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발표자
프레젠테이션 노트
Thank you for inviting and introducing me. 
I will give a talk about constructive algorithm for path-width of matroids.



• Input : F-representable matroid

• Matroid (E, 𝐼𝐼) = a ground set E + the independent sets 𝐼𝐼
1. ∅ ∈ 𝐼𝐼
2. X ⊂ 𝑌𝑌, 𝑌𝑌 ∈ 𝐼𝐼 ⇒ 𝑋𝑋 ∈ 𝐼𝐼
3. 𝑋𝑋, 𝑌𝑌 ∈ 𝐼𝐼, 𝑋𝑋 < 𝑌𝑌 ⇒ ∃𝑦𝑦 ∈ 𝑌𝑌 𝑠𝑠. 𝑡𝑡. 𝑋𝑋⋃{𝑦𝑦} ∈ 𝐼𝐼

• A matroid (E, 𝐼𝐼) is F-representable if 
E = a set of vectors over F,
X ∈ 𝐼𝐼 if vectors in X are linearly independent.

발표자
프레젠테이션 노트
We found some algorithm. So before we 



• Input : F-representable matroid (or 𝑛𝑛 vectors), an integer 𝑘𝑘
• Goal : to find a permutation 𝑒𝑒1, 𝑒𝑒2, … , 𝑒𝑒𝑛𝑛 of an elments in 𝐸𝐸

such that for every 𝑖𝑖,  λ 𝑒𝑒1, 𝑒𝑒2, … , 𝑒𝑒𝑖𝑖 ≤ 𝑘𝑘

• Here, λ is a connectivity function of a matroid.
• λ(X) = rank(X) + rank(E-X) - rank(E)

= dim(<X>) + dim(<E-X>) - dim(<E>)
= dim(<X> ∩ <E-X>)

• a path-decomposition of width at most 𝑘𝑘,
or a linear layout of path-width at most 𝑘𝑘

𝑒𝑒1 𝑒𝑒4 𝑒𝑒5 𝑒𝑒2 𝑒𝑒3

λ 𝑒𝑒1, 𝑒𝑒4, 𝑒𝑒5 ≤ 𝑘𝑘

발표자
프레젠테이션 노트
We found some algorithm. So before we 



• History

• Thus, it is natural to ask a matroid path-width.

Bodlaender and Kloks (1996)

Input : a graph 𝐺𝐺, an integer 𝑘𝑘
Output : a tree-decomposition of 𝐺𝐺 of width at most 𝑘𝑘
Time : FPT = 𝑓𝑓(𝑘𝑘) � 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑛𝑛)

Bodlaender and Thilikos (1997)

Input : a graph 𝐺𝐺, an integer 𝑘𝑘
Output : a branch-decomposition of 𝐺𝐺 of width at most 𝑘𝑘
Time : FPT

발표자
프레젠테이션 노트
Thus, it is natural to ask a matroid path-width.



Decision FPT algorithm 
for an F-representable matroid path-width ≤ 𝒌𝒌

⇔

𝑀𝑀𝑘𝑘 = { M: pw(M) ≤ 𝑘𝑘 & F-representable} is minor-closed

S={ minimal F-representable matroids, ⋠m 𝑀𝑀𝑘𝑘}

M ∈ 𝑀𝑀𝑘𝑘

N ⋠m M, ∀ N ∈ 𝑆𝑆

Under matroid minor relation ≤𝑀𝑀,
every antichain of F-representable
matroids bounded bw is finite 

S has branchwidth ≤ 𝑘𝑘 + 1

In time f(k)∙poly(n)
test if N ⋠m M,
∀ N ∈ 𝑆𝑆

S is finite

Testing if M ≤𝑚𝑚 N in time g(k)∙𝒏𝒏𝟑𝟑

when bw(M) ≤ k (Hliěný 2006)



• Our results (SODA16)

• Note that this problem is NP-complete [Kashyap 2008].
• F is a finite field.

Constructive algorithm for path-width of matroids

Input : a matroid (F-representable), an integer 𝑘𝑘
Output : a linear layout of path-width ≤ 𝑘𝑘 if it exists
Time : FPT = 𝑓𝑓(𝑘𝑘) � 𝑛𝑛3

발표자
프레젠테이션 노트
We found some algorithm. So before we 



• Our results (SODA16)

Constructive algorithm for path-width of matroids

Input : a 𝑛𝑛-element matroid (F-representable) with its 
branch-decomposition of width θ, an integer 𝑘𝑘
Output : a linear layout of path-width ≤ 𝑘𝑘 if it exists
Time : 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 θ, 𝐹𝐹 , 𝑘𝑘 � 𝐹𝐹 12θ2 � 2151θ𝑘𝑘 � 𝑛𝑛

To have branch-decomposition, we can use
• iterative compression, or
• Hliněný-Oum (2008) algorithm

발표자
프레젠테이션 노트
여기서 장점.
Constructive.
Single exponential.
Using iterative compression, self-contained.



• Application to coding theory

Constructive algorithm for path-width of vectors

Input : 𝑛𝑛 vectors over F, an integer 𝑘𝑘
Output : a permutation 𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑛𝑛 of 𝑛𝑛 vectors satisfying 
that for all 𝑖𝑖, 

dim 𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑖𝑖 ∩ 𝑣𝑣𝑖𝑖+1, 𝑣𝑣𝑖𝑖+2, … , 𝑣𝑣𝑛𝑛 ≤ 𝑘𝑘.
Time : FPT = 𝑓𝑓(𝑘𝑘) � 𝑛𝑛3

𝑣𝑣1 𝑣𝑣2 𝑣𝑣3 𝑣𝑣4 𝑣𝑣5 𝑣𝑣6

1 0 0
0 1 0
0 0 1

0 0 1
1 0 0
0 1 0

𝑣𝑣1 𝑣𝑣6 𝑣𝑣2 𝑣𝑣4 𝑣𝑣5 𝑣𝑣3

1 1 0
0 0 1
0 0 0

0 0 0
1 0 0
0 1 1

3 1

발표자
프레젠테이션 노트
We found some algorithm. So before we 



Consider the linear code C that is generated by 
(100001), (010100), and (001010).

The generator matrix is 
1 0 0
0 1 0
0 0 1

0 0 1
1 0 0
0 1 0

.

Codewords
{(000000), (100001), (010100), (001010), 
(110101), (101011), (011110), (111111)}

trellis



(110101) (0.7 0.8 0.2 0.7 0.1 0.9)

Decode using



{(000000), (100001), (010100), (001010), (110101), (101011), (011110), (111111)}

Permute the columns of 
1 0 0
0 1 0
0 0 1

0 0 1
1 0 0
0 1 0

1 1 0
0 0 1
0 0 0

0 0 0
1 0 0
0 1 1

𝜋𝜋 = 1 (4)(5)(2,3,6)

Want to make a better (thinner) trellis



Proof ideas

Constructive algorithm for path-width of matroids

Input : a 𝑛𝑛-element matroid (F-representable) with its 
branch-decomposition of width θ, an integer 𝑘𝑘
Output : a linear layout of path-width ≤ 𝑘𝑘 if it exists
Time : 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 θ, 𝐹𝐹 , 𝑘𝑘 � 𝐹𝐹 12θ2 � 2151θ𝑘𝑘 � 𝑛𝑛

1. Dynamic programming 2. Typical sequences 3. Subspace analysis (linear algebra)



Proof ideas

𝑀𝑀1

1. Dynamic programming

𝑀𝑀2

𝑀𝑀1 + 𝑀𝑀2

𝑣𝑣1 𝑣𝑣4 𝑣𝑣5 𝑣𝑣2 𝑣𝑣3

1    1    2 1

𝑢𝑢2 𝑢𝑢4 𝑢𝑢1 𝑢𝑢5 𝑢𝑢3

1 2    1     1

1+0 1+1 1+1 2+1 2+2  2+1  2+1 1+1 0+1 

𝑣𝑣1 𝑢𝑢2 𝑣𝑣4 𝑣𝑣5 𝑢𝑢4 𝑢𝑢1 𝑢𝑢5 𝑣𝑣2 𝑣𝑣3 𝑢𝑢3

given branch-decomposition

Too huge to store



Proof ideas

2. Typical sequences

3 6 9 0 5 4 8 5 6 2 3 9 0 5 4 8 5 6 2 3 9 0 8 5 6 2 3 9 0 8 2

Lemma (Bodlaender and Kloks, 1996).
There are at most 8

3
22𝑘𝑘 distinct typical sequences consisting of {0,1, … , 𝑘𝑘}.



Proof ideas

1. Dynamic programming 2. Typical sequences 3. Subspace analysis (linear algebra)

Let 𝑋𝑋, 𝑌𝑌, 𝑍𝑍 be subspaces of 𝐹𝐹𝑟𝑟 .

1. If 𝑋𝑋 ⊂ 𝑌𝑌, then
dim 𝑋𝑋 − dim 𝑋𝑋 ∩ 𝑍𝑍 ≤ dim 𝑌𝑌 − dim 𝑌𝑌 ∩ 𝑍𝑍.

2.  If 𝑋𝑋 + 𝑍𝑍 ∩ 𝑌𝑌 + 𝑍𝑍 = 𝑍𝑍, then
𝑋𝑋 ∩ 𝑍𝑍 + 𝑌𝑌 ∩ 𝑍𝑍 = 𝑋𝑋 + 𝑌𝑌 ∩ 𝑍𝑍.

Thus, our algorithm works correctly.



• Difficulties

1. A branch-decomposition of a matroid is given 
instead of a tree-decomposition of a graph.

2. For correctness, 
we need some properties (equalities) on subspaces.

발표자
프레젠테이션 노트
I and o-joung visited hans bodlaender two years ago.
At that time, we consider the linear rank-width. But we failed because the rank-decomposition is based.
Now we have the linear rank-width as a corollary.



• Difficulties

1. A branch-decomposition of a matroid is given 
instead of a tree-decomposition of a graph.

A tree-decomposition has a bag (vertices).
Our boundary is a subspace <X> ∩ <E-X>.

Recall that λ(X) = dim(<X> ∩ <E-X>)

발표자
프레젠테이션 노트
I and o-joung visited hans bodlaender two years ago.
At that time, we consider the linear rank-width. But we failed because the rank-decomposition is based.
Now we have the linear rank-width as a corollary.



• Actually, we proved a more general statement.
`vectors’ → `subspaces’  (vector = 1-dimensional subspace)

Constructive algorithm for path-width of vectors

Input : 𝑛𝑛 vectors over F, an integer 𝑘𝑘
Output : a permutation 𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑛𝑛 of 𝑛𝑛 vectors satisfying 
that for all 𝑖𝑖, 

dim 𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑖𝑖 ∩ 𝑣𝑣𝑖𝑖+1, 𝑣𝑣𝑖𝑖+2, … , 𝑣𝑣𝑛𝑛 ≤ 𝑘𝑘.
Time : FPT = 𝑓𝑓(𝑘𝑘) � 𝑛𝑛3

발표자
프레젠테이션 노트
We found some algorithm. So before we 



• Actually, we proved a more general statement.
`vectors’ → `subspaces’  (vector = 1-dimensional subspace)

Constructive algorithm for path-width of subspaces

Input : 𝑛𝑛 subspaces over F, an integer 𝑘𝑘
Output : a permutation 𝑉𝑉1, 𝑉𝑉2, … , 𝑉𝑉𝑛𝑛 of 𝑛𝑛 subspaces satisfying 
that for all 𝑖𝑖, 

dim 𝑉𝑉1, 𝑉𝑉2, … , 𝑉𝑉𝑖𝑖 ∩ 𝑉𝑉𝑖𝑖+1, 𝑉𝑉𝑖𝑖+2, … , 𝑉𝑉𝑛𝑛 ≤ 𝑘𝑘.
Time : FPT = 𝑓𝑓(𝑘𝑘) � 𝑛𝑛3

발표자
프레젠테이션 노트
We found some algorithm. So before we 



• Let G be a graph and 𝑒𝑒1, 𝑒𝑒2, … , 𝑒𝑒𝑛𝑛 be the standard basis.
• Let

• Let 𝑉𝑉𝑖𝑖 =< 𝑣𝑣𝑖𝑖 , 𝑒𝑒𝑖𝑖 >.

Constructive algorithm for path-width of subspaces

Input : 𝑛𝑛 subspaces over F, an integer 𝑘𝑘
Output : a permutation 𝑉𝑉1, 𝑉𝑉2, … , 𝑉𝑉𝑛𝑛 of 𝑛𝑛 subspaces satisfying 
that for all 𝑖𝑖, 

dim 𝑉𝑉1, 𝑉𝑉2, … , 𝑉𝑉𝑖𝑖 ∩ 𝑉𝑉𝑖𝑖+1, 𝑉𝑉𝑖𝑖+2, … , 𝑉𝑉𝑛𝑛 ≤ 𝑘𝑘.
Time : FPT = 𝑓𝑓(𝑘𝑘) � 𝑛𝑛3

발표자
프레젠테이션 노트
We found some algorithm. So before we 



• Let G be a graph and 𝑒𝑒1, 𝑒𝑒2, … , 𝑒𝑒𝑛𝑛 be the standard basis.
• Let

• Let 𝑉𝑉𝑖𝑖 =< 𝑣𝑣𝑖𝑖 , 𝑒𝑒𝑖𝑖 >.

Constructive algorithm for linear rank-width of graphs

Input : a graph, an integer 𝑘𝑘
Output : a linear layout of linear rank-width at most 𝑘𝑘
Time : FPT = 𝑓𝑓(𝑘𝑘) � 𝑛𝑛3

발표자
프레젠테이션 노트
We found some algorithm. So before we 



Our results (summary)

Constructive algorithm for 
path-width of n vectors

Input : n vectors
Output : a linear layout of 
path-width ≤ 𝑘𝑘 if it exists
Time : 𝑓𝑓(𝑘𝑘) � 𝑛𝑛3



Our results

Constructive algorithm for 
path-width of matroids

Input : matroid(F-representable)
Output : a linear layout of 
path-width ≤ 𝑘𝑘 if it exists
Time : 𝑓𝑓(𝑘𝑘) � 𝑛𝑛3

Constructive algorithm for 
path-width of n subspaces

Input : n subspaces
Output : a linear layout of 
path-width ≤ 𝑘𝑘 if it exists
Time : 𝑓𝑓(𝑘𝑘) � 𝑛𝑛3

Matroid represented by 
𝑣𝑣1, 𝑣𝑣2, ⋯ , 𝑣𝑣𝑛𝑛

𝑉𝑉1, 𝑉𝑉2, ⋯ , 𝑉𝑉𝑛𝑛
where 𝑉𝑉𝑖𝑖 =span(𝑣𝑣1, 𝑣𝑣2, ⋯ , 𝑣𝑣𝑗𝑗)



Our results

Constructive algorithm for 
path-width of matroids

Input : matroid(F-representable)
Output : a linear layout of 
path-width ≤ 𝑘𝑘 if it exists
Time : 𝑓𝑓(𝑘𝑘) � 𝑛𝑛3

Constructive algorithm for 
path-width of n subspaces

Input : n subspaces
Output : a linear layout of 
path-width ≤ 𝑘𝑘 if it exists
Time : 𝑓𝑓(𝑘𝑘) � 𝑛𝑛3

Constructive algorithm for 
trellis-width of linear codes

Input : linear code
Output : a linear layout of 
trellis-width ≤ 𝑘𝑘 if it exists
Time : 𝑓𝑓(𝑘𝑘) � 𝑛𝑛3

Constructive algorithm for 
linear rank-width of graphs

Input : graph
Output : a linear layout of 
linear rank-width ≤ 𝑘𝑘 if it exists
Time : 𝑓𝑓(𝑘𝑘) � 𝑛𝑛3

Rank-width is a width-parameter 
introduced by Oum and Seymour,
which is equivalent to clique-width.

Linear code whose 
generator matrix is

𝑣𝑣1 𝑣𝑣2 ⋯ 𝑣𝑣𝑛𝑛

발표자
프레젠테이션 노트
I and o-joung visited hans bodlaender two years ago.
At that time, we consider the linear rank-width. But we failed because the rank-decomposition is based.
Now we have the linear rank-width as a corollary.

We could also obtain an exact algorithms.



Our results

Constructive algorithm for 
path-width of matroids

Input : matroid(F-representable)
Output : a linear layout of 
path-width ≤ 𝑘𝑘 if it exists
Time : 𝑓𝑓(𝑘𝑘) � 𝑛𝑛3

Constructive algorithm for path-width of n subspaces

Input : n subspaces
Output : a linear layout of path-width ≤ 𝑘𝑘 if it exists
Time : 𝑓𝑓(𝑘𝑘) � 𝑛𝑛3

Constructive algorithm for 
trellis-width of linear codes

Input : linear code
Output : a linear layout of 
trellis-width ≤ 𝑘𝑘 if it exists
Time : 𝑓𝑓(𝑘𝑘) � 𝑛𝑛3

Constructive algorithm for 
linear rank-width of graphs

Input : graph
Output : a linear layout of linear 
rank-width ≤ 𝑘𝑘 if it exists
Time : 𝑓𝑓(𝑘𝑘) � 𝑛𝑛3

Exact algorithm for 
path-width of matroids

Input : matroid (F-representable, 
bounded branch-width)
Output : path-width of given 
matroid
Time : poly(n)

Exact algorithm for 
linear rank-width of graphs

Input : graph of bounded rw
Output : linear rank-width of 
given graph
Time : poly(n)

Approximation algorithm for 
linear clique-width of graphs

Input : graph
Output : linear (2𝑘𝑘 + 1)-
expression of given graph
Time : 𝑓𝑓(𝑘𝑘) � 𝑛𝑛3

발표자
프레젠테이션 노트
Everything is new!!



Constructive algorithm for 
path-width of matroids

Input : matroid(F-representable)
Output : a linear layout of 
path-width ≤ 𝑘𝑘 if it exists
Time : 𝑓𝑓(𝑘𝑘) � 𝑛𝑛3

Constructive algorithm for path-width of n subspaces

Input : n subspaces
Output : a linear layout of path-width ≤ 𝑘𝑘 if it exists
Time : 𝑓𝑓(𝑘𝑘) � 𝑛𝑛3

Further questions

1. FPT algorithms for path-width of general matroids
2. Can 𝑂𝑂(𝑛𝑛3) factor in the running time improved? 

for example, 𝑂𝑂 𝑛𝑛𝑤𝑤 ? (w=matrix multiplication exponent) 
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