Graph width-parameters and algorithms

Jisu Jeong (KAIST)

joint work with Sigve Hortemo Sæther and Jan Arne Telle (University of Bergen)

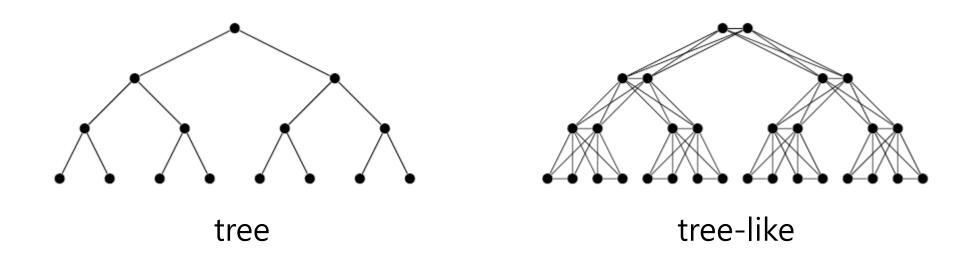
> 2015 KMS Annual Meeting 2015.10.24. YONSEI UNIVERSITY

Graph width-parameters

- tree-width (Halin 1976, Robertson and Seymour 1984)
- branch-width (Robertson and Seymour 1991)
- carving-width (Seymour and Thomas 1994)
- clique-width (Courcelle and Olariu 2000)
- rank-width (Oum and Seymour 2006)
- boolean-width (Bui-Xuan, Telle, Vatshelle 2011)
- maximum matching-width (Vatshelle 2012)

Tree-width

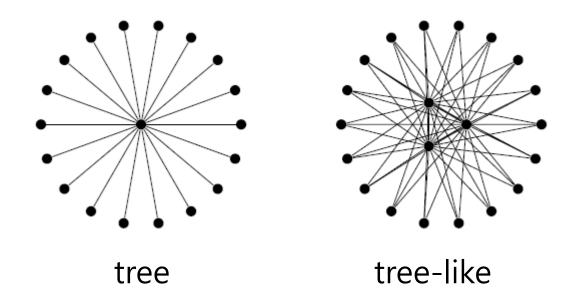
tree-width (Halin 1976, Robertson and Seymour 1984)
A measure of how "tree-like" the graph is.



Figures from http://fptschool.mimuw.edu.pl/slides/lec6.pdf

Tree-width

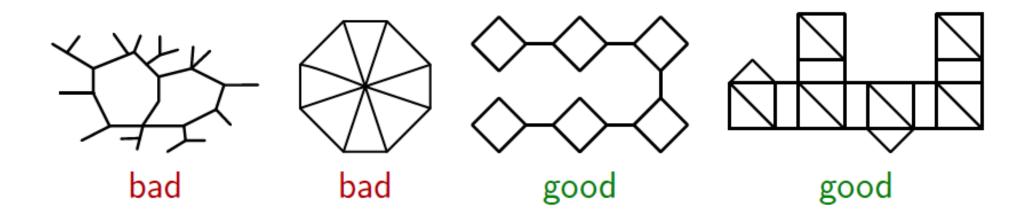
tree-width (Halin 1976, Robertson and Seymour 1984)
A measure of how "tree-like" the graph is.



Figures from http://fptschool.mimuw.edu.pl/slides/lec6.pdf

Tree-width

tree-width (Halin 1976, Robertson and Seymour 1984)
A measure of how "tree-like" the graph is.

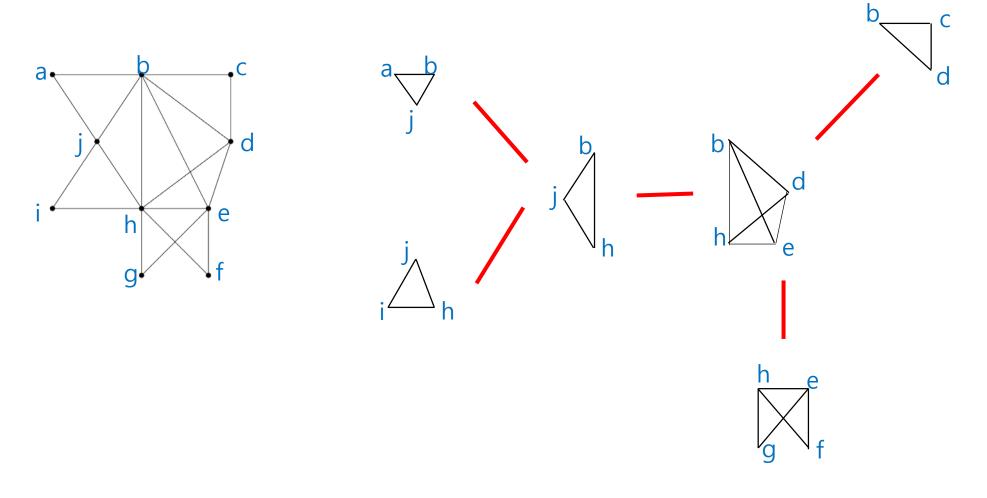


Figures from http://fptschool.mimuw.edu.pl/slides/lec6.pdf

A tree-decomposition of a graph G is a pair $(T, \{X_t\}_{t \in V(T)})$ consisting of a tree T and a family $\{X_t\}_{t \in V(T)}$ of subsets X_t of V(G),

called *bags*, satisfying the following three conditions:

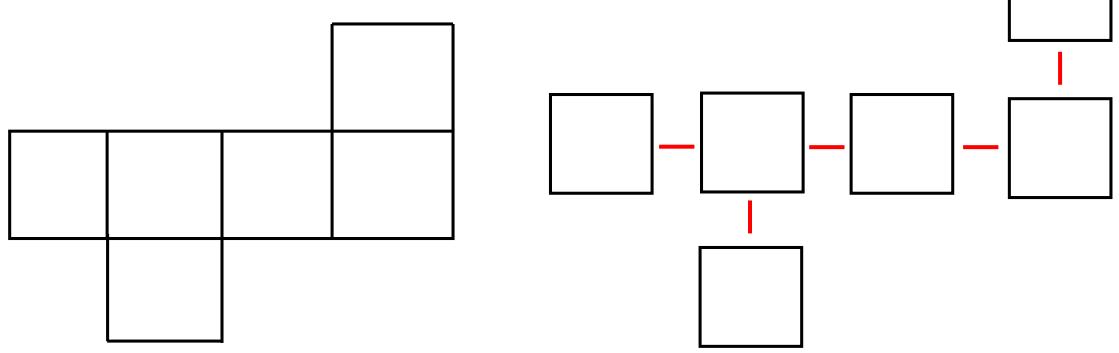
- 1. each vertex of *G* is in at least one bag,
- 2. for each edge uv of G, there exists a bag that contains both u and v,
- 3. if X_i and X_j both contain a vertex v, then all bags X_k in the path between X_i and X_j contain v as well.



A tree-decomposition of a graph G is a pair $(T, \{X_t\}_{t \in V(T)})$ consisting of a tree T and a family $\{X_t\}_{t \in V(T)}$ of subsets X_t of V(G),

called *bags*, satisfying the following three conditions:

- 1. each vertex of *G* is in at least one bag,
- 2. for each edge uv of G, there exists a bag that contains both u and v,
- 3. If X_i and X_j both contain a vertex v_i , then all bags X_k in the path between X_i and X_j contain v as well.

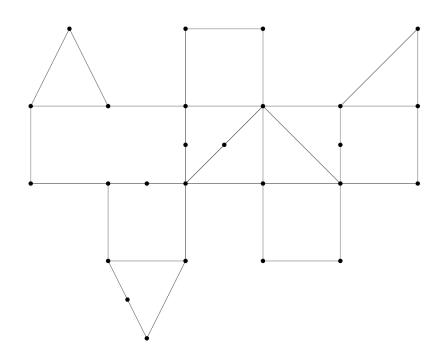


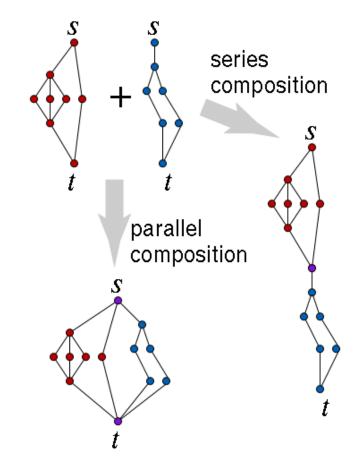
The *width* of a tree-decomposition $(T, \{X_t\}_{t \in V(T)})$ is $\max|X_t| - 1$. The *tree-width* of a graph *G*, denoted by tw(G), is the minimum width over all possible tree-decompositions of G.

Examples

- tree-width $\leq 1 \Leftrightarrow$ a forest \Leftrightarrow no cycle
- tree-width $\leq 2 \Leftrightarrow$ a series-parallel graph

 \Leftrightarrow no K_4 minor

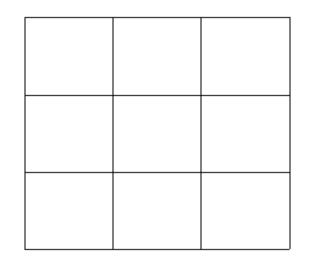




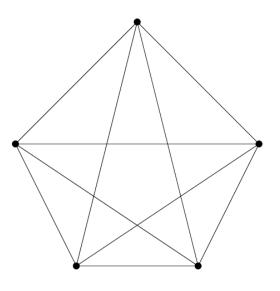
Figures from wikipedia

Examples

- tree-width $\leq 1 \Leftrightarrow$ a forest \Leftrightarrow no cycle
- tree-width $\leq 2 \Leftrightarrow$ a series-parallel graph \Leftrightarrow no K_4 minor
- The tree-width of a $k \times k$ grid is k.
- The tree-width of K_n is n-1.



 4×4 grid

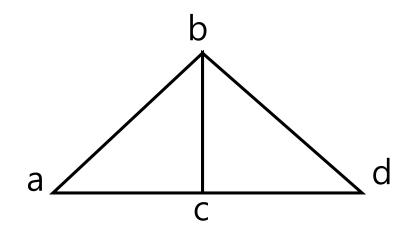


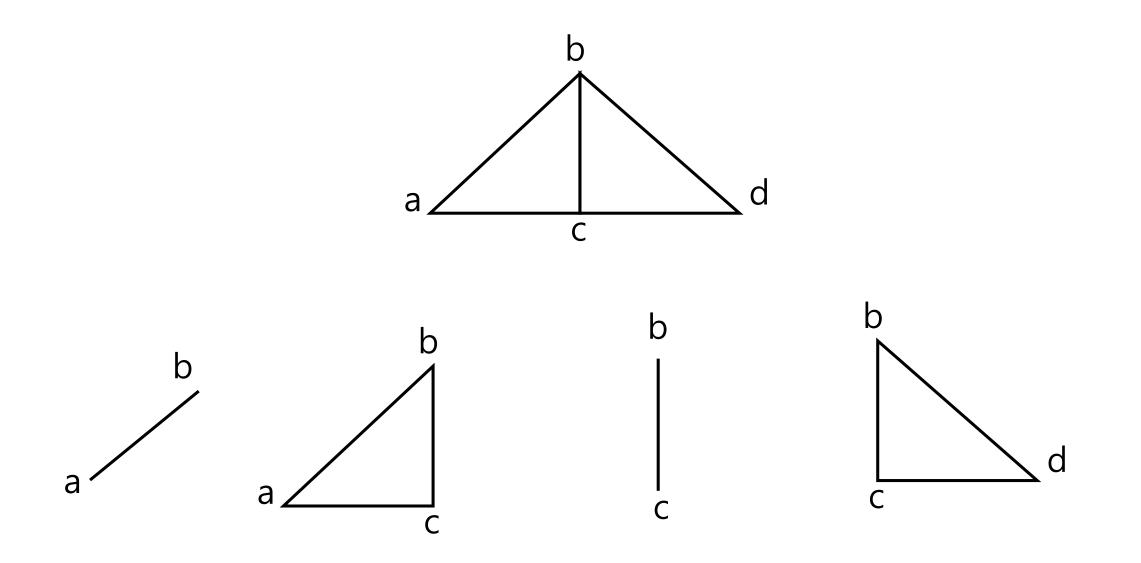
Exercise

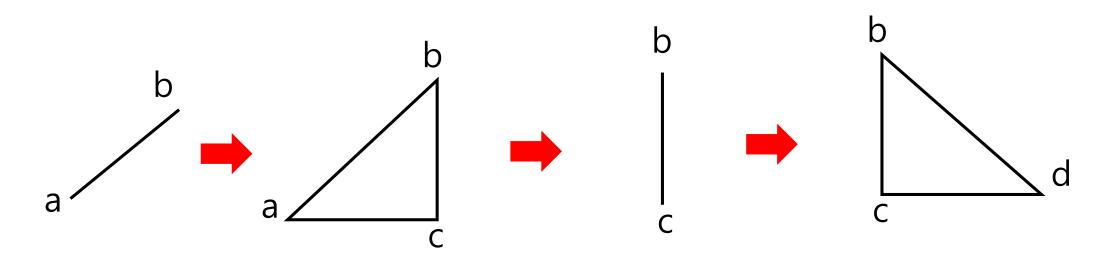
Given a tree-decomposition of width t of a graph G, 3-COLORABILITY can be solved in time $O(t3^t n)$.

Exercise

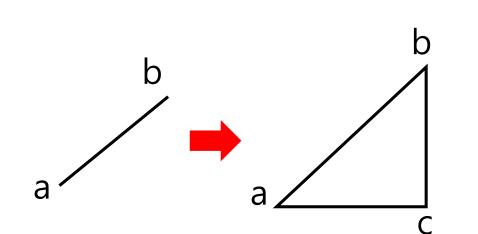
Given a tree-decomposition of width t of a graph G, 3-COLORABILITY can be solved in time $O(t3^t n)$.

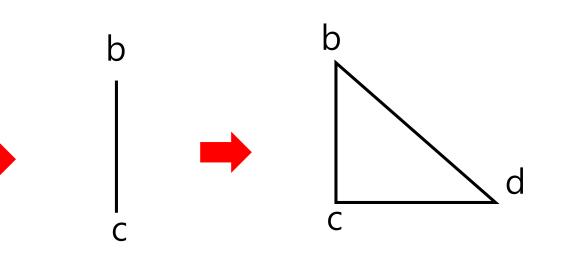






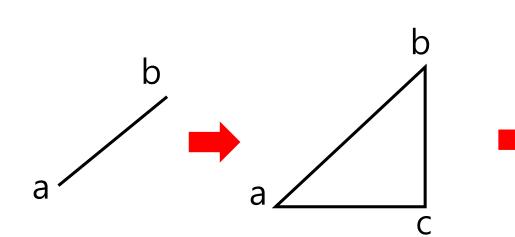
а	b
1	2
1	3
2	1
2	3
3	1
3	2

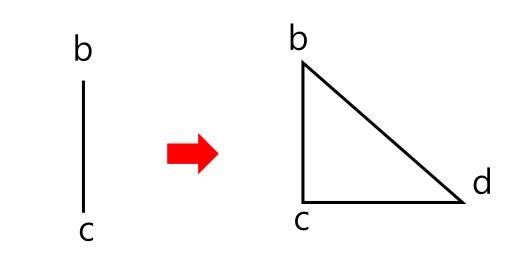




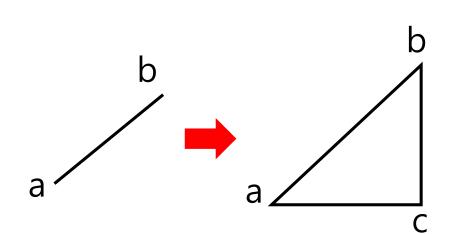
а	b
1	2
1	3
2	1
2	3
3	1
3	2

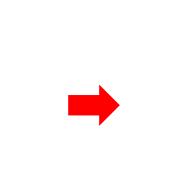
а	b	С
1	2	3
1	3	2
2	1	3
2	3	1
3	1	2
3	2	1

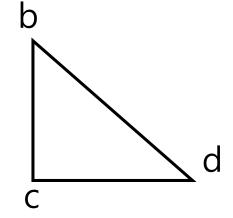




а	b	С
1	2	3
1	3	2
2	1	3
2	3	1
3	1	2
3	2	1

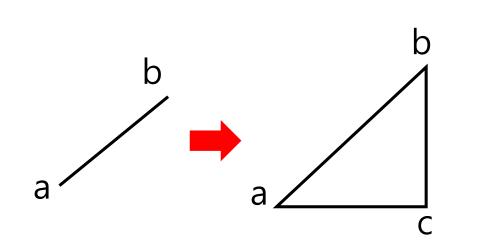


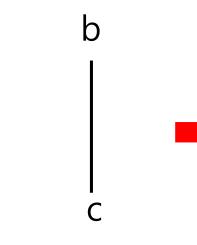


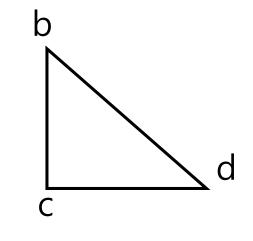


а	b	С
1	2	3
1	3	2
2	1	3
2	3	1
3	1	2
3	2	1

b	С
2	3
3	2
1	3
3	1
1	2
2	1

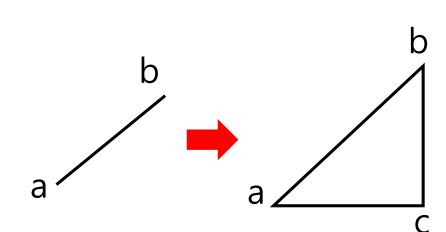


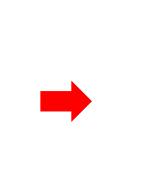


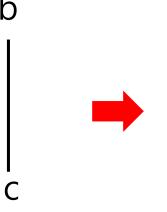


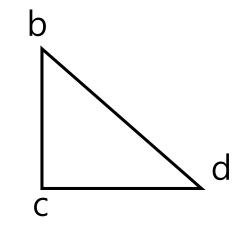
b	С	d
2	3	1
3	2	1
1	3	2
3	1	2
1	2	3
2	1	3

b	С
2	3
3	2
1	3
3	1
1	2
2	1









а	b
1	2
1	3
2	1
2	3
3	1
3	2

		•
а	b	С
1	2	3
1	3	2
2	1	3
2	3	1
3	1	2
3	2	1

b	С
2	3
3	2
1	3
3	1
1	2
2	1

b	С	d
2	3	1
3	2	1
1	3	2
3	1	2
1	2	3
2	1	3

The number of columns of a table is at most t + 1.

а	b
1	2
1	3
2	1
2	3
3	1
3	2

b

The number of rows of a table is at most 3^{t+1} . 2 1 3 1 3 1 3 2 The number of tables is at most O(n).

Easy exercise

Given a tree-decomposition of width t of a graph G, 3-COLORABILITY can be solved in time $O(t3^t n)$.

Difficult exercise

Given a tree-decomposition of width t of a graph G, Minimum Dominating Set Problem can be solved in time $O(4^t n)$.

Difficult exercise

Given a tree-decomposition of width t of a graph G, Minimum Dominating Set Problem can be solved in time $O(4^t n)$.

- In dominating set D
- Dominated by D
- Not in D, but do not have to be dominated by D (will be dominated later)

• TRUE / FALSE \rightarrow the size of D (if D is not a dominating set, then ∞)

Theorem (van Rooij, Bodlaender, Rossmanith 2009)

Minimum Dominating Set Problem can be solved in time $O(3^t n)$ when a graph and its tree-decomposition of width t is given.

Theorem (Lokshtanov, Marx, Saurabh 2011)

Minimum Dominating Set Problem cannot be solved in time $O((3 - \varepsilon)^t n)$ where t is the tree-width of the given graph.

New width-parameter

Maximum matching width (mmw)

Theorem (Vatshelle 2012) For every graph G, $mmw(G) \le tw(G) + 1 \le 3 mmw(G)$.

A graph *G* has bounded tree-width if and only if *G* has bounded mm-width.

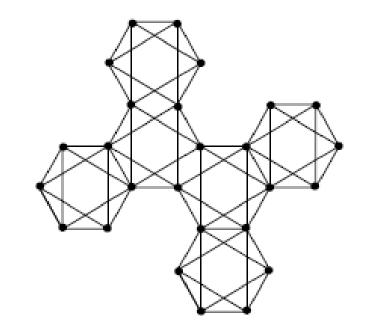
Algorithm using mmw

Theorem (J., Sæther, Telle 2015)

Minimum Dominating Set Problem can be solved in time $O(8^m n)$ when a graph and its mm-decomposition of mm-width m is given.

Using tree-width: $O(3^t n)$ Using mm-width: $O(8^m n)$

Our algorithm is faster when $8^m < 3^t$, that is, 1.893 mmw(G) < tw(G).



Note that for every graph G, $mmw(G) \le tw(G) + 1 \le 3 mmw(G)$.

What if **only a graph** is an input?

Theorem (Oum, Seymour 2006)

Given a graph G, a branch-decomposition over V(G) of mmwidth at most 3mmw(G) + 1 can be found in time $O^*(2^{3mmw(G)})$.

Runtime : $O^*(8^m) = O^*(8^{3mmw(G)})$

Theorem (Amir 2010)

Given a graph G, a tree-decomposition over V(G) of width at most 3.67tw(G) can be found in time $O^*(2^{3.7tw(G)})$.

Runtime : $O^*(3^t) = O^*(3^{3.67tw(G)})$

What if **only a graph** is an input?

Theorem (Oum, Seymour 2006)

Given a graph G, a branch-decomposition over V(G) of mm-

width at most 3mmw(G) + 1 can beOur algorithm is fasterRuntime : $O^*(8^m) = O^*(8^{3mmw(G)})$ if an input graph GTheorem (Amir 2010)satisfiesGiven a graph G, a tree-decomposition1.55 mmw(G) < tw(G).most 3.67tw(G) can be found in time $O^*(2^{3.7tw(G)})$.

Runtime : $O^*(3^t) = O^*(3^{3.67tw(G)})$

Open questions

Theorem (J., Sæther, Telle 2015)

Minimum Dominating Set Problem can be solved in time $O(8^m n)$ when a graph and its mm-decomposition of mm-width m is given.

- Improve $O(8^m n)$ or show that it is tight
- Other problems
- Other width-parameters

Theorem (van Rooij, Bodlaender, Rossmanith 2009) Minimum Dominating Set Problem can be solved in time $O(3^t n)$ when a graph and its tree-decomposition of width t is given.

Theorem (J., Sæther, Telle 2015)

Minimum Dominating Set Problem can be solved in time $O(8^m n)$ when a graph and its mm-decomposition of mm-width m is given.

Our algorithm is faster when $8^m < 3^t$, that is, 1.893 mmw(G) < tw(G).

Thank you

New characterization

For any $k \ge 2$, a graph G on vertices v_1, v_2, \dots, v_n has tree-width (mm-width, branch-width) at most k if and only if there are subtrees T_1, T_2, \dots, T_n of a tree T where all internal vertices have degree 3 such that 1) if $v_i v_i \in E(G)$, then T_i and T_i have at least one vertex (vertex, edge) of T in common, 2) for each vertex (edge, edge) of T, there are at most k - 1 (at most k, at most k) subtrees containing it.