On maximum matching width

Jisu Jeong (KAIST)

joint work with Sigve Hortemo Sæther, Jan Arne Telle (Univ. of Bergen), Seongmin Ok (DTU), Geewon Suh, Sang-il Oum (KAIST)

GROW 2015
2015.10.15. France

Graph width parameters

- tree-width (Halin 1976, Robertson and Seymour 1984)
- branch-width (Robertson and Seymour 1991)
- carving-width (Seymour and Thomas 1994)
- clique-width (Courcelle and Olariu 2000)
- rank-width (Oum and Seymour 2006)
- maximum matching-width (Vatshelle 2012)

A tree-decomposition of a graph G is a pair $\left(T,\left\{X_{t}\right\}_{t \in V(T)}\right)$ consisting of a tree T and a family $\left\{X_{t}\right\}_{t \in V(T)}$ of subsets X_{t} of $V(G)$, called bags, satisfying the following three conditions:

1. each vertex of G is in at least one bag,
2. for each edge $u v$ of G, there exists a bag that contains both u and v,
 X_{i} and X_{j} contain v as well.

Examples

- tree-width $\leq 1 \Leftrightarrow$ a forest \Leftrightarrow no cycle
- tree-width $\leq 2 \Leftrightarrow$ a series-parallel graph
\Leftrightarrow no K_{4} minor

- The tree-width of a $k \times k$ grid is k.
- The tree-width of K_{n} is $n-1$.

A branch-decomposition (T, L) over the vertices of a graph G consists of a tree T where all internal vertices have degree 3 and
a bijective function L from the leaves of T to the vertices of G.
The mm-value of an edge α of T is
the size of the maximum matching of $G[\{a, b, i\},\{c, d, e, f, g, h\}]$.

A branch-decomposition (T, L) over the vertices of a graph G consists of a tree T where all internal vertices have degree 3 and
a bijective function L from the leaves of T to the vertices of G.
The mm-value of an edge α of T is the size of the maximum matching of $G[\{a, b, i\},\{c, d, e, f, g, h\}]$.

G

A branch-decomposition (T, L) over the vertices of a graph G consists of a tree T where all internal vertices have degree 3 and
a bijective function L from the leaves of T to the vertices of G.
The mm-width of a branch-decomposition (T, L) is the maximum mm-value among all edges.
The maximum matching-width (mm-width, $m m w(G)$) of a graph G is the minimum mm-width over all possible branch-decompositions over $V(G)$.

The mm-width of (T, L) is 2

Properties

Theorem (Vatshelle 2012)

For every graph G,

$$
m m w(G) \leq t w(G)+1 \leq 3 m m w(G)
$$

A graph G has bounded tree-width if and only if G has bounded mm-width.

Inequalities

Theorem (Vatshelle 2012)

For every graph G, $\operatorname{mmw}(G) \leq \max (\operatorname{brw}(G), 1) \leq t w(G)+1 \leq 3 \operatorname{mmw}(G)$.

Theorem (Vatshelle 2012)

For every graph $G, r w(G) \leq m m w(G)$.

Algorithms

$$
O^{*}(f(k, n))=f(k, n) \operatorname{poly}(n)
$$

Theorem (Sæther, Telle 2014)
The cut-function mm is submodular.

Corollary (Oum 2009)

Given a graph G, we can compute a decomposition over $V(G)$ having optimal mm-width in time $O^{*}\left(2^{|V(G)|}\right)$.

Corollary (Oum, Seymour 2006)

Given a graph G, a branch-decomposition over $V(G)$ of mmwidth at most $3 \mathrm{mmw}(G)+1$ can be found in time $O^{*}\left(2^{3 m m w(G)}\right)$.

Properties

- mm-width ≤ 1
\Leftrightarrow every maximal 2-connected subgraph is K_{2} or K_{3}
\Leftrightarrow no C_{4} minor
- The mm-width of K_{n} is $\left[\frac{n}{3}\right]$.

Questions

- Characterize a class of graphs having mm-width ≤ 2.
- What is the mm-width of a $k \times k$ grid?

Questions

- Characterize a class of graphs having mm-width ≤ 2. `minor-closed'+ `well-quasi-ordering'
\Rightarrow It can be characterized by finite forbidden minors.
- What is the mm-width of a $k \times k$ grid?

Theorem (J., Ok, Suh 2015+)
There are 42 forbidden minors for mm-width at most 2 .

Questions

- Characterize graphs having mm-width ≤ 2.
- What is the mm-width of a $k \times k$ grid G_{k} ?

Questions

- Characterize graphs having mm-width ≤ 2.
- What is the mm-width of a $k \times k$ grid G_{k} ?

$$
r w\left(G_{k}\right) \leq m m w\left(G_{k}\right) \leq \operatorname{brw}\left(G_{k}\right)
$$

Questions

- Characterize graphs having mm-width ≤ 2.
- What is the mm-width of a $k \times k$ grid G_{k} ?

$$
k-1=r w\left(G_{k}\right) \leq m m w\left(G_{k}\right) \leq \operatorname{brw}\left(G_{k}\right)=k
$$

Questions

- Characterize graphs having mm-width ≤ 2.
- What is the mm-width of a $k \times k$ grid G_{k} ?

Theorem (J., Oum, Suh 2015+)

The mm-width of a $k \times k$-grid is k.

Why mm-width?

Theorem (Vatshelle 2012)

For every graph G,

$$
\operatorname{mmw}(G) \leq t w(G)+1 \leq 3 m m w(G)
$$

A graph G has bounded tree-width if and only if G has bounded mm-width.

Why mm-width?

We want to solve Graph Problems efficiently.
A Dominating Set of a graph G is a set D of vertices such that $N(D) \cup D=V(G)$.

What is the minimum size of a dominating set of G ?

Why mm-width?

Using tree-width

Theorem (van Rooij, Bodlaender, Rossmanith 2009)

Minimum Dominating Set Problem can be solved in time $O^{*}\left(3^{t}\right)$ when a graph and its tree-decomposition of width t is given.

Theorem (Lokshtanov, Marx, Saurabh 2011)

Minimum Dominating Set Problem cannot be solved in time $O^{*}\left((3-\varepsilon)^{t}\right)$ where t is the tree-width of the given graph unless the strong exponential time hypothesis fails.

Why mm-width?

Using mm-width

Theorem (J., Sæther, Telle IPEC2015)

Minimum Dominating Set Problem can be solved in time $O^{*}\left(8^{m}\right)$ when a graph and its branch-decomposition of $\mathrm{mm}-$ width m is given.

Why mm-width?

Using tree-width: $O^{*}\left(3^{t}\right)$
Using mm-width: $O^{*}\left(8^{m}\right)$

Our algorithm is faster when $8^{m}<3^{t}$, that is,

$$
1.893 \mathrm{mmw}(G)<t w(G)
$$

Note that for every graph G,

$$
m m w(G) \leq t w(G)+1 \leq 3 \mathrm{mmw}(G)
$$

What if only a graph is an input?

Theorem (Oum, Seymour 2006)

Given a graph G, a branch-decomposition over $V(G)$ of mmwidth at most $3 \mathrm{mmw}(G)+1$ can be found in time $O^{*}\left(2^{3 m m w(G)}\right)$.

Runtime : $O^{*}\left(8^{m}\right)=O^{*}\left(8^{3 m m w(G)}\right)$ Our algorithm is faster if an input graph G satisfies

Theorem (Amir 2010)

 $1.55 \mathrm{mmw}(G)<t w(G)$.Given a graph G, a tree-decomposition over $V(G)$ of width at most $3.67 \mathrm{tw}(G)$ can be found in time $O^{*}\left(2^{3.7 t w(G)}\right)$.
Runtime : $O^{*}\left(3^{t}\right)=O^{*}\left(3^{3.67 t w(G)}\right)$

Why mm-width?

Using mm-width

Theorem (J., Sæther, Telle 2015)

Minimum Dominating Set Problem can be solved in time $O^{*}\left(8^{m}\right)$ when a graph and its branch-decomposition of mmwidth m is given.

Proof ideas

1. New characterization of graphs of mm-width at most k
2. Dynamic programming
3. Fast Subset Convolution, Monotonicity

New characterization (tree-width)

New characterization (tree-width)

For any $k \geq 2$, a graph G on vertices $v_{1}, v_{2}, \ldots, v_{n}$ has
tree-width at most k if and only if
there are subtrees $T_{1}, T_{2}, \ldots, T_{n}$ of a tree T where all internal vertices have degree 3
such that 1) if $v_{i} v_{j} \in E(G)$, then T_{i} and T_{j} have at least one vertex of T in common,
2) for each vertex of T, there are at most $k-1$ subtrees containing it.

New characterization (mm-width)

New characterization (mm-width)

Theorem (König 1931)

For every bipartite graph G, the size of a maximum matching is equal to the size of a minimum vertex cover.

New characterization (mm-width)

New characterization (mm-width)

New characterization (mm-width)

Key Lemma

A vertex cover C_{K} is the A-König cover of a bipartite graph $G=(A \cup B, E)$ if and only if for each minimum vertex cover C^{\prime} of G we have

$$
A \cap C^{\prime} \subseteq A \cap C_{K}, \quad B \cap C^{\prime} \supseteq B \cap C_{K}
$$

Theorem (J., Sæther, Telle 2015)

For any $k \geq 2$, a graph G on vertices $v_{1}, v_{2}, \ldots, v_{n}$ has
mm-width at most k if and only if
there are subtrees $T_{1}, T_{2}, \ldots, T_{n}$ of a tree T where all internal vertices have degree 3
such that 1) if $v_{i} v_{j} \in E(G)$, then T_{i} and T_{j} have at least one vertex of T in common,
2) for each edge of T, there are at most k subtrees containing it.

Theorem

A graph G has $t w(G) \leq k$ if and only if it is a subgraph of a chordal graph H such that the maximum size of a clique in H is at most k.

Theorem (J., Sæther, Telle 2015)

A graph G has $m m w(G) \leq k$ if and only if
it is a subgraph of a chordal graph H and for every maximal clique X of H there exists $A, B, C \subseteq X$ with $A \cup B \cup C=X$ and $|A|,|B|,|C| \leq k$ such that any subset of X that is a minimal separator of H is a subset of either A, B, or C.

New characterization

For any $k \geq 2$, a graph G on vertices $v_{1}, v_{2}, \ldots, v_{n}$ has
tree-width (mm-width) at most k if and only if
there are subtrees $T_{1}, T_{2}, \ldots, T_{n}$ of a tree T where all internal vertices have degree 3
such that 1) if $v_{i} v_{j} \in E(G)$, then T_{i} and T_{j} have at least one vertex of T in common,
2) for each vertex (edge) of T, there are at most $k-1$ (at most k) subtrees containing it.

Thank you

New characterization

For any $k \geq 2$, a graph G on vertices $v_{1}, v_{2}, \ldots, v_{n}$ has tree-width (mm-width, branch-width) at most k if and only if there are subtrees $T_{1}, T_{2}, \ldots, T_{n}$ of a tree T where all internal vertices have degree 3
such that 1) if $v_{i} v_{j} \in E(G)$, then T_{i} and T_{j} have at least one vertex (vertex, edge) of T in common,
2) for each vertex (edge, edge) of T, there are at most $k-1$ (at most k, at most k) subtrees containing it.

