12) 4f − n 4f − rank actual

(2, 3, 2, 3, 2, 3, 3, 2, 3, 3, 2, 3) 1 1 1

(2, 3, 2, 3, 2, 3, 3, 3, 2, 3, 2, 3) 1 1 1

(2, 3, 2, 3, 2, 3, 3, 3, 3, 3, 2, 2) 1 1 1

(2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3) 0 1 0

(2, 3, 2, 3, 3, 3, 3, 3, 2, 3, 2, 3) 2 3 ?

(2, 3, 3, 2, 2, 3, 2, 3, 3, 3, 2, 2) 0 1 1

• (4f − n) = (# of variables) − (# of polynomial equations).

• (4f − rank) = (dim. of infinitesimal deformations of projective
structures).

• (actual) = (dim. of actual deformations of projective structures).
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Coxeter Polyhedra

• X is an n-dimensional space of constant curvature.

• Isom X is the group of its motions.

• H−i is half-space bounded by the hyperplane Hi .

• A convex polyhedron

P =
⋂
i∈I

H−i

is said to be a Coxeter polyhedron if for all i , j , i 6= j , such
that the hyperplanes Hi and Hj intersect, the dihedral angle
H−i ∩ H−j is a submultiple of π.

• The hyperplanes of (n − 1)-dimensional faces of a convex
polyhedron are said to be its walls.
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Discrete Reflection Groups

• Let P be a Coxeter polyhedron, and Γ be the group generated
by reflections in its walls.

• Then Γ is a discrete group of motions, and P is its
fundamental polyhedron.

• Every discrete group of motions of X generated by reflections
may be obtained in this way.

• The classification of Coxeter polyhedra on the sphere and
Euclidean space was obtained by Coxeter in 1934.

• F. Lannér first enumerated compact Coxeter simplices in the
hyperbolic space Hn for any n in 1950.

• They exist in Hn only for n ≤ 4.
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Andreev’s theorem

• A nice property of a Coxeter polyhedron is that its dihedral
angles are non-obtuse.

• In 1970, E.M. Andreev gave a complete description of
compact 3-dimensional hyperbolic polyhedra with non-obtuse
dihedral angles.

• C is an abstract 3-dimensional polyhedron.

• C ∗ is its dual.

• A simple closed curve γ is called a k-circuit if γ is formed of k
edges of C ∗.

• A circuit is called a prismatic k-circuit if all of the endpoints
of the edges of C intersected by γ are distinct.

• A combinatorial polyhedron C is simple if it has no prismatic
3-circuits.
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Andreev’s theorem I

• Let C be an abstract polyhedron, but not a simplex. The
following conditions (1)− (4) are necessary and sufficient for
the existence of a compact hyperbolic polyhedron P in
3-dimensional hyperbolic space with dihedral angles not
greater than π/2 such that αij(P) = αij , where Fi are the
faces and αij = dihedral angle between Fi and Fj .

1. If Fijk = Fi ∩ Fj ∩ Fk is a vertex of C then

αij + αjk + αki > π.

2. If Fi , Fj , Fk generate a prismatic 3-circuit, then

αij + αjk + αki < π.
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Andreev’s theorem II

3. If Fi , Fj , Fk , Fl generate a prismatic 4-circuit, then

αij + αjk + αkl + αli < 2π.

Figure: Prismatic 3-circuit & 4-circuit
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Andreev’s theorem III

4. If Fs is a four-sided face with edges Fis , Fjs , Fks , Fls

enumerated successively, then

αis + αks + αij + αjk + αkl + αli < 3π,

αjs + αls + αij + αjk + αkl + αli < 3π.

• Furthermore, this polyhedron is unique up to hyperbolic
isometries.

• Also, it can be computed using a computer program by
Roeder.

• His construction uses Newton’s method and a homotopy to
explicitly follow the existence proof presented by Andreev.
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Roeder’s program
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Generalization of Reflection groups in Three Geometries

• Every simply connected space X of constant curvature can be
imbedded as a hypersurface in a vector space V .

x2
0 + x2

1 + · · ·+ x2
n = 1 for Sn

x0 = 1 for En

x2
0 − x2

1 − · · · − x2
n = 1, x0 > 0 for Hn.

• Under this imbedding, the k-dimensional planes of X are
exactly the intersections of the (k + 1)-dimensional subspace
of V with X .

• In particular, every hyperplane H in X is the intersection of X
and an n-dimensional subspace U of V , and

• the halfspaces in X bounded by H correspond in a natural
manner to the halfspaces in V bounded by U.
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Gram matrix of Hyperbolic polyhedron

• Consider for each i the unit vector ei of the Lorentzian n-space
Rn,1 orthogonal to the subspace Hi and directed away from P.

• This means that the polyhedron P is the intersection in Rn,1

of the convex polyhedral cone

K (P) = {x ∈ Rn,1 | 〈x , ei 〉 ≤ 0, i = 1, . . . ,m}

with X .

• The Gram matrix of the system of vector {e1, . . . , em} is said
to be the Gram matrix of the polyhedron P.

• Any indecomposable symmetric matrix of signature (n, 1) with
1’s along the main diagonal and non-positive entries off it is
the Gram matrix for the unique convex polyhedron in the
hyperbolic space Hn up to a motion.
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Coxeter Groups

• A group with a set {r1, . . . , rm} of generators is called an
(abstract) Coxeter group if it has the following set of defining
relations :

r 2
i = 1 for all i ,

(ri rj)
nij = 1 for some i and j with nij = nji ≥ 2.

• A linear transformation R of a vector space V is a reflection
if R2 = 1 and −1 is a simple eigenvalue of R.

• A reflection R is completely determined by the subspace U of
fixed points and an eigenvector b corresponding to the
eigenvalue −1.
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Linear Coxeter Groups

• If α is the linear functional on V vanishing on U and such
that α(b) = 2, then

Rv = v − α(v)b.

• Let K be a convex polyhedral cone in V defined by a system
of linear inequalities

αi ≥ 0, i = 1, . . . ,m,

and suppose that none of these inequalities follows from the
remaining ones.

• Let bi (i = 1, . . . ,m) be elements of V satisfying αi (bi ) = 2.

• Let Ri be the reflection defined by above for α = αi , b = bi .
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Vinberg’s Main Results

• The group Γ ⊂ GL(V ) generated by the Ri will be called a
discrete linear group generated by reflections, or simply a
linear Coxeter group if

γK 0 ∩ K 0 = ∅ for every γ ∈ Γ\{1}.

• K will be called a fundamental chamber of Γ.

• The Cartan matrix of Γ is the m ×m matrix A = (aij),
aij = αi (bj).

• Γ is a linear Coxeter group if and only if the Cartan matrix of
Γ satisfies the following conditions.

(C1) aij ≤ 0 for i 6= j and if aij = 0 then aji = 0.
(C2) aii = 2; aijaji ≥ 4 or aijaji = 4 cos2 π

nij
, nij an integer.
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Orthogonality of Linear Coxeter Groups

• Let X simply connected space of constant curvature.

• Every discrete group generated by reflections in X operates on
V as a linear Coxeter group.

• A linear Coxeter group Γ is orthogonal if there exists a
Γ-invariant scalar product in the subspace of V spanned by
the bi such that (bi , bi ) > 0 for all i .

• All those linear Coxeter groups obtained from groups
generated by reflections in spaces of constant curvature are
orthogonal.
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Orthogonality of linear Coxeter groups

• Matrices A and B will be called equivalent if A = DBD−1 for
a diagonal matrix D having positive diagonal elements.

• For distinct values of i1, · · · , ik the expressions

ai1i2ai2i3 · · · aik i1 ,

will be called cyclic products of A = (aij).

• Matrices A and B satisfying (C 1) are equivalent if and only if
their cyclic products are identical.

• A linear Coxeter group is orthogonal if and only if its Cartan
matrix A is equivalent to the corresponding symmetric matrix.
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The properties of the linear Coxeter groups

• Let Γ be a discrete linear group generated by reflections
R1, · · · ,Rm in the faces of a convex polyhedral cone K .

• For any x ∈ K let Γx denote the subgroup of Γ generated by
reflections in those faces of K which contain x .

• Define K f = {x ∈ K | Γx is finite}.
• Then the following assertions are true.
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The properties of the linear Coxeter groups

1. ∪γ∈ΓγK is a convex cone.

2. Γ operates discretely in the interior C of this cone.

3. C ∩ K = K f

4. The canonical map from K f to C/Γ is a homeomorphism.

5. For every x ∈ K , Γx is the stabilizer of x in Γ.

6. For every pair of adjacent faces Ki , Kj of K , let nij denote the
order of RiRj (nij may be infinite). Then

R2
i = 1, (RiRj)

nij = 1.

is a system of defining relations for Γ.
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Coxeter Orbifold Structures

• Let P be a fixed 3-dimensional convex polyhedron.

• Let us assign orders at each edge.

• Let e be the number of edges and e2 be the numbers of edges
of order-two. Let f be the number of faces.

• We remove any vertex of P which has more than three edges
incident or with orders of the edges incident not of form

(2, 2, n), n ≥ 2, (2, 3, 3), (2, 3, 4), (2, 3, 5),

i.e., orders of spherical triangular groups.

• This makes P into an open 3-dimensional orbifold.

• Let P̂ denote the differentiable orbifold with sides silvered and
the edge orders realized as assigned from P with vertices
removed as above.
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Normal-type Coxeter Orbifold

• We say that P̂ has a Coxeter orbifold structure.

• We will not study

1. Cone-type Coxeter orbifolds whose polyhedron has a face F
and a vertex v where all other sides are adjacent triangles to F
and contains v and all edge orders of F are 2.

2. Product-type Coxeter orbifolds whose polyhedron is
topologically a polygon times an interval and edge orders of
top and the bottom faces are all 2.

These are essentially two-dimensional orbifolds which can be
better studied by more elementary methods.

3. Coxeter orbifolds with finite fundamental groups.

• If P̂ is none of the above type, then P̂ is said to be a
normal-type Coxeter orbifold.
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Deformation spaces of Projective Structures

• An isotopy of an orbifold M is an orbifold-diffeomorphism
f : M → M such that there exists an orbifold map
H : M × I → M which restricts to an identity for t = 0 and
restricts to f for t = 1.

• The deformation space D(P̂) of projective structures on an
orbifold P̂ is the space of all projective structures on P̂ up to
orbifold isotopy.

• A point p of D(P̂) always determines a fundamental
polyhedron P up to projective automorphisms.
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Restricted Deformation Space

• We wish to understand the space where the fundamental
polyhedron is always projectively equivalent to a fixed P.

• We call this the restricted deformation space of P̂ and
denoted it by DP(P̂).

• We say that P is orderable if we can order the faces of P so
that each face meets faces of higher index in less than or
equal to 3 edges.

• Examples are

0. Convex polyhedron with all faces triangular.
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Examples of orderable polyhedra

1. Drum-shaped convex polyhedron which has top and bottom faces of
same polygonal type and each vertex of the bottom face is
connected to two vertices in the top face and vice versa.

2. Convex polyhedron where each pair of the interiors of nontriangular
faces are separated by a union of triangles.

• A cube and dodecahedron would not satisfy the conditions.
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Orderable Orbifolds

• Let P̂ be the orbifold obtained from P by silvering faces and
removing vertices as above.

• We also say that the orbifold P̂ is orderable if the faces of P
can be ordered so that each face has no more than three
edges which are either of order 2 or included in a face of
higher index.

• k(P) is the dimension of the group of projective
automorphism of a convex polyhedron P.

k(P) =


3 if P is a tetrahedron,
1 if P is a pyramid with base

a convex polygon which is not a triangle,
0 otherwise
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Choi’s Main result

• Let P be a convex polyhedron and P̂ be given a normal-type
Coxeter orbifold structure.

• Let k(P) be the dimension of the group of projective
automorphisms of P.

• Suppose that P̂ is orderable.

• Then the restricted deformation space of projective structures
on the orbifold P̂ is a smooth manifold of dimension
3f − e − e2 − k(P) if it is not empty.
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Benoist’s Example

• Let d = 3, 4, or 5.
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• This triangular prism has no spherical or Euclidean or
hyperbolic structure.

• This is orderable. (See the numbers of red color.)

• 3f − e − e2 − k(P) = 15− 9− 5− 0 = 1.

• The dimension of DP(P̂) = 1.
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Construction of hyperbolic Coxeter polyhedra

• V is a 4-dimensional vector space over R with coordinates
x1, . . . , x4.

• P is a Coxeter polyhedron in Klein’s model of 3-dimensional
hyperbolic space.

• In other words, P is given by a system of linear inequalities

αi ≥ 0, i = 1, . . . , f , and x1 = 1

where αi : V → R are linear functionals on V .

• For simplicity, we assume that P is neither tetrahedron nor
pyramid.
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Construction of hyperbolic Coxeter polyhedra

• Lorentzian inner product is denoted by

〈x , y〉 = −x1y1 + x2y2 + x3y3 + x4y4.

• The problem of constructing a polyhedron P can be expressed
as the problem of finding a solution to the following equations:

〈αi , αi 〉 = 1, for all i

〈αi , αj〉 = − cos(π/nij) if faces Fi and Fj are adjacent in P.

• In general, it is difficult to find an exact algebraic solution.

• Roeder’s Matlab program can be used to obtain a numerical
solution.
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Vinberg’s equations

• After finding it, αi ’s will be fixed.

• bi = (bi1, bi2, bi3, bi4) for all 1 ≤ i ≤ f are the reflection
points, i.e. eigenvector corresponding to the eigenvalue −1.

• In fact, bi are variables.

• Ri are the reflections defined by

Ri (v) = v − αi (v)bi ,

where αi (bi ) = 2.

• The group Γ ⊂ GL(V ) is generated by Ri .

• The matrix A = (aij) = (αi (bj)) is the f × f Cartan matrix of
Γ.
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Variety

• Vinberg’s result forces us to solve the system {Φk = 0}nk=1 of
polynomial equations, where n = f + e + e2 and

{Φk} = {aii − 2, aijaji − 4 cos2(π/nij)︸ ︷︷ ︸
if nij 6=2

, aij , aji︸ ︷︷ ︸
if nij =2

}.

• The map Φ : R4f → Rn is given by

(b1, . . . , bf ) 7→ (Φ1, . . . ,Φn).

• The variety Φ−1(0) is what we want to know.

• Abuse of notation: V = V ∗ = V ∗∗.

• bi = 2Jαi gives the solution S = {Si} = {2Jαi} which is
related to a hyperbolic structure, where J = diag(−1, 1, 1, 1),
for aij = αi (2Jαj) = 2〈αi , αj〉 = 2〈αj , αi 〉 = aji .
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Summary of the Computational procedure

1. Construct hyperbolic Coxeter polyhedron by Roeder’s Matlab
program.

2. Compute Zariski tangent space at hyperbolic point.

3. If it is not sufficient to check the tangent space to calculate
the local dimension of the restricted deformation space, then
we try to find the Gröbner basis of the ideal {Φk = 0}nk=1.
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Jacobian matrix

• D = (dlm) is the n × 4f jacobian matrix given by

dlm =
∂Φk

∂bij

∣∣∣∣∣
{bi}=S

.

• If Φk = aii − 2 = αi (bi )− 2
= αi1bi1 + αi2bi2 + αi3bi3 + αi4bi4 − 2, then

∂Φk

∂bij

∣∣∣∣∣
{bi}=S

= (0, . . . , 0, αi1, αi2, αi3, αi4, 0, . . . , 0)

= (0, . . . , 0, αi︸︷︷︸
i block

, 0, . . . , 0).
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Jacobian matrix

• If Φk = aijaji − 4 cos2(π/nij)
= (αi1bj1 + · · ·+αi4bj4)(αj1bi1 + · · ·+αj4bi4)−4 cos2(π/nij),
then

∂Φk

∂bij

∣∣∣∣∣
{bi}=S

= (0, . . . , 0, aijαj︸︷︷︸
i block

, 0, . . . , 0, ajiαi︸︷︷︸
j block

, 0, . . . , 0)

= aij(0, . . . , 0, αj︸︷︷︸
i block

, 0, . . . , 0, αi︸︷︷︸
j block

, 0, . . . , 0),

• since aij = aji at a hyperbolic point.
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Jacobian matrix

• If Φk = aij = αi1bj1 + · · ·+ αi4bj4, then

∂Φk

∂bij

∣∣∣∣∣
{bi}=S

= (0, . . . , 0, 0︸︷︷︸
i block

, 0, . . . , 0, αi︸︷︷︸
j block

, 0, . . . , 0).

• If Φk = aji = αj1bi1 + · · ·+ αj4bi4, then

∂Φk

∂bij

∣∣∣∣∣
{bi}=S

= (0, . . . , 0, αj︸︷︷︸
i block

, 0, . . . , 0, 0︸︷︷︸
j block

, 0, . . . , 0).

• In other words, nij = 2 means a row splits in two.
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Zariski Tangent space at Hyperbolic point

• The Zariski tangent space is the kernel of Jacobian matrix D.

• Let DP(P̂) denote the restricted deformation space of
projective structures on a Coxeter orbifold P̂.

• If 4f − n > 0 and D has full rank, then the neighborhood of S
in DP(P̂) has locally (4f − n)-dimensional differentiable
structure.

• So the hyperbolic structure on a Coxeter orbifold deforms to a
nontrivial real projective structure.

• If 4f − n ≤ 0 and D has full rank, then the hyperbolic
structure is rigid.

• Note that 4f − n = 4f − (f + e + e2) = 3f − e − e2.

• These observations lead to Choi’s result in the orderable case.
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Ideal hyperbolic polyhedron

• Assume P is a convex ideal hyperbolic polyhedron, i.e. one
with all vertices on the sphere at infinity, of which every edge
has order 3.

• If P is simple, then there exists a hyperbolic polyhedron which
satisfies the above conditions.

• We return to the problem of constructing a hyperbolic
polyhedron P.

• It is same as solving the system {Ψk = 0}nk=1 of polynomial
equations, where n = f + e and

{Ψk} = {〈αi , αi 〉 − 1, 〈αi , αj〉+ cos(π/nij)}.

• This has a unique solution S up to hyperbolic isometries.
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Ideal hyperbolic polyhedron

• D̂ = (d̂lm) is the n × 4f jacobian matrix given by

d̂lm =
∂Ψk

∂αij

∣∣∣∣∣
{αi}=S

.

• If Ψk = 〈αi , αi 〉 − 1 = −α2
i1 + α2

i2 + α2
i3 + α2

i4 − 1, then

∂Ψk

∂αij

∣∣∣∣∣
{αi}=S

= (0, . . . , 0,−2αi1, 2αi2, 2αi3, 2αi4, 0, . . . , 0)

= (0, . . . , 0, 2Jαi︸︷︷︸
i block

, 0, . . . , 0).
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Ideal hyperbolic polyhedron

• If Ψk = 〈αi , αj〉+ cos(π/nij)
= −αi1αj1 + αi2αj2 + αi3αj3 + αi4αj4 + cos(π/nij), then

∂Ψk

∂αij

∣∣∣∣∣
{αi}=S

= (0, . . . , 0, Jαj︸︷︷︸
i block

, 0, . . . , 0, Jαi︸︷︷︸
j block

, 0, . . . , 0).

• Hence the rank of D and D̂ are equal.

• Then we have: 3v = 2e, v − e + f = 2. So 3f − e = 6, i.e.
the dimension of the group of hyperbolic isometries.

• Rigidity of hyperbolic orbifold ⇒ D̂ has full rank.

• The neighborhood of S in DP(P̂) has locally 6-dimensional
differentiable structure.
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Some Properties

• Ideal hyperbolic polyhedron must pass through the plane
which contains reflection points of three faces intersecting at
a vertex during deformation.

Figure: Deformations of ideal cubes
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Compact hyperbolic cubes

• P is a compact hyperbolic cube all of whose dihedral angles
are π/2 or π/3.

• Assume that each face has less than three edges which are of
order 2.

• If a face Fi has more than two edges {Fij ,Fik ,Fil} which are
of order 2, then bi is not a variable anymore.

• The system {αi (bi ) = 2, αj(bi ) = 0, αk(bi ) = 0, αl(bi ) = 0}
of linear equations fixes bi .

• The total number of such cubes is 6 (up to symmetries).
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Table for cubes

e1

e2
e3

e4

e5

@
@ e6

�
�

e7@
@

e8�
�

e9

e10

e11

e12

(e1, e2, . . . , e11, e12) 4f − n 4f − rank actual
(2, 3, 2, 3, 2, 3, 3, 2, 3, 3, 2, 3) 1 1 1
(2, 3, 2, 3, 2, 3, 3, 3, 2, 3, 2, 3) 1 1 1
(2, 3, 2, 3, 2, 3, 3, 3, 3, 3, 2, 2) 1 1 1
(2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3) 0 1 0
(2, 3, 2, 3, 3, 3, 3, 3, 2, 3, 2, 3) 2 3 ?
(2, 3, 3, 2, 2, 3, 2, 3, 3, 3, 2, 2) 0 1 1

• ‘actual’ means ‘dimension of actual deformations’.

• The information on the three cubes in the upper half of the
table is determined by computing the jacobian matrices.
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Actual Deformations

• It is not sufficient only to check jacobian matrix D to
calculate the local dimension of DP(P̂).

• Introduce new coordinates on R4f by letting ci = bi − Si .

• Relative to this coordinate system, the hyperbolic point S is
the origin.

• We compute a Gröbner basis G of the ideal I = 〈Φk〉 with
respect to the lex order with
c6,4 > c6,3 > c6,2 > c6,1 > c5,4 > · · · .

• Gröbner basis of the fourth cube is
{c6,4, c6,3, c

2
6,2, c6,1, c5,4, . . .}.

• Gröbner basis of the radical ideal
√

I is
{c6,4, c6,3, c6,2, c6,1, c5,4, . . . , c1,2, c1,1}.

• So, there are no non-trivial deformations.
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Gröbner bases

• However, Gröbner basis of the last cube is
{c6,3 + c6,4, c6,2 + c6,4,

√
7c6,1 + 5c6,4, c5,4, c5,3, c5,2,√

7c5,1 − 2c6,4 −
√

7c5,1c6,4, c4,4, c4,3, c4,2, c4,1 − c5,1,
c3,4 − c6,4, c3,3 + c6,4, c3,2 + c6,4,

√
7c3,1 + 5c6,4, c2,4 − c6,4,

c2,3 +c6,4, c2,2 +c6,4,
√

7c2,1 +5c6,4, c1,4, c1,3, c1,2, c1,1−c5,1}
• So, the actual dimension of deformations is 1.

• Unfortunately for the fifth cube, we cannot currently compute
a Gröbner basis, since the coefficients of Φk are quite
complicated.
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Dodecahedron

• P is a compact hyperbolic dodecahedron all of whose dihedral
angles are π/2 or π/3.

• Assume that each face has less than three edges which are of
order 2.

• The total number of such dodecahedra is 13 (up to
symmetries).
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Table for Dodecahedron
• Here is a table for these.

(e1, e2, . . . , e29, e30) O Z A
(2, 3, 2, 3, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 3, 3, 3, 3, 3, 2, 3, 2, 3, 2, 3, 3, 2, 3, 2) -6 0 0
(2, 3, 2, 3, 3, 2, 3, 3, 3, 2, 3, 2, 2, 2, 3, 3, 3, 3, 3, 3, 2, 3, 3, 2, 2, 3, 3, 2, 3, 3) -5 0 0
(2, 3, 2, 3, 3, 2, 3, 3, 3, 2, 3, 2, 2, 2, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 2, 2, 3) -5 0 0
(2, 3, 2, 3, 3, 2, 3, 3, 3, 2, 3, 2, 2, 2, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 2, 3, 2) -5 0 0
(2, 3, 2, 3, 3, 2, 3, 3, 3, 2, 3, 2, 3, 2, 3, 3, 2, 2, 3, 3, 2, 3, 3, 3, 2, 3, 3, 2, 3, 2) -6 0 0
(2, 3, 2, 3, 3, 2, 3, 3, 3, 2, 3, 2, 3, 3, 3, 3, 2, 2, 3, 3, 2, 3, 3, 2, 2, 3, 3, 2, 3, 3) -5 0 0
(2, 3, 2, 3, 3, 3, 2, 2, 3, 2, 3, 3, 3, 2, 3, 3, 3, 3, 3, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 2) -5 0 0
(2, 3, 2, 3, 3, 3, 2, 3, 3, 2, 3, 2, 2, 2, 3, 3, 3, 3, 3, 2, 2, 3, 3, 2, 3, 3, 3, 2, 3, 2) -6 0 0
(2, 3, 2, 3, 3, 3, 2, 3, 3, 2, 3, 2, 2, 2, 3, 3, 3, 3, 3, 2, 2, 3, 3, 3, 3, 3, 3, 2, 3, 2) -5 0 0
(2, 3, 2, 3, 3, 3, 2, 3, 3, 2, 3, 3, 2, 2, 3, 3, 3, 3, 3, 2, 2, 2, 3, 3, 3, 3, 3, 3, 2, 2) -5 0 0
(2, 3, 2, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 2, 3, 2, 3) -4 0 0
(2, 3, 2, 3, 3, 3, 3, 3, 3, 2, 2, 2, 3, 3, 2, 3, 2, 2, 2, 3, 3, 2, 3, 3, 3, 2, 3, 3, 2, 3) -6 0 0
(2, 3, 2, 3, 3, 3, 3, 3, 3, 2, 3, 3, 2, 2, 3, 2, 3, 3, 3, 2, 3, 2, 3, 3, 3, 2, 3, 3, 2, 3) -4 1 ?

where ‘O’= 4f − n, ‘Z ’=4f − rank, and ‘A’=dimension of
actual deformations.

• The information on all dodecahedra in the table is determined
by computing the jacobian matrices.
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