

Constructive algorithm for path-width of matroids

Jisu Jeong (Dept. of Math, KAIST)

joint work with Eun Jung Kim (CNRS / Univ. Paris-Dauphine), Sang-il Oum (KAIST)

> SIAM-DM16, Atlanta, USA June 9, 2016

- Input : F-representable matroid
- Matroid (E, I) = a ground set E + the independent sets I
 1. Ø ∈ I
 2. X ⊂ Y, Y ∈ I ⇒ X ∈ I
 - 3. $X, Y \in I, |X| < |Y| \Rightarrow \exists y \in Y \text{ s.t. } X \cup \{y\} \in I$
- A matroid (E, I) is F-representable if
 - E = a set of vectors over F,
 - $X \in I$ if vectors in X are linearly independent.

- Input : F-representable matroid (or n vectors), an integer k
- **Goal** : to find a permutation $e_1, e_2, ..., e_n$ of an elments in Esuch that for every $i, \lambda(\{e_1, e_2, ..., e_i\}) \leq k$
- Here, λ is a connectivity function of a matroid.
- λ(X) = rank(X) + rank(E-X) rank(E)
 = dim(<X>) + dim(<E-X>) dim(<E>)
 = dim(<X> ∩ <E-X>)
- $e_{1} e_{4} e_{5} e_{2} e_{3}$ $\land (\{e_{1}, e_{4}, e_{5}\}) \leq k$

• a path-decomposition of width at most k, or a linear layout of path-width at most k

• History

Bodlaender and Kloks (1996)

Input : a graph *G*, an integer *k* **Output :** a tree-decomposition of *G* of width at most *k* **Time :** $FPT = f(k) \cdot poly(n)$

Bodlaender and Thilikos (1997)

Input : a graph *G*, an integer *k* Output : a branch-decomposition of *G* of width at most *k* Time : FPT

• Thus, it is natural to ask a matroid path-width.

Decision FPT algorithm for an F-representable matroid path-width $\leq k$

• Our results (SODA16)

Constructive algorithm for path-width of matroids

Input : a matroid (F-representable), an integer k **Output :** a linear layout of path-width $\leq k$ if it exists **Time :** FPT = $f(k) \cdot n^3$

- Note that this problem is NP-complete [Kashyap 2008].
- F is a *finite* field.

• Our results (SODA16)

Constructive algorithm for path-width of matroids

Input : a *n*-element matroid (F-representable) with its branch-decomposition of width θ , an integer *k* **Output :** a linear layout of path-width $\leq k$ if it exists **Time :** $poly(\theta, |F|, k) \cdot |F|^{12\theta^2} \cdot 2^{151\theta k} \cdot n$

To have branch-decomposition, we can use

- iterative compression, or
- Hliněný-Oum (2008) algorithm

Constructive algorithm for path-width of vectors

Input : *n* vectors over F, an integer *k* **Output :** a permutation $v_1, v_2, ..., v_n$ of *n* vectors satisfying that for all *i*,

$$\dim \langle v_1, v_2, \dots, v_i \rangle \cap \langle v_{i+1}, v_{i+2}, \dots, v_n \rangle \le k.$$

Time : FPT = $f(k) \cdot n^3$

 $\begin{pmatrix} v_1 & v_2 & v_3 \\ 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \end{pmatrix}$ $\begin{pmatrix} v_1 & v_6 & v_2 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \end{pmatrix}$

• Application to coding theory

Consider the linear code C that is generated by (100001), (010100), and (001010).

The generator matrix is $\begin{pmatrix} 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \end{pmatrix}$.

Codewords {(000000), **(100001)**, (010100), (001010), (110101), (101011), (011110), (111111)}

trellis

{(00000), (100001), (010100), (001010), (110101), (101011), (011110), (111111)}

1. Dynamic programming 2. Typical sequences 3. Subspace analysis (linear algebra)

Constructive algorithm for path-width of matroids

Input : a *n*-element matroid (F-representable) with its branch-decomposition of width θ , an integer *k* **Output :** a linear layout of path-width $\leq k$ if it exists **Time :** $poly(\theta, |F|, k) \cdot |F|^{12\theta^2} \cdot 2^{151\theta k} \cdot n$

1. Dynamic programming

given branch-decomposition

2. Typical sequences

3690548562 **39**0548562 **39**08562 **39**082

Lemma (Bodlaender and Kloks, 1996). There are at most $\frac{8}{3}2^{2k}$ distinct typical sequences consisting of $\{0, 1, ..., k\}$.

3. Subspace analysis (linear algebra)

Let X, Y, Z be subspaces of F^r .

1. If $X \subset Y$, then $\dim X - \dim X \cap Z \le \dim Y - \dim Y \cap Z$.

2. If
$$(X + Z) \cap (Y + Z) = Z$$
, then
 $(X \cap Z) + (Y \cap Z) = (X + Y) \cap Z$.

Thus, our algorithm works correctly.

- Difficulties
 - 1. A branch-decomposition of a matroid is given instead of a tree-decomposition of a graph.

- 2. For correctness,
 - we need some properties (equalities) on subspaces.

1. A branch-decomposition of a matroid is given instead of a tree-decomposition of a graph.

A tree-decomposition has a bag (vertices). Our boundary is a subspace $\langle X \rangle \cap \langle E-X \rangle$.

Recall that $\lambda(X) = \dim(\langle X \rangle \cap \langle E - X \rangle)$

Actually, we proved a more general statement.
 `vectors' → `subspaces' (vector = 1-dimensional subspace)

Constructive algorithm for path-width of vectors

Input : *n* vectors over F, an integer *k* **Output :** a permutation $v_1, v_2, ..., v_n$ of *n* vectors satisfying that for all *i*,

 $\dim \langle v_1, v_2, \dots, v_i \rangle \cap \langle v_{i+1}, v_{i+2}, \dots, v_n \rangle \le k.$ **Time :** FPT = $f(k) \cdot n^3$

Actually, we proved a more general statement.
 `vectors' → `subspaces' (vector = 1-dimensional subspace)

Constructive algorithm for path-width of subspaces

Input : *n* subspaces over F, an integer *k* **Output :** a permutation $V_1, V_2, ..., V_n$ of *n* subspaces satisfying that for all *i*, $\dim(V_1, V_2, ..., V_i) \cap \langle V_{i+1}, V_{i+2}, ..., V_n \rangle \le k$.

Time : FPT = $f(k) \cdot n^3$

Constructive algorithm for path-width of subspaces

Input : *n* **subspaces over F**, an integer *k* **Output :** a **permutation** $V_1, V_2, ..., V_n$ of *n* **subspaces** satisfying that for all *i*,

$$\dim \langle V_1, V_2, \dots, V_i \rangle \cap \langle V_{i+1}, V_{i+2}, \dots, V_n \rangle \le k.$$

Time : FPT = $f(k) \cdot n^3$

- Let G be a graph and e_1, e_2, \dots, e_n be the standard basis.
- Let $v_i = \sum_{j \text{ is adjacent to } i \text{ in } G} e_j.$
- Let $V_i = \langle v_i, e_i \rangle$.

Constructive algorithm for linear rank-width of graphs

Input : a graph, an integer k **Output :** a linear layout of linear rank-width at most k **Time :** $FPT = f(k) \cdot n^3$

- Let G be a graph and e_1, e_2, \dots, e_n be the standard basis.
- Let $v_i = \sum_{j \text{ is adjacent to } i \text{ in } G} e_j.$
- Let $V_i = \langle v_i, e_i \rangle$.

Our results (summary)

Constructive algorithm for path-width of n vectors

Input : n vectors **Output** : a linear layout of path-width $\leq k$ if it exists **Time** : $f(k) \cdot n^3$

Our results

Constructive algorithm for path-width of n subspaces

Input : n subspaces **Output** : a linear layout of path-width $\leq k$ if it exists **Time** : $f(k) \cdot n^3$

 V_1, V_2, \cdots, V_n where $V_i = \text{span}(v_1, v_2, \cdots, v_j)$

Constructive algorithm for path-width of matroids

Input : matroid(F-representable) **Output :** a linear layout of path-width $\leq k$ if it exists **Time :** $f(k) \cdot n^3$

Matroid represented by v_1, v_2, \cdots, v_n

Our results

Constructive algorithm for path-width of n subspaces

Input : n subspaces **Output** : a linear layout of path-width $\leq k$ if it exists **Time** : $f(k) \cdot n^3$

Constructive algorithm for trellis-width of linear codes

Input : linear code Output : a linear layout of trellis-width $\leq k$ if it exists **Time :** $f(k) \cdot n^3$ Constructive algorithm for path-width of matroids

Input : matroid(F-representable) **Output :** a linear layout of path-width $\leq k$ if it exists **Time :** $f(k) \cdot n^3$ Constructive algorithm for *linear rank-width* of graphs

Input : graph Output : a linear layout of linear rank-width $\leq k$ if it exists **Time :** $f(k) \cdot n^3$

Linear code whose generator matrix is $(v_1 \ v_2 \ \cdots \ v_n)$

Rank-width is a width-parameter introduced by Oum and Seymour, which is equivalent to **clique-width**.

Our results

Constructive algorithm for path-width of n subspaces

Input : n subspaces **Output :** a linear layout of path-width $\leq k$ if it exists **Time :** $f(k) \cdot n^3$

Constructive algorithm for trellis-width of linear codes	Constructive algorithm for path-width of matroids	Constructive algorithm for linear rank-width of graphs
Input : linear code Output : a linear layout of trellis-width $\leq k$ if it exists Time : $f(k) \cdot n^3$	Input : matroid(F-representable) Output : a linear layout of path-width $\leq k$ if it exists Time : $f(k) \cdot n^3$	Input : graph Output : a linear layout of linear rank-width $\leq k$ if it exists Time : $f(k) \cdot n^3$
Exact algorithm for path-width of matroids	Exact algorithm for linear rank-width of graph	Approximation algorithm for Inear clique-width of graphs
Input : matroid (F-representable, bounded branch-width) Output : path-width of given matroid	Input : graph of bounded r Output : linear rank-width of given graph Time : poly(n)	w of Output : graph Output : linear $(2^{k} + 1)$ - expression of given graph Time : $f(k) \cdot n^{3}$

 \bigstar

Constructive algorithm for path-width of n subspaces

```
Input : n subspaces
Output : a linear layout of path-width \leq k if it exists
Time : f(k) \cdot n^3
```

Constructive algorithm for path-width of matroids

Input : matroid(F-representable) **Output** : a linear layout of path-width $\leq k$ if it exists **Time** : $f(k) \cdot n^3$

Further questions

- 1. FPT algorithms for path-width of **general** matroids
- 2. Can $O(n^3)$ factor in the running time improved? for example, $O(n^w)$? (w=matrix multiplication exponent)