Graph width-parameters and algorithms

Jisu Jeong (KAIST)

joint work with Sigve Hortemo Sæther and Jan Arne Telle (University of Bergen)

2015 KMS Annual Meeting
2015.10.24. YONSEI UNIVERSITY

Graph width-parameters

- tree-width (Halin 1976, Robertson and Seymour 1984)
- branch-width (Robertson and Seymour 1991)
- carving-width (Seymour and Thomas 1994)
- clique-width (Courcelle and Olariu 2000)
- rank-width (Oum and Seymour 2006)
- boolean-width (Bui-Xuan, Telle, Vatshelle 2011)
- maximum matching-width (Vatshelle 2012)

Tree-width

- tree-width (Halin 1976, Robertson and Seymour 1984)

A measure of how "tree-like" the graph is.

tree

tree-like

Tree-width

- tree-width (Halin 1976, Robertson and Seymour 1984) A measure of how "tree-like" the graph is.

tree

tree-like

Figures from http://fptschool.mimuw.edu.pl/slides/lec6.pdf

Tree-width

- tree-width (Halin 1976, Robertson and Seymour 1984) A measure of how "tree-like" the graph is.

bad

bad

good

good

Figures from http://fptschool.mimuw.edu.pl/slides/lec6.pdf

A tree-decomposition of a graph G is
 a pair $\left(T,\left\{X_{t}\right\}_{t \in V(T)}\right)$ consisting of a tree T and a family $\left\{X_{t}\right\}_{t \in V(T)}$ of subsets X_{t} of $V(G)$,

called bags, satisfying the following three conditions:

1. each vertex of G is in at least one bag,
2. for each edge $u v$ of G, there exists a bag that contains both u and v,
3. if X_{i} and X_{j} both contain a vertex v, then all bags X_{k} in the path between X_{i} and X_{j} contain v as well.

 called bags, satisfying the following three conditions:
4. each vertex of G is in at least one bag,
5. for each edge $u v$ of G, there exists a bag that contains both u and v,
6. if X_{i} and X_{j} both contain a vertex v, then all bags X_{k} in the path between X_{i} and X_{j} contain v as well.

The width of a tree-decomposition $\left(T,\left\{X_{t}\right\}_{t \in V(T)}\right)$ is max $\left|X_{t}\right|-1$.
The tree-width of a graph G, denoted by $\operatorname{tw}(G)$, is the minimum width over all possible tree-decompositions of G.

Examples

- tree-width $\leq 1 \Leftrightarrow$ a forest \Leftrightarrow no cycle
- tree-width $\leq 2 \Leftrightarrow$ a series-parallel graph
\Leftrightarrow no K_{4} minor

Examples

- tree-width $\leq 1 \Leftrightarrow$ a forest \Leftrightarrow no cycle
- tree-width $\leq 2 \Leftrightarrow$ a series-parallel graph
\Leftrightarrow no K_{4} minor

- The tree-width of a $k \times k$ grid is k.
- The tree-width of K_{n} is $n-1$.

Algorithm using tree-decomposition

Exercise

Given a tree-decomposition of width t of a graph G, 3 -COLORABILITY can be solved in time $O\left(t 3^{t} n\right)$.

Algorithm using tree-decomposition

Exercise

Given a tree-decomposition of width t of a graph G, 3 -COLORABILITY can be solved in time $O\left(t 3^{t} n\right)$.

\mathbf{a}	\mathbf{b}
1	2
1	3
2	1
2	3
3	1
3	2

\mathbf{a}	\mathbf{b}	\mathbf{a}	\mathbf{b}	\mathbf{c}
1	2	1	2	3
1	3	1	3	2
2	1	2	1	3
2	3	2	3	1
3	1	3	1	2
3	2	3	2	1

\mathbf{a}	\mathbf{b}	\mathbf{c}
1	2	3
1	3	2
2	1	3
2	3	1
3	1	2
3	2	1

\mathbf{a}	\mathbf{b}	\mathbf{c}
1	2	3
1	3	2
2	1	3
2	3	1
3	1	2
3	2	1

\mathbf{b}	\mathbf{c}
2	3
3	2
1	3
3	1
1	2
2	1

\mathbf{b}	\mathbf{c}
2	3
3	2
1	3
3	1
1	2
2	1

\mathbf{b}	\mathbf{c}	\mathbf{d}
2	3	1
3	2	1
1	3	2
3	1	2
1	2	3
2	1	3

a	b
1	2
1	3
2	1
2	3
3	1
3	2

\mathbf{a}	\mathbf{b}	\mathbf{a}	\mathbf{b}	\mathbf{c}
1	2	1	2	3
1	3	1	3	2
2	1	2	1	3
2	3	2	3	1
3	1	3	1	2
3	2	3	2	1

\mathbf{b}	\mathbf{c}
2	3
3	2
1	3
3	1
1	2
2	1

\mathbf{b}	\mathbf{c}	\mathbf{d}
2	3	1
3	2	1
1	3	2
3	1	2
1	2	3
2	1	3

		The number of columns of a table is at most $t+1$.
a	b	
1	2	The number of rows of
1	3	a table is at most 3^{t+1}.
2	1	
2	3	The number of tables
3	1	is at most $O(n)$
3	2	is at. most 0 ()

Algorithm using tree-decomposition

Easy exercise

Given a tree-decomposition of width t of a graph G, 3 -COLORABILITY can be solved in time $O\left(t 3^{t} n\right)$.

Difficult exercise

Given a tree-decomposition of width t of a graph G, Minimum Dominating Set Problem can be solved in time $O\left(4^{t} n\right)$.

Algorithm using tree-decomposition

Difficult exercise

Given a tree-decomposition of width t of a graph G, Minimum Dominating Set Problem can be solved in time $O\left(4^{t} n\right)$.

- In dominating set D
- Dominated by D
- Not in D, but do not have to be dominated by D (will be dominated later)
- TRUE / FALSE \rightarrow the size of D
(if D is not a dominating set, then ∞)

Algorithm using tree-decomposition

Theorem (van Rooij, Bodlaender, Rossmanith 2009)

Minimum Dominating Set Problem can be solved in time $O\left(3^{t} n\right)$ when a graph and its tree-decomposition of width t is given.

Theorem (Lokshtanov, Marx, Saurabh 2011)

Minimum Dominating Set Problem cannot be solved in time $O\left((3-\varepsilon)^{t} n\right)$ where t is the tree-width of the given graph.

New width-parameter

Maximum matching width (mmw)

Theorem (Vatshelle 2012)

For every graph G,

$$
\operatorname{mmw}(G) \leq t w(G)+1 \leq 3 \mathrm{mmw}(G)
$$

A graph G has bounded tree-width if and only if G has bounded mm-width.

Algorithm using mmw

Theorem (J., Sæther, Telle 2015)

Minimum Dominating Set Problem can be solved in time $O\left(8^{m} n\right)$ when a graph and its mm -decomposition of mm-width m is given.

Using tree-width: $O\left(3^{t} n\right)$ Using mm-width: $O\left(8^{m} n\right)$

Our algorithm is faster when $8^{m}<3^{t}$, that is,

$$
1.893 \mathrm{mmw}(G)<t w(G)
$$

Note that for every graph G,

$$
m m w(G) \leq t w(G)+1 \leq 3 \operatorname{mmw}(G)
$$

What if only a graph is an input?

Theorem (Oum, Seymour 2006)

Given a graph G, a branch-decomposition over $V(G)$ of mmwidth at most $3 m m w(G)+1$ can be found in time $O^{*}\left(2^{3 \operatorname{mmw}(G)}\right)$.
Runtime: $O^{*}\left(8^{m}\right)=O^{*}\left(8^{3 m m w(G)}\right)$

Theorem (Amir 2010)

Given a graph G, a tree-decomposition over $V(G)$ of width at most $3.67 t w(G)$ can be found in time $O^{*}\left(2^{3.7 t w(G)}\right)$.

Runtime : $O^{*}\left(3^{t}\right)=O^{*}\left(3^{3.67 t w(G)}\right)$

What if only a graph is an input?

Theorem (Oum, Seymour 2006)

Given a graph G, a branch-decomposition over $V(G)$ of mmwidth at most $3 \mathrm{mmw}(G)+1$ can be Our algorithm is faster Runtime : $O^{*}\left(8^{m}\right)=O^{*}\left(8^{3 m m w(G)}\right)$ if an input graph G

Theorem (Amir 2010)

$1.55 \mathrm{mmw}(G)<t w(G)$ most $3.67 t w(G)$ can be found in time $O^{*}\left(2^{3.7 t w^{\prime}(G)}\right)$.

Runtime : $O^{*}\left(3^{t}\right)=O^{*}\left(3^{3.67 t w(G)}\right)$

Open questions

Theorem (J., Sæther, Telle 2015)
 Minimum Dominating Set Problem can be solved in time $O\left(8^{m} n\right)$ when a graph and its mm -decomposition of mm -width m is given.

- Improve $O\left(8^{m} n\right)$ or show that it is tight
- Other problems
- Other width-parameters

Theorem (van Rooij, Bodlaender, Rossmanith 2009)

Minimum Dominating Set Problem can be solved in time $O\left(3^{t} n\right)$ when a graph and its tree-decomposition of width t is given.

Theorem (J., Sæther, Telle 2015)

Minimum Dominating Set Problem can be solved in time $O\left(8^{m} n\right)$ when a graph and its mm -decomposition of mm -width m is given.

Our algorithm is faster when $8^{m}<3^{t}$, that is, $1.893 \mathrm{mmw}(G)<t w(G)$.

Thank you

New characterization

For any $k \geq 2$, a graph G on vertices $v_{1}, v_{2}, \ldots, v_{n}$ has tree-width (mm-width, branch-width) at most k if and only if there are subtrees $T_{1}, T_{2}, \ldots, T_{n}$ of a tree T where all internal vertices have degree 3
such that 1) if $v_{i} v_{j} \in E(G)$, then T_{i} and T_{j} have at least one vertex (vertex, edge) of T in common,
2) for each vertex (edge, edge) of T, there are at most $k-1$ (at most k, at most k) subtrees containing it.

