Announcements:

The 8th KAIST Geometric Topology Fair January 11-13, 2010
KAIST, Daejeon
http://mathsci.kaist.ac.kr/~manifold/8thgtfair.html
Hyperbolic geometry: algorithmic, number theoretic and numerical
aspects (A graduate student workshop)
March 15-19, 2010
KIAS, Seoul
Main Lecturers: Craig Hodgson, Walter Neumann, Alan Reid http://mathsci.kaist.ac.kr/~schoi/hyperbolic.html

Projective Deformations
 of 3-dimensional Hyperbolic Coxeter Orbifolds

Gye-Seon Lee
(Joint work with Suhyoung Choi and Craig D. Hodgson)

Department of Mathematical Sciences
KAIST

2009 Joint Meeting
of the Korean Mathematical Society and the American Mathematical Society

December 17, 2009

Abstract

By Andreev's theorem, many 3-dimensional reflection orbifolds admit finite volume hyperbolic structures.

Mostow-Prasad rigidity \Longrightarrow Such a hyperbolic structure is unique. By using Klein's model, hyperbolic structures on orbifolds provide examples of induced real projective structures.

The induced real projective structure on some 3-orbifolds deforms into a family of real projective structures that are not hyperbolic.

We find such a class of complete hyperbolic reflection orbifolds.
We also explain numerical and exact results on projective deformations of some compact hyperbolic cubes and dodecahedra.

We would like to thank M. Kapovich for his helpful comments.

Coxeter orbifold structure

- We focus on 3-dimensional reflection orbifolds whose underlying space is homeomorphic to a convex polyhedron, and whose singular locus is its boundary.
- The fundamental group of such an orbifold is a Coxeter group;

$$
<r_{1}, \ldots, r_{m} \mid\left(r_{i} r_{j}\right)^{n_{i j}}=1>
$$

- Let P be a fixed 3-dimensional convex polyhedron, and assign an order $n_{e} \geq 2$ to each edge e of P.
- If any vertex of P has more than three edges incident, or has orders of the incident edges not of the form

$$
(2,2, k) \text { with } k \geq 2, \quad(2,3,3), \quad(2,3,4), \quad(2,3,5)
$$

then we remove the vertex.

- \hat{P} is the differentiable orbifold obtained from P with faces silvered, edge orders n_{e}, and with vertices removed as above.
- We say that \hat{P} has a Coxeter orbifold structure.

Deformation spaces

- The orbifold \hat{P} is a normal-type Coxeter orbifold if it is not

1. a cone-type Coxeter orbifold,
2. a product-type Coxeter orbifold,
3. a Coxeter orbifolds with finite fundamental group.

- We restrict ourselves to normal-type orbifolds.
- The deformation space $\mathfrak{D}(\hat{P})$ of real projective structures on the orbifold \hat{P} is the space of all projective structures on \hat{P} up to orbifold isotopies.
- A point p of $\mathfrak{D}(\hat{P})$ gives a fundamental polyhedron P in $\mathbb{R} P^{3}$, well-defined up to projective automorphisms.
- We concentrate on the space where the point p gives a fixed fundamental polyhedron P, which is called the restricted deformation space $\mathfrak{D}_{P}(\hat{P})$ of \hat{P}.

Orderability results

- A Coxeter orbifold \hat{P} is said to be orderable if the faces of P can be ordered so that each face contains less than four edges which are edges of order 2 or edges in a face of higher index.
- Let $k(P)$ be the dimension of the group of projective automorphisms of P.

$$
k(P)= \begin{cases}3 & \text { if } P \text { is a tetrahedron, } \\ 1 & \text { if } P \text { is a pyramid with base } \\ & \text { a convex polygon which is not a triangle, } \\ 0 & \text { otherwise }\end{cases}
$$

- (Choi 2006) The restricted deformation space of projective structures on the orderable orbifold \hat{P} is a smooth manifold of dimension $3 f-e-e_{2}-k(P)$ if it is not empty.
- Cubes and dodecahedra do not carry an orderable Coxeter orbifold structure.

Restrcted deformation spaces

- Sending a development pair (D, h) to the conjugacy class of the holonomy representation h induces a local homeomorphism

$$
\text { hol }: \mathfrak{D}(\hat{P}) \rightarrow \operatorname{Hom}\left(\pi_{1}(\hat{P}), G\right) / G, \text { with } G=S L_{ \pm}(4, \mathbb{R})
$$

- To study restricted deformation spaces, we define

$$
\operatorname{Hom}_{P}\left(\pi_{1}(\hat{P}), G\right) \subset \operatorname{Hom}\left(\pi_{1}(\hat{P}), G\right)
$$

- G_{P} is the subgroup of G that preserves P and each of its faces.
- Assume that $k(P)=0$. Then G_{P} is trivial.
- The map $\iota_{P}: \operatorname{Hom}_{P}\left(\pi_{1}(\hat{P}), G\right) \rightarrow \operatorname{Hom}\left(\pi_{1}(\hat{P}), G\right) / G$ is an imbedding.
- The restricted map holp from hol induces a local homeomorphism near p

$$
\text { hol }_{P}: \mathfrak{D}_{P}(\hat{P}) \rightarrow \operatorname{Hom}_{P}\left(\pi_{1}(\hat{P}), G\right)
$$

Local deformation spaces

- Consider the representation h, we say that h is genuine if $h\left(r_{i}\right) h\left(r_{i}\right)$ is conjugate to a rotation of angle $2 \pi / n_{i j}$.
- The map hol $P_{P}: \mathfrak{D}_{P}(\hat{P}) \rightarrow \operatorname{Hom}_{P}^{\mathfrak{g}}\left(\pi_{1}(\hat{P}), G\right)$ is a homeomorphism.
- A point t in $\mathfrak{D}_{P}(\hat{P})$ is hyperbolic if it is given by a hyperbolic structure on \hat{P}.
- Suppose that t is the corresponding hyperbolic point of $\mathfrak{D}_{P}(\hat{P})$.
- We call a neighborhood of t in $\mathfrak{D}_{P}(\hat{P})$ the local deformation space of P.
- We say that P is deformable if the dimension of its local deformation space is positive.
- Conversely, we say that P is projectively rigid, or simply rigid if the dimension of its local deformation space is 0 .

Reflections

- A reflection R on $V=\mathbb{R}^{4}$ is an element of order 2 of G which is the identity on a hyperplane U.
- All reflections are of the form

$$
R=I d-\alpha \otimes b
$$

for some $\alpha \in V^{*}$ and $b \in V$ with $\alpha(b)=2$.

- The kernel of α is the subspace U of fixed points of R.
- b is the reflection vector.
- Consider \mathbb{S}^{3} as the set of rays in V from the origin.
- P is a n-dimensional convex polytope in \mathbb{S}^{3}.
- A suitable choice of signs allows us to suppose that P is defined by the inequalities

$$
\alpha_{i} \leq 0 \quad i=1, \ldots, f
$$

Vinberg's results

- The group $\Gamma \subset G$ generated by all these reflections R_{i} is called a linear Coxeter group if

$$
\gamma P^{\circ} \cap P^{\circ}=\varnothing \text { for every } \gamma \in \Gamma \backslash\{1\}
$$

- The matrix $A=\left(a_{i j}\right)=\left(\alpha_{i}\left(b_{j}\right)\right)$ is the Cartan matrix of Γ.
- The following conditions are necessary and sufficient for Γ to be a linear Coxeter group:

$$
\begin{aligned}
& \text { 1. } a_{i j} \leq 0 \text { for } i \neq j \text {, and } a_{i j}=0 \Leftrightarrow a_{j i}=0 . \\
& \text { 2. } a_{i i}=2 ; a_{i j} a_{j i} \geq 4 \text { or } a_{i j} a_{j i}=4 \cos ^{2} \frac{\pi}{n_{i j}}, n_{i j} \text { an integer. }
\end{aligned}
$$

- For any $x \in P$, let Γ_{x} denote the subgroup of Γ generated by reflections in those faces of P which contain x.
- Define $P^{f}=\left\{x \in P \mid \Gamma_{x}\right.$ is finite $\}$.
- $C=\cup_{\gamma \in \Gamma} \gamma P$ is convex.
- Γ is a discrete subgroup of G preserving C°.
- $C^{\circ} \cap P=P^{f}$, and is homeomorphic to C° / Γ.

The space of representations

- P is a fixed convex polyhedron in \mathbb{S}^{3} with $k(P)=0$.
- P is given by a system of linear inequalities

$$
\alpha_{i} \leq 0, \quad i=1, \ldots, f
$$

where $\alpha_{i} \in V^{*}$ and f is the number of faces of P.

- Suppose $b_{i}=\left(b_{i 1}, b_{i 2}, b_{i 3}, b_{i 4}\right)$ for $1 \leq i \leq f$ are reflection vectors with $\alpha_{i}\left(b_{i}\right)=2$.
- Let R_{i} be the reflections defined by

$$
R_{i}=I d-\alpha_{i} \otimes b_{i} \text { for } i=1, \ldots, f
$$

- $\Gamma \subset G$ is the group generated by the R_{i}.
- The matrix $A=\left(a_{i j}\right)$ is the $f \times f$ Cartan matrix of Γ.
- We consider the restricted deformation space of the corresponding Coxeter orbifold \hat{P}.
- The α_{i} 's will be fixed, and b_{i} 's are variables.

The space of representations

- Vinberg's result \Longrightarrow Vinberg equations:

1. For each $i=1, \ldots, f, a_{i i}=\alpha_{i}\left(b_{i}\right)=2$,
2. If F_{i} and F_{j} are adjacent in P and $n_{i j}>2$,

$$
a_{i j} a_{j i}=\alpha_{i}\left(b_{j}\right) \alpha_{j}\left(b_{i}\right)=4 \cos ^{2}\left(\pi / n_{i j}\right)
$$

3. If F_{i} and F_{j} are adjacent in P and $n_{i j}=2$,

$$
a_{i j}=\alpha_{i}\left(b_{j}\right)=0 \text { and } a_{j i}=\alpha_{j}\left(b_{i}\right)=0
$$

- $\Phi_{P}: \mathbb{R}^{4 f} \rightarrow \mathbb{R}^{N}$ is the map given by

$$
\left(b_{1}, \ldots, b_{f}\right) \mapsto\left(\Phi_{1}, \ldots, \Phi_{N}\right)
$$

where $\left\{\Phi_{k}\right\}_{k=1}^{N}$ is the set of polynomials $a_{i i}-2$, $a_{i j} a_{j i}-4 \cos ^{2}\left(\pi / n_{i j}\right)$, or $a_{i j}, a_{j i}$ as in the above conditions.

- There is a homeomorphism

$$
\mathcal{H}: \Phi_{P}^{-1}(0) \rightarrow \operatorname{Hom}_{P}^{\mathfrak{g}}\left(\pi_{1}(\hat{P}), G\right) \cong \mathfrak{D}_{P}(\hat{P})
$$

where \mathcal{H} is given by sending the coordinates to the appropriate reflections.

The hyperbolic point

- P is a Coxeter polyhedron in Klein's model of \mathbb{H}^{3}.
- The Lorentzian inner product on V is defined by

$$
\langle x, y\rangle=-x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}+x_{4} y_{4} .
$$

- $\nu_{i} \in V$ is the outward unit normal to the i th face of P.
- The problem of constructing a hyperbolic polyhedron P with prescribed dihedral angles $\pi / n_{i j}$:

$$
\begin{aligned}
& \left\langle\nu_{i}, \nu_{i}\right\rangle=1 \text { for all } i=1, \ldots, f \\
& \left\langle\nu_{i}, \nu_{j}\right\rangle=-\cos \left(\pi / n_{i j}\right) \text { if faces } F_{i} \text { and } F_{j} \text { are adjacent. }
\end{aligned}
$$

- We call these equations the hyperbolic equations.
- $\nu_{i} \longleftrightarrow \alpha_{i} \in V^{*}$ given by $\alpha_{i}(x)=\left\langle\nu_{i}, x\right\rangle$.
- $b_{i}=2 \nu_{i} \longleftrightarrow$ a hyperbolic point $t=\left\{2 \nu_{i}\right\}$ in $\mathfrak{D}_{P}(\hat{P})$.
- In the space $\Phi_{P}^{-1}(0)$ of representations, there is a single point corresponding to the hyperbolic structure on \hat{P}.

The Zariski tangent space

- Each $\alpha_{i} \in V^{*}$ is fixed, and the equations have the form

1. $\Phi_{i i}=\alpha_{i}\left(b_{i}\right)-2=0$
2. $\Phi_{i j}=\alpha_{i}\left(b_{j}\right) \alpha_{j}\left(b_{i}\right)-c_{i j}=0$ where $c_{i j}$ is a constant if $n_{i j} \neq 2$,
3. $\Phi_{i j}^{1}=\alpha_{i}\left(b_{j}\right)=0$ and $\Phi_{i j}^{2}=\alpha_{j}\left(b_{i}\right)=0$ if $n_{i j}=2$.

- The rows of the $N \times 4 f$ Jacobian matrix $D=[D \Phi]$:

$$
\begin{aligned}
{\left[D \Phi_{i i}\right] } & =\left(0, \ldots, 0, \alpha_{i 1}, \alpha_{i 2}, \alpha_{i 3}, \alpha_{i 4}, 0, \ldots, 0\right) \\
& =(0, \ldots, 0, \underbrace{\alpha_{i}}_{i \text { th block }}, 0, \ldots, 0), \\
{\left[D \Phi_{i j}\right] } & =(0, \ldots, 0, \underbrace{a_{i j} \alpha_{j}}_{\text {ith block }}, 0, \ldots, 0, \underbrace{a_{j i} \alpha_{i}}_{j \text { th block }}, 0, \ldots, 0), \\
{\left[D \Phi_{i j}^{1}\right] } & =(0, \ldots, 0, \underbrace{0}_{i \text { th block }}, 0, \ldots, 0, \underbrace{\alpha_{i}}_{j \text { th block }}, 0, \ldots, 0), \\
{\left[D \Phi_{i j}^{2}\right] } & =(0, \ldots, 0, \underbrace{0}_{i \text { th block }}, 0, \ldots, 0, \underbrace{\alpha_{i}}_{j \text { th block }}, 0, \ldots, 0) .
\end{aligned}
$$

The infinitesimal deformation space

- Suppose that p is a point of $\Phi_{P}^{-1}(0)$.
- Then the Zariski tangent space at p is the kernel of the Jacobian matrix D.
- We call this the infinitesimal deformation space of P at p
- If $4 f-N>0$ and D has full rank, i.e. rank $D=\min (4 f, N)$, then $\mathfrak{D}_{P}(\hat{P})$ is locally a smooth manifold of dimension $4 f-N$.
- So if p is the hyperbolic point, the hyperbolic structure on a Coxeter orbifold \hat{P} deforms to a real projective structure which is not a hyperbolic structure.
- If $4 f-N \leq 0$ and D has full rank, then p is a isolated point in $\mathfrak{D}_{P}(\hat{P})$.
- So if p is the hyperbolic point, the hyperbolic structure on \hat{P} is projectively rigid in $\mathfrak{D}_{P}(\hat{P})$.
- Note that $4 f-N=4 f-\left(f+e+e_{2}\right)=3 f-e-e_{2}$.

Main results

- (Theorem 1) Let P be an ideal hyperbolic polyhedron whose dihedral angles are all equal to $\pi / 3$, and not a tetrahedron. Then $\mathfrak{D}_{P}(\hat{P})$ is locally a 6 -dimensional smooth manifold.
- (Proof) Writing hyperbolic equations in terms of the reflection vectors $b_{i}=2 \nu_{i}$ gives $n=f+e$ equations:

$$
\Psi_{i i}=\left\langle b_{i}, b_{i}\right\rangle-4=0, \Psi_{i j}=\left\langle b_{i}, b_{j}\right\rangle+4 \cos \left(\pi / n_{i j}\right)=0
$$

- Combining these gives a function $\Psi: \mathbb{R}^{4 f} \rightarrow \mathbb{R}^{n}$.
- Now consider the ker $D \Psi$ at a hyperbolic point t.
- The rows of the $n \times 4 f$ Jacobian matrix $\hat{D}=[D \Psi]$ are made up of blocks, each consisting of four entries:

$$
\left[D \Psi_{i i}\right]=(0, \ldots, 0, \underbrace{4 \alpha_{i}}_{i \text { th block }}, 0, \ldots, 0)
$$

$$
\left[D \Psi_{i j}\right]=(0, \ldots, 0, \underbrace{2 \alpha_{j}}_{i \text { th block }}, 0, \ldots, 0, \underbrace{2 \alpha_{i}}_{j \text { th block }}, 0, \ldots, 0) .
$$

Main results

- P contains no edges of order $2 \Longrightarrow N=n$.
- Each row of D is a non-zero scalar multiple of a row of \hat{D}, so the ranks of D and \hat{D} are equal.
- Garland-Weil infinitesimal rigidity $\Longrightarrow D \Phi$ has full rank. \square
- This argument extends to convex hyperbolic polyhedra with trivalent but possibly hyperinfinite vertices, provided all edges have order at least 3.
- (Theorem 2) Consider the compact hyperbolic cubes such that each dihedral angle is $\pi / 2$ or $\pi / 3$. Up to symmetries, there exist 34 cubes. For the corresponding Coxeter orbifolds, 10 are deformable and the remaining 24 are projectively rigid.
- (Theorem 3) Consider the compact hyperbolic dodecahedra such that each dihedral angle is $\pi / 2$ or $\pi / 3$, and each face has at most two dihedral angles equal to $\pi / 2$. Up to symmetries, there exist 13 dodecahedra. For the corresponding Coxeter orbifolds, only 1 is deformable and the remaining 12 are rigid.

The Main Algorithm

1. Tabulate compact hyperbolic cubes (or dodecahedra).
2. Apply the linear test of rigidity by hand.
3. Construct compact hyperbolic Coxeter cubes (or dodecahedra) obtained in step 1, by using Mathematica to solve the hyperbolic equations.
4. We compute the dimension of the Zariski tangent space for the hyperbolic point
5. If D is of full rank, then the dimension of the space of infinitesimal deformations is the same as the dimension of the space of local deformations.
6. If D is rank-deficient, we attempt to obtain the Gröbner basis of the ideal \mathcal{I} generated by $\left\{\Phi_{k}=0\right\}_{k=1}^{N}$ with respect to a lexicographic order on the variables.

A linear test for rigidity

- Let P be a 3-dimensional Coxeter polyhedron in \mathbb{S}^{3}.
- Then there is a simple method to show the rigidity of the corresponding orbifold \hat{P}.

1. Find all the faces having more than two edges of order 2. We call them the rigid faces at level 1.
2. Relabel all edges of rigid faces of level 1 to become edges of order 2.
3. Again, find all other faces having more than two edges of order 2. We call them rigid faces at level 2. Relabel all edges of these faces to become edges of order 2.
4. Continue the process this manner.
5. If every face of P occurs as a rigid face at level k for some $k \geq 1$, then \hat{P} is projectively rigid.
6. Once finished we recover the edge orders.

Notations for figures and tables

- Each e_{i} is an edge order, corresponding to a dihedral angle π / e_{i},
- $\mathrm{O}=$ the number of variables - the number of Vinberg equations,
- $\mathrm{I}=$ the dimension of infinitesimal deformation space of real projective structures,
- A $=$ the dimension of local deformation space of real projective structures,
- $L=$ Is it possible to apply the linear test of rigidity? (yes or no) and the maximum level needed,
- $J=$ Does the calculation of the Jacobian D give a full description of the local deformation space? (yes or no),
- $\mathrm{S}=$ the minimum of the singular values of the Jacobian D.

The results for cubes

- Let P be a compact hyperbolic cube, all of whose dihedral angles are $\pi / 2$ or $\pi / 3$.
- By step 1, the total number of such cubes is 34 .

- By step 2, we find that seventeen cubes are projectively rigid.
- Using steps 3-5, the exact algebraic computations of the dimensions of Zariski tangent spaces determine the dimensions of local deformation spaces for the eight cubes.
- Using step 6, we instead obtain the Gröbner basis of the ideal of Vinberg's equations by Mathematica.

The list of cubes

name	$e_{1} e_{2} \cdots e_{11} e_{12}$	O	I	A	L	J
cu1	232222232223	-3	0	0	yes, level 2	\cdot
cu2	232222232233	-2	0	0	yes, level 3	\cdot
cu3	232222232322	-3	0	0	yes, level 1	\cdot
cu4	232222232323	-2	0	0	yes, level 2	\cdot
cu5	232222232333	-1	0	0	yes, level 3	\cdot
cu6	232222233322	-2	0	0	yes, level 2	\cdot
cu7	232222233332	-1	0	0	yes, level 3	\cdot
cu8	232222322223	-3	0	0	yes, level 2	\cdot
cu9	232222322332	-2	0	0	yes, level 2	\cdot
cu10	232222323223	-2	0	0	yes, level 3	\cdot
cu11	232222323322	-2	0	0	yes, level 2	\cdot
cu12	232222323323	-1	0	0	yes, level 3	\cdot
cu13	232222323332	-1	0	0	yes, level 2	\cdot
cu14	232222333322	-1	0	0	yes, level 3	\cdot
cu15	232222333332	0	0	0	no	yes
cu16	232223233322	-1	0	0	yes, level 3	\cdot
cu17	232223322323	-1	1	1	no	no

The list of cubes

name	$e_{1} e_{2} \cdots e_{11} e_{12}$	O	I	A	L	J
cu18	232223323323	0	1	1	no	no
cu19	232223333322	0	0	0	no	yes
cu20	232232232233	-1	0	0	yes, level 3	\cdot
cu21	232232232323	-1	1	1	no	no
cu22	232232232333	0	1	1	no	no
cu23	232232332322	-1	0	0	yes, level 3	\cdot
cu24	232232332323	0	0	0	no	yes
cu25	232232332332	0	0	0	no	yes
cu26	232233332223	0	1	0	no	no
cu27	232233332323	1	2	1	no	no
cu28	232322232233	-1	0	0	no	yes
cu29	232323232323	0	1	0	no	no
cu30	232323323323	1	1	1	no	yes
cu31	232323332323	1	1	1	no	yes
cu32	232323333322	1	1	1	no	yes
cu33	232333332323	2	3	2	no	no
cu34	233223233322	0	1	1	no	no

An example: cu21

Figure: cu21

- First, the set of all rigid faces is $\left\{F_{2}, F_{3}\right\}$, and the level of these faces is 1 .
- Second, we find the unit normals ν_{i} of cu21 as follows:

$$
\nu_{1}=(0,1,0,0), \quad \nu_{2}=(0,0,1,0), \quad \nu_{3}=\left(0,0,-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)
$$

An example: cu21

$$
\nu_{4}=\left(x,-\frac{1}{2}, u, \frac{u}{\sqrt{3}}\right), \nu_{5}=\left(y,-\frac{1}{2}, 0, \frac{2 v}{\sqrt{3}}\right), \nu_{6}=(z, w, 0,0)
$$

- Solve the remaining six hyperbolic equations

$$
\begin{aligned}
& \left\langle\nu_{4}, \nu_{5}\right\rangle=0 \text { and }\left\langle\nu_{4}, \nu_{6}\right\rangle=\left\langle\nu_{5}, \nu_{6}\right\rangle=-1 / 2, \\
& \left\langle\nu_{4}, \nu_{4}\right\rangle=\left\langle\nu_{5}, \nu_{5}\right\rangle=\left\langle\nu_{6}, \nu_{6}\right\rangle=1 .
\end{aligned}
$$

- Third, using these $\alpha_{i}=J \nu_{i}$ we make the 25×24 Jacobian matrix D of Vinberg's equations at the hyperbolic point.
- The rank of D is 23 , and so D is rank-deficient.
- The dimension of infinitesimal deformations of real projective structures is 1 .

An example: cu21

- Finally, to obtain the dimension of local deformations of cu21, we compute Gröbner basis of the ideal $\left\langle\Phi_{1}, \ldots, \Phi_{N}\right\rangle$ with $N=f+e+e_{2}=25$.
- We introduce new coordinates on \mathbb{R}^{24} by letting $c_{i}=b_{i}-t_{i}$.
- We compute a Gröbner basis of the ideal $\left\langle\Phi_{1}, \ldots, \Phi_{25}\right\rangle$ with respect to the lexicographic order with $c_{41}<c_{42}<c_{43}<c_{44}<$

$$
\begin{aligned}
& c_{51}<c_{52}<c_{53}<c_{54}<c_{61}<c_{62}<c_{63}<c_{64}<c_{11}<c_{12}<c_{13}< \\
& c_{14}<c_{21}<c_{22}<c_{23}<c_{24}<c_{31}<c_{32}<c_{33}<c_{34}
\end{aligned}
$$

- The Gröbner basis of cu21 is

$$
\begin{aligned}
& \left\{c_{34}, c_{33}, c_{32}, c_{31}, c_{24}, c_{23}, c_{22}, c_{21}, c_{14}, c_{13}, c_{12}, c_{64}, c_{63}\right. \\
& -c_{11}+\frac{2 c_{62}}{\sqrt{5}}+2 c_{11} c_{62}, \sqrt{5} c_{61}+3 c_{62}, c_{54}, c_{53},-c_{11}+\frac{2 c_{52}}{\sqrt{5}}+c_{11} c_{52} \\
& \left.-c_{52}+c_{62}+c_{52} c_{62}, \sqrt{5} c_{51}+c_{52}, c_{44}, c_{43}, c_{42}-c_{52}, \sqrt{5} c_{41}+c_{52}\right\}
\end{aligned}
$$

- The dimension of local deformations is also 1 .

The results for dodecahedra

- Let P be a compact hyperbolic dodecahedron of all of whose dihedral angles are $\pi / 2$ or $\pi / 3$.
- Assume that each face has less than three edges which are of order 2.
- The total number of such cubes is 13 up to symmetries.

The list of Dodecahedra

name	$e_{1} e_{2} \cdots e_{29} e_{30}$	0	I	A	J	S
do1	232332323232323333332323233232	-6	0	0	yes	0.17653
do2	232332333232223333332332233233	-5	0	0	yes	0.13121
do3	232332333232223333332333233223	-5	0	0	yes	0.14468
do4	232332333232223333332333233232	-5	0	0	yes	0.13707
do5	232332333232323322332333233232	-6	0	0	yes	0.18151
do6	232332333232333322332332233233	-5	0	0	yes	0.11944
do7	232333223233323333322223333332	-5	0	0	yes	0.12703
do8	232333233232223333322332333232	-6	0	0	yes	0.09580
do9	232333233232223333322333333232	-5	0	0	yes	0.09365
do10	232333233233223333322233333322	-5	0	0	yes	0.08277
do11	232333333222223333333333232323	-4	0	0	yes	0.06115
do12	23233333322233232233233323323	-6	0	0	yes	0.12412
do13	232333333233223233323233323323	-4	1	1	no	\cdot

The do13

- do13 has the five-fold rotational symmetry of the axis passing through the centers of top and bottom faces

Reference I

目 E．M．Andreev．
On convex polytopes in Lobachevskii spaces．
Math．USSR Sbornik 10，413－440（1970）
（1．E．M．Andreev．
On convex polytopes of finite volume in Lobachevskii space． Math．USSR Sbornik 12，255－259（1970）
囯 Y．Benoist．
Convexes divisibles IV ：Structure du bord en dimension 3.
Invent．math．164，249－278（2006）
目 Y．Benoist．
Five lectures on lattices in semisimple Lie groups．
http：／／www．math．u－psud．fr／～benoist／

Reference II

R M．Bridson and A．Haefliger，
T Metric spaces of non－positive curvature Vol．319，
Springer－Verlag，Berlin， 1999
目 S．Choi．
Convex decompositions of real projective surfaces．I，II J．
Differential Geom． 40 （1994），no．1，165－208，J．Differential Geom． 40 （1994），no．2，239－283．
圊 S．Choi．
Geometric Structures on Orbifolds and Holonomy
Representations．
Geom．Dedicata 104，161－199（2004）
目 S．Choi，W．M．Goldman．
The deformation spaces of convex $\mathbb{R P}^{2}$－structures on
2－orbifolds．
Amer．J．Math．127，1019－1102（2005）

Reference III

國 S．Choi．
The deformation spaces of projective structures on
3－dimensional Coxeter orbifolds．
Geom．Dedicata 119，69－90（2006）
（ D．Cooper，D．Long，M．Thistlethwaite．
Computing varieties of representations of hyperbolic 3 －manifolds into $S L(4, \mathbb{R})$ ．
Experiment．Math．15，291－305（2006）
目 A．Felikson and P．Tumarkin，
Coxeter polytopes with a unique pair of non－intersecting facets．J．Combin．Theory Ser．A 116 no．4，875－902（2009）
圊 H．Garland．
A rigidity theorem for discrete subgroups．
Trans．Amer．Math．Soc．129，1－25（1967）

Reference IV

W．M．Goldman．
Convex real projective structures on compact surfaces．
J．Differential Geom．31，791－845（1990）
围 V．G．Kac，È．B．Vinberg．
Quasi－homogeneous cones．
Math．Zamnetki 1，347－354（1967）
嗇 G．－S．Lee．Matlab and Mathematica files for the computations in this paper．
Available at http：／／mathsci．kaist．ac．kr／～manifold
雷 M．S．Raghunathan．
Discrete subgroups of Lie groups．
Springer 1972.

Reference V

J.G. Ratcliffe.

Foundations of hyperbolic manifolds.
Graduate Texts in Mathematics 149. Springer 1994.
R R.K.W. Roeder.
Constructing hyperbolic polyhedra using Newton's method. Experiment. Math. 16, 463-492 (2007)

目 W. Thurston.
Geometry and topology of 3-manifolds.
Lecture notes. Princeton University 1979.
圊 W. Thurston.
Three-dimensional Geometry and Topology.
Princeton University Press, 1997.
Available at http://www.msri.org/publications/books/gt3m/ .

Reference VI

L.N. Trefethen, D. Bau, III.

Numerical Linear Algebra.
Society for Industrial and Applied Mathematics. 1997.
囯 È. B. Vinberg.
Discrete linear groups that are generated by reflections.
Izv. Akad. Nauk SSSR 35, 1072-1112 (1971)
E.B. Vinberg.

Hyperbolic reflection groups.
Uspekhi Mat. Nauk 40, 29-66 (1985)
E.B. Vinberg.

Geometry II.
Encyclopedia of Math. Sc. 29. Springer 1993.

Reference VII

嗇 A. Weil.
On Discrete subgroups of Lie groups.
Ann. of Math. 72, 369-384 (1960)
A. Weil.

On Discrete subgroups of Lie groups II. Ann. of Math. 75, 578-602 (1962)

