On maximum matching width

Jisu Jeong (KAIST)

joint work with Sigve Hortemo Sæther, Jan Arne Telle (Univ. of Bergen), Seongmin Ok (DTU), Geewon Suh, Sang-il Oum (KAIST)

> GROW 2015 2015.10.15. France

Graph width parameters

- tree-width (Halin 1976, Robertson and Seymour 1984)
- branch-width (Robertson and Seymour 1991)
- carving-width (Seymour and Thomas 1994)
- clique-width (Courcelle and Olariu 2000)
- rank-width (Oum and Seymour 2006)
- maximum matching-width (Vatshelle 2012)

A *tree-decomposition* of a graph *G* is a pair $(T, \{X_t\}_{t \in V(T)})$ consisting of a tree *T* and a family $\{X_t\}_{t \in V(T)}$ of subsets X_t of V(G), called *bags*, satisfying the following three conditions:

- 1. each vertex of G is in at least one bag,
- 2. for each edge uv of G, there exists a bag that contains both u and v,
- **3.** if X_i and X_j both contain a vertex v, then all bags X_k in the path between X_i and X_j contain v as well.

Examples

- tree-width $\leq 1 \Leftrightarrow$ a forest \Leftrightarrow no cycle
- tree-width $\leq 2 \Leftrightarrow$ a series-parallel graph \Leftrightarrow no K_4 minor
- The tree-width of a $k \times k$ grid is k.
- The tree-width of K_n is n-1.

 4×4 grid

A *branch-decomposition* (*T*, *L*) over the vertices of a graph *G* consists of a tree *T* where all internal vertices have degree 3 and a bijective function *L* from the leaves of *T* to the vertices of *G*.
The mm-value of an edge α of *T* is the size of the maximum matching of *G*[{a, b, i}, {c, d, e, f, g, h}].

A *branch-decomposition* (*T*, *L*) over the vertices of a graph *G* consists of a tree *T* where all internal vertices have degree 3 and a bijective function *L* from the leaves of *T* to the vertices of *G*.
The mm-value of an edge α of *T* is the size of the maximum matching of *G*[{a, b, i}, {c, d, e, f, g, h}].

A *branch-decomposition* (T, L) over the vertices of a graph G consists of a tree T where all internal vertices have degree 3 and a bijective function L from the leaves of T to the vertices of G. The mm-width of a branch-decomposition (T,L) is the maximum mm-value among all edges. The maximum matching-width (mm-width, mmw(G)) of a graph G is the minimum mm-width over all possible branch-decompositions over V(G).

h

(T,L)

e

Q

G

Theorem (Vatshelle 2012)

For every graph G, $mmw(G) \le tw(G) + 1 \le 3 mmw(G).$

A graph *G* has bounded tree-width if and only if *G* has bounded mm-width.

Inequalities

Theorem (Vatshelle 2012)

For every graph G, $mmw(G) \le max(brw(G), 1) \le tw(G) + 1 \le 3 mmw(G).$

Theorem (Vatshelle 2012)

For every graph $G, rw(G) \leq mmw(G)$.

Algorithms

$O^*(f(k,n)) = f(k,n)poly(n)$

Theorem (Sæther, Telle 2014)

The cut-function mm is submodular.

Corollary (Oum 2009)

Given a graph G, we can compute a decomposition over V(G) having optimal mm-width in time $O^*(2^{|V(G)|})$.

Corollary (Oum, Seymour 2006)

Given a graph G, a branch-decomposition over V(G) of mmwidth at most $\frac{3mmw(G)}{4} + 1$ can be found in time $O^*(2^{3mmw(G)})$.

Properties

• mm-width ≤ 1

 $\Leftrightarrow \text{ every maximal 2-connected subgraph is } K_2 \text{ or } K_3$ $\Leftrightarrow \text{ no } C_4 \text{ minor} \qquad |$

• The mm-width of
$$K_n$$
 is $\left[\frac{n}{3}\right]$.

• Characterize a class of graphs having mm-width ≤ 2 .

• What is the mm-width of a $k \times k$ grid?

- Characterize a class of graphs having mm-width ≤ 2.
 `minor-closed' + `well-quasi-ordering'
 ⇒ It can be characterized by finite forbidden minors.
- What is the mm-width of a $k \times k$ grid?

Theorem (J., Ok, Suh 2015+)

There are 42 forbidden minors for mm-width at most 2.

• Characterize graphs having mm-width ≤ 2 .

• What is the mm-width of a $k \times k$ grid G_k ?

• Characterize graphs having mm-width ≤ 2 .

• What is the mm-width of a $k \times k$ grid G_k ?

 $rw(G_k) \le mmw(G_k) \le brw(G_k)$

• Characterize graphs having mm-width ≤ 2 .

• What is the mm-width of a $k \times k$ grid G_k ?

$$k - 1 = rw(G_k) \le mmw(G_k) \le brw(G_k) = k$$

• Characterize graphs having mm-width ≤ 2 .

• What is the mm-width of a $k \times k$ grid G_k ?

Theorem (J., Oum, Suh 2015+)

The mm-width of a $k \times k$ -grid is k.

Theorem (Vatshelle 2012)

For every graph G, $mmw(G) \le tw(G) + 1 \le 3 mmw(G).$

A graph *G* has bounded tree-width if and only if *G* has bounded mm-width.

We want to solve Graph Problems efficiently.

A Dominating Set of a graph G is a set D of vertices such that $N(D) \cup D = V(G)$.

What is the minimum size of a dominating set of G?

Using tree-width

Theorem (van Rooij, Bodlaender, Rossmanith 2009)

Minimum Dominating Set Problem can be solved in time $O^*(3^t)$ when a graph and its tree-decomposition of width t is given.

Theorem (Lokshtanov, Marx, Saurabh 2011)

Minimum Dominating Set Problem cannot be solved in time $O^*((3 - \varepsilon)^t)$ where t is the tree-width of the given graph unless the strong exponential time hypothesis fails.

Using mm-width

Theorem (J., Sæther, Telle IPEC2015)

Minimum Dominating Set Problem can be solved in time $O^*(8^m)$ when a graph and its branch-decomposition of mm-width m is given.

Using tree-width: $O^*(3^t)$ Using mm-width: $O^*(8^m)$

Our algorithm is faster when $8^m < 3^t$, that is, 1.893 mmw(G) < tw(G).

Note that for every graph G, $mmw(G) \le tw(G) + 1 \le 3 mmw(G)$.

What if **only a graph** is an input?

Theorem (Oum, Seymour 2006)

Given a graph G, a branch-decomposition over V(G) of mmwidth at most 3mmw(G) + 1 can be found in time $O^*(2^{3mmw(G)})$.

Runtime :
$$O^*(8^m) = O^*(8^{3mmw(G)})$$

Theorem (Amir 2010)

Our algorithm is faster if an input graph G satisfies 1.55 mmw(G) < tw(G).

Given a graph G, a tree-decomposition over V(G) of width at most 3.67tw(G) can be found in time $O^*(2^{3.7tw(G)})$.

Runtime : $O^*(3^t) = O^*(3^{3.67tw(G)})$

Using mm-width

Theorem (J., Sæther, Telle 2015)

Minimum Dominating Set Problem can be solved in time $O^*(8^m)$ when a graph and its branch-decomposition of mm-width m is given.

Proof ideas

- 1. New characterization of graphs of mm-width at most k
- 2. Dynamic programming
- 3. Fast Subset Convolution, Monotonicity

For any $k \ge 2$, a graph G on vertices v_1, v_2, \dots, v_n has tree-width at most k if and only if there are subtrees T_1, T_2, \dots, T_n of a tree T where all internal vertices have degree 3 such that 1) if $v_i v_i \in E(G)$, then T_i and T_i have at least one vertex of T in common, 2) for each vertex of T, there are at most k-1subtrees containing it.

Theorem (J., Sæther, Telle 2015)

For any $k \ge 2$, a graph G on vertices v_1, v_2, \dots, v_n has mm-width at most k if and only if there are subtrees T_1, T_2, \dots, T_n of a tree T where all internal vertices have degree 3 such that 1) if $v_i v_i \in E(G)$, then T_i and T_j have at least one vertex of T in common, 2) for each edge of T, there are at most k subtrees containing it.

Theorem

A graph G has $tw(G) \le k$ if and only if it is a subgraph of a chordal graph H such that the maximum size of a clique in H is at most k.

Theorem (J., Sæther, Telle 2015)

A graph *G* has $mmw(G) \le k$ if and only if it is a subgraph of a chordal graph *H* and for every maximal clique *X* of *H* there exists *A*, *B*, *C* \subseteq *X* with *A* \cup *B* \cup *C* = *X* and $|A|, |B|, |C| \le k$ such that any subset of *X* that is a minimal separator of *H* is a subset of either *A*, *B*, or *C*.

New characterization

For any $k \ge 2$, a graph G on vertices v_1, v_2, \dots, v_n has tree-width (mm-width) at most k if and only if there are subtrees T_1, T_2, \dots, T_n of a tree T where all internal vertices have degree 3 such that 1) if $v_i v_j \in E(G)$, then T_i and T_j have at least one vertex of T in common, 2) for each vertex (edge) of *T*, there are at most k - 1 (at most k) subtrees containing it. Thank you

New characterization

For any $k \ge 2$, a graph G on vertices v_1, v_2, \dots, v_n has tree-width (mm-width, branch-width) at most k if and only if there are subtrees T_1, T_2, \dots, T_n of a tree T where all internal vertices have degree 3 such that 1) if $v_i v_i \in E(G)$, then T_i and T_i have at least one vertex (vertex, edge) of T in common, 2) for each vertex (edge, edge) of T, there are at most k - 1 (at most k, at most k) subtrees containing it.