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Abstract

By Andreev’s theorem, many 3-dimensional reflection orbifolds
admit finite volume hyperbolic structures.

Mostow-Prasad rigidity =⇒ Such a hyperbolic structure is unique.

By using Klein’s model, hyperbolic structures on orbifolds provide
examples of induced real projective structures.

The induced real projective structure on some 3-orbifolds deforms
into a family of real projective structures that are not hyperbolic.

We find such a class of complete hyperbolic reflection orbifolds.

We also explain numerical and exact results on projective
deformations of some compact hyperbolic cubes and dodecahedra.

We would like to thank M. Kapovich for his helpful comments.



Coxeter orbifold structure

I We focus on 3-dimensional reflection orbifolds whose
underlying space is homeomorphic to a convex polyhedron,
and whose singular locus is its boundary.

I The fundamental group of such an orbifold is a Coxeter group;

< r1, . . . , rm | (ri rj)
nij = 1 > .

I Let P be a fixed 3-dimensional convex polyhedron, and assign
an order ne ≥ 2 to each edge e of P.

I If any vertex of P has more than three edges incident, or has
orders of the incident edges not of the form

(2, 2, k) with k ≥ 2, (2, 3, 3), (2, 3, 4), (2, 3, 5),

then we remove the vertex.
I P̂ is the differentiable orbifold obtained from P with faces

silvered, edge orders ne , and with vertices removed as above.

I We say that P̂ has a Coxeter orbifold structure.



Deformation spaces

I The orbifold P̂ is a normal-type Coxeter orbifold if it is not

1. a cone-type Coxeter orbifold,
2. a product-type Coxeter orbifold,
3. a Coxeter orbifolds with finite fundamental group.

I We restrict ourselves to normal-type orbifolds.

I The deformation space D(P̂) of real projective structures on
the orbifold P̂ is the space of all projective structures on P̂ up
to orbifold isotopies.

I A point p of D(P̂) gives a fundamental polyhedron P in RP3,
well-defined up to projective automorphisms.

I We concentrate on the space where the point p gives a fixed
fundamental polyhedron P, which is called the restricted
deformation space DP(P̂) of P̂.



Orderability results

I A Coxeter orbifold P̂ is said to be orderable if the faces of P
can be ordered so that each face contains less than four edges
which are edges of order 2 or edges in a face of higher index.

I Let k(P) be the dimension of the group of projective
automorphisms of P.

k(P) =


3 if P is a tetrahedron,
1 if P is a pyramid with base

a convex polygon which is not a triangle,
0 otherwise

I (Choi 2006) The restricted deformation space of projective
structures on the orderable orbifold P̂ is a smooth manifold of
dimension 3f − e − e2 − k(P) if it is not empty.

I Cubes and dodecahedra do not carry an orderable Coxeter
orbifold structure.



Restrcted deformation spaces

I Sending a development pair (D, h) to the conjugacy class of
the holonomy representation h induces a local
homeomorphism

hol : D(P̂)→ Hom(π1(P̂),G )/G , with G = SL±(4,R)

I To study restricted deformation spaces, we define

HomP(π1(P̂),G ) ⊂ Hom(π1(P̂),G ).

I GP is the subgroup of G that preserves P and each of its
faces.

I Assume that k(P) = 0. Then GP is trivial.
I The map ιP : HomP(π1(P̂),G )→ Hom(π1(P̂),G )/G is an

imbedding.
I The restricted map holP from hol induces a local

homeomorphism near p

holP : DP(P̂)→ HomP(π1(P̂),G ).



Local deformation spaces

I Consider the representation h, we say that h is genuine if
h(ri )h(ri ) is conjugate to a rotation of angle 2π/nij .

I The map holP : DP(P̂)→ Homg
P(π1(P̂),G ) is a

homeomorphism.

I A point t in DP(P̂) is hyperbolic if it is given by a hyperbolic
structure on P̂.

I Suppose that t is the corresponding hyperbolic point of
DP(P̂).

I We call a neighborhood of t in DP(P̂) the local deformation
space of P.

I We say that P is deformable if the dimension of its local
deformation space is positive.

I Conversely, we say that P is projectively rigid, or simply rigid
if the dimension of its local deformation space is 0.



Reflections

I A reflection R on V = R4 is an element of order 2 of G which
is the identity on a hyperplane U.

I All reflections are of the form

R = Id − α⊗ b

for some α ∈ V ∗ and b ∈ V with α(b) = 2.

I The kernel of α is the subspace U of fixed points of R.

I b is the reflection vector.

I Consider S3 as the set of rays in V from the origin.

I P is a n-dimensional convex polytope in S3.

I A suitable choice of signs allows us to suppose that P is
defined by the inequalities

αi ≤ 0 i = 1, . . . , f .



Vinberg’s results

I The group Γ ⊂ G generated by all these reflections Ri is
called a linear Coxeter group if

γP◦ ∩ P◦ = ∅ for every γ ∈ Γ\{1}.

I The matrix A = (aij) = (αi (bj)) is the Cartan matrix of Γ.
I The following conditions are necessary and sufficient for Γ to

be a linear Coxeter group:

1. aij ≤ 0 for i 6= j , and aij = 0⇔ aji = 0.
2. aii = 2; aijaji ≥ 4 or aijaji = 4 cos2 π

nij
, nij an integer.

I For any x ∈ P, let Γx denote the subgroup of Γ generated by
reflections in those faces of P which contain x .

I Define P f = {x ∈ P | Γx is finite}.
I C = ∪γ∈ΓγP is convex.

I Γ is a discrete subgroup of G preserving C ◦.

I C ◦ ∩ P = P f , and is homeomorphic to C ◦/Γ.



The space of representations

I P is a fixed convex polyhedron in S3 with k(P) = 0.

I P is given by a system of linear inequalities

αi ≤ 0, i = 1, . . . , f ,

where αi ∈ V ∗ and f is the number of faces of P.

I Suppose bi = (bi1, bi2, bi3, bi4) for 1 ≤ i ≤ f are reflection
vectors with αi (bi ) = 2.

I Let Ri be the reflections defined by

Ri = Id − αi ⊗ bi for i = 1, ..., f .

I Γ ⊂ G is the group generated by the Ri .

I The matrix A = (aij) is the f × f Cartan matrix of Γ.

I We consider the restricted deformation space of the
corresponding Coxeter orbifold P̂.

I The αi ’s will be fixed, and bi ’s are variables.



The space of representations

I Vinberg’s result =⇒ Vinberg equations:

1. For each i = 1, . . . , f , aii = αi (bi ) = 2,
2. If Fi and Fj are adjacent in P and nij > 2,

aijaji = αi (bj)αj(bi ) = 4 cos2(π/nij),

3. If Fi and Fj are adjacent in P and nij = 2,

aij = αi (bj) = 0 and aji = αj(bi ) = 0.

I ΦP : R4f → RN is the map given by

(b1, . . . , bf ) 7→ (Φ1, . . . ,ΦN),

where {Φk}Nk=1 is the set of polynomials aii − 2,
aijaji − 4 cos2(π/nij), or aij , aji as in the above conditions.

I There is a homeomorphism

H : Φ−1
P (0)→ Homg

P(π1(P̂),G ) ∼= DP(P̂)

where H is given by sending the coordinates to the
appropriate reflections.



The hyperbolic point

I P is a Coxeter polyhedron in Klein’s model of H3.

I The Lorentzian inner product on V is defined by

〈x , y〉 = −x1y1 + x2y2 + x3y3 + x4y4.

I νi ∈ V is the outward unit normal to the ith face of P.

I The problem of constructing a hyperbolic polyhedron P with
prescribed dihedral angles π/nij :

〈νi , νi 〉 = 1 for all i = 1, . . . , f ,

〈νi , νj〉 = − cos(π/nij) if faces Fi and Fj are adjacent.

I We call these equations the hyperbolic equations.

I νi ←→ αi ∈ V ∗ given by αi (x) = 〈νi , x〉.
I bi = 2νi ←→ a hyperbolic point t = {2νi} in DP(P̂).

I In the space Φ−1
P (0) of representations, there is a single point

corresponding to the hyperbolic structure on P̂.



The Zariski tangent space

I Each αi ∈ V ∗ is fixed, and the equations have the form

1. Φii = αi (bi )− 2 = 0
2. Φij = αi (bj)αj(bi )− cij = 0

where cij is a constant if nij 6= 2,
3. Φ1

ij = αi (bj) = 0 and Φ2
ij = αj(bi ) = 0 if nij = 2.

I The rows of the N × 4f Jacobian matrix D = [DΦ]:

[DΦii ] = (0, . . . , 0, αi1, αi2, αi3, αi4, 0, . . . , 0)

= (0, . . . , 0, αi︸︷︷︸
ith block

, 0, . . . , 0),

[DΦij ] = (0, . . . , 0, aijαj︸︷︷︸
ith block

, 0, . . . , 0, ajiαi︸︷︷︸
jth block

, 0, . . . , 0),

[DΦ1
ij ] = (0, . . . , 0, 0︸︷︷︸

ith block

, 0, . . . , 0, αi︸︷︷︸
jth block

, 0, . . . , 0),

[DΦ2
ij ] = (0, . . . , 0, 0︸︷︷︸

ith block

, 0, . . . , 0, αi︸︷︷︸
jth block

, 0, . . . , 0).



The infinitesimal deformation space

I Suppose that p is a point of Φ−1
P (0).

I Then the Zariski tangent space at p is the kernel of the
Jacobian matrix D.

I We call this the infinitesimal deformation space of P at p

I If 4f − N > 0 and D has full rank, i.e. rank D = min(4f ,N),
then DP(P̂) is locally a smooth manifold of dimension 4f −N.

I So if p is the hyperbolic point, the hyperbolic structure on a
Coxeter orbifold P̂ deforms to a real projective structure which
is not a hyperbolic structure.

I If 4f − N ≤ 0 and D has full rank, then p is a isolated point
in DP(P̂).

I So if p is the hyperbolic point, the hyperbolic structure on P̂
is projectively rigid in DP(P̂).

I Note that 4f − N = 4f − (f + e + e2) = 3f − e − e2.



Main results

I (Theorem 1) Let P be an ideal hyperbolic polyhedron whose
dihedral angles are all equal to π/3, and not a tetrahedron.

Then DP(P̂) is locally a 6-dimensional smooth manifold.

I (Proof) Writing hyperbolic equations in terms of the reflection
vectors bi = 2νi gives n = f + e equations:

Ψii=〈bi , bi 〉 − 4 = 0,Ψij=〈bi , bj〉+ 4 cos(π/nij) = 0.

I Combining these gives a function Ψ : R4f → Rn.

I Now consider the ker DΨ at a hyperbolic point t.

I The rows of the n × 4f Jacobian matrix D̂ = [DΨ] are made
up of blocks, each consisting of four entries:

[DΨii ] = (0, . . . , 0, 4αi︸︷︷︸
ith block

, 0, . . . , 0),

[DΨij ] = (0, . . . , 0, 2αj︸︷︷︸
ith block

, 0, . . . , 0, 2αi︸︷︷︸
jth block

, 0, . . . , 0).



Main results

I P contains no edges of order 2 =⇒ N = n.

I Each row of D is a non-zero scalar multiple of a row of D̂, so
the ranks of D and D̂ are equal.

I Garland-Weil infinitesimal rigidity =⇒ DΦ has full rank.�

I This argument extends to convex hyperbolic polyhedra with
trivalent but possibly hyperinfinite vertices, provided all edges
have order at least 3.

I (Theorem 2) Consider the compact hyperbolic cubes such
that each dihedral angle is π/2 or π/3. Up to symmetries,
there exist 34 cubes. For the corresponding Coxeter orbifolds,
10 are deformable and the remaining 24 are projectively rigid.

I (Theorem 3) Consider the compact hyperbolic dodecahedra
such that each dihedral angle is π/2 or π/3, and each face has
at most two dihedral angles equal to π/2. Up to symmetries,
there exist 13 dodecahedra. For the corresponding Coxeter
orbifolds, only 1 is deformable and the remaining 12 are rigid.



The Main Algorithm

1. Tabulate compact hyperbolic cubes (or dodecahedra).

2. Apply the linear test of rigidity by hand.

3. Construct compact hyperbolic Coxeter cubes (or
dodecahedra) obtained in step 1, by using Mathematica to
solve the hyperbolic equations.

4. We compute the dimension of the Zariski tangent space for
the hyperbolic point

5. If D is of full rank, then the dimension of the space of
infinitesimal deformations is the same as the dimension of the
space of local deformations.

6. If D is rank-deficient, we attempt to obtain the Gröbner basis
of the ideal I generated by {Φk = 0}Nk=1 with respect to a
lexicographic order on the variables.



A linear test for rigidity

I Let P be a 3-dimensional Coxeter polyhedron in S3.

I Then there is a simple method to show the rigidity of the
corresponding orbifold P̂.

1. Find all the faces having more than two edges of order 2.
We call them the rigid faces at level 1.

2. Relabel all edges of rigid faces of level 1 to become edges
of order 2.

3. Again, find all other faces having more than two edges of
order 2. We call them rigid faces at level 2. Relabel all
edges of these faces to become edges of order 2.

4. Continue the process this manner.
5. If every face of P occurs as a rigid face at level k for

some k ≥ 1, then P̂ is projectively rigid.
6. Once finished we recover the edge orders.



Notations for figures and tables

I Each ei is an edge order, corresponding to a dihedral angle
π/ei ,

I O = the number of variables − the number of Vinberg
equations ,

I I = the dimension of infinitesimal deformation space of real
projective structures,

I A = the dimension of local deformation space of real
projective structures,

I L = Is it possible to apply the linear test of rigidity? (yes or
no) and the maximum level needed,

I J = Does the calculation of the Jacobian D give a full
description of the local deformation space? (yes or no),

I S = the minimum of the singular values of the Jacobian D.



The results for cubes

I Let P be a compact hyperbolic cube, all of whose dihedral
angles are π/2 or π/3.

I By step 1, the total number of such cubes is 34.
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I By step 2, we find that seventeen cubes are projectively rigid.
I Using steps 3-5, the exact algebraic computations of the

dimensions of Zariski tangent spaces determine the
dimensions of local deformation spaces for the eight cubes.

I Using step 6, we instead obtain the Gröbner basis of the ideal
of Vinberg’s equations by Mathematica.



The list of cubes

name e1e2 · · · e11e12 O I A L J
cu1 232222232223 -3 0 0 yes, level 2 ·
cu2 232222232233 -2 0 0 yes, level 3 ·
cu3 232222232322 -3 0 0 yes, level 1 ·
cu4 232222232323 -2 0 0 yes, level 2 ·
cu5 232222232333 -1 0 0 yes, level 3 ·
cu6 232222233322 -2 0 0 yes, level 2 ·
cu7 232222233332 -1 0 0 yes, level 3 ·
cu8 232222322223 -3 0 0 yes, level 2 ·
cu9 232222322332 -2 0 0 yes, level 2 ·

cu10 232222323223 -2 0 0 yes, level 3 ·
cu11 232222323322 -2 0 0 yes, level 2 ·
cu12 232222323323 -1 0 0 yes, level 3 ·
cu13 232222323332 -1 0 0 yes, level 2 ·
cu14 232222333322 -1 0 0 yes, level 3 ·
cu15 232222333332 0 0 0 no yes
cu16 232223233322 -1 0 0 yes, level 3 ·
cu17 232223322323 -1 1 1 no no



The list of cubes

name e1e2 · · · e11e12 O I A L J
cu18 232223323323 0 1 1 no no
cu19 232223333322 0 0 0 no yes
cu20 232232232233 -1 0 0 yes, level 3 ·
cu21 232232232323 -1 1 1 no no
cu22 232232232333 0 1 1 no no
cu23 232232332322 -1 0 0 yes, level 3 ·
cu24 232232332323 0 0 0 no yes
cu25 232232332332 0 0 0 no yes
cu26 232233332223 0 1 0 no no
cu27 232233332323 1 2 1 no no
cu28 232322232233 -1 0 0 no yes
cu29 232323232323 0 1 0 no no
cu30 232323323323 1 1 1 no yes
cu31 232323332323 1 1 1 no yes
cu32 232323333322 1 1 1 no yes
cu33 232333332323 2 3 2 no no
cu34 233223233322 0 1 1 no no



An example: cu21
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Figure: cu21

I First, the set of all rigid faces is {F2,F3}, and the level of
these faces is 1.

I Second, we find the unit normals νi of cu21 as follows:

ν1 = (0, 1, 0, 0), ν2 = (0, 0, 1, 0), ν3 = (0, 0,−1

2
,

√
3

2
).



An example: cu21

ν4 = (x ,−1

2
, u,

u√
3

), ν5 = (y ,−1

2
, 0,

2v√
3

), ν6 = (z ,w , 0, 0),

I Solve the remaining six hyperbolic equations

〈ν4, ν5〉 = 0 and 〈ν4, ν6〉 = 〈ν5, ν6〉 = −1/2,

〈ν4, ν4〉 = 〈ν5, ν5〉 = 〈ν6, ν6〉 = 1.

I Third, using these αi = Jνi we make the 25× 24 Jacobian
matrix D of Vinberg’s equations at the hyperbolic point.

I The rank of D is 23, and so D is rank-deficient.

I The dimension of infinitesimal deformations of real projective
structures is 1.



An example: cu21

I Finally, to obtain the dimension of local deformations of cu21,
we compute Gröbner basis of the ideal 〈Φ1, . . . ,ΦN〉 with
N = f + e + e2 = 25.

I We introduce new coordinates on R24 by letting ci = bi − ti .

I We compute a Gröbner basis of the ideal 〈Φ1, . . . ,Φ25〉 with
respect to the lexicographic order with c41 < c42 < c43 < c44 <

c51 < c52 < c53 < c54 < c61 < c62 < c63 < c64 < c11 < c12 < c13 <

c14 < c21 < c22 < c23 < c24 < c31 < c32 < c33 < c34.

I The Gröbner basis of cu21 is

{c34, c33, c32, c31, c24, c23, c22, c21, c14, c13, c12, c64, c63,

−c11 +
2c62√

5
+ 2c11c62,

√
5c61 + 3c62, c54, c53,−c11 +

2c52√
5

+ c11c52,

−c52 + c62 + c52c62,
√

5c51 + c52, c44, c43, c42 − c52,
√

5c41 + c52}

I The dimension of local deformations is also 1.



The results for dodecahedra

I Let P be a compact hyperbolic dodecahedron of all of whose
dihedral angles are π/2 or π/3.

I Assume that each face has less than three edges which are of
order 2.

I The total number of such cubes is 13 up to symmetries.
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The list of Dodecahedra

name e1 e2 · · · e29 e30 O I A J S
do1 232332323232323333332323233232 -6 0 0 yes 0.17653
do2 232332333232223333332332233233 -5 0 0 yes 0.13121
do3 232332333232223333332333233223 -5 0 0 yes 0.14468
do4 232332333232223333332333233232 -5 0 0 yes 0.13707
do5 232332333232323322332333233232 -6 0 0 yes 0.18151
do6 232332333232333322332332233233 -5 0 0 yes 0.11944
do7 232333223233323333322223333332 -5 0 0 yes 0.12703
do8 232333233232223333322332333232 -6 0 0 yes 0.09580
do9 232333233232223333322333333232 -5 0 0 yes 0.09365

do10 232333233233223333322233333322 -5 0 0 yes 0.08277
do11 232333333222223333333333232323 -4 0 0 yes 0.06115
do12 232333333222332322233233323323 -6 0 0 yes 0.12412
do13 232333333233223233323233323323 -4 1 1 no ·



The do13
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I do13 has the five-fold rotational symmetry of the axis passing
through the centers of top and bottom faces
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