Constructive algorithm for path-width of matroids

Jisu Jeong (Dept. of Math, KAIST)

joint work with
Eun Jung Kim (CNRS / Univ. Paris-Dauphine), Sang-il Oum (KAIST)
SIAM-DM16, Atlanta, USA
June 9, 2016

- Input : F-representable matroid
- Matroid $(E, I)=$ a ground set $E+$ the independent sets I 1. $\emptyset \in I$

2. $\mathrm{X} \subset Y, Y \in I \Rightarrow X \in I$
3. $X, Y \in I,|X|<|Y| \Rightarrow \exists y \in Y$ s.t. $X \cup\{y\} \in I$

- A matroid (E, I) is F-representable if $E=$ a set of vectors over F, $X \in I$ if vectors in X are linearly independent.
- Input : F-representable matroid (or n vectors), an integer k
- Goal : to find a permutation $e_{1}, e_{2}, \ldots, e_{n}$ of an elments in E such that for every $i, \lambda\left(\left\{e_{1}, e_{2}, \ldots, e_{i}\right\}\right) \leq k$
- Here, λ is a connectivity function of a matroid.
- $\lambda(X)=\operatorname{rank}(X)+\operatorname{rank}(E-X)-\operatorname{rank}(E)$

$$
=\operatorname{dim}(<X>)+\operatorname{dim}(<E-X>)-\operatorname{dim}(<E\rangle)
$$

$$
=\operatorname{dim}(<X>\cap<E-X>)
$$

- a path-decomposition of width at most k, or a linear layout of path-width at most k
- History

Bodlaender and Kloks (1996)

Input : a graph G, an integer k
Output : a tree-decomposition of G of width at most k Time: FPT $=f(k) \cdot \operatorname{poly}(n)$

Bodlaender and Thilikos (1997)

Input : a graph G, an integer k
Output : a branch-decomposition of G of width at most k Time : FPT

- Thus, it is natural to ask a matroid path-width.

Decision FPT algorithm
 for an F-representable matroid path-width $\leq \boldsymbol{k}$

- Our results (SODA16)

Constructive algorithm for path-width of matroids

Input : a matroid (F-representable), an integer k Output : a linear layout of path-width $\leq k$ if it exists Time : FPT $=f(k) \cdot n^{3}$

- Note that this problem is NP-complete [Kashyap 2008].
- F is a finite field.
- Our results (SODA16)

Constructive algorithm for path-width of matroids

Input : a n-element matroid (F-representable) with its branch-decomposition of width θ, an integer k Output : a linear layout of path-width $\leq k$ if it exists Time : $\operatorname{poly}(\theta,|F|, k) \cdot|F|^{12 \theta^{2}} \cdot 2^{151 \theta k} \cdot n$

To have branch-decomposition, we can use

- iterative compression, or
- Hliněný-Oum (2008) algorithm

Constructive algorithm for path-width of vectors

Input: n vectors over F, an integer k
Output : a permutation $v_{1}, v_{2}, \ldots, v_{n}$ of n vectors satisfying that for all i,

$$
\operatorname{dim}\left\langle v_{1}, v_{2}, \ldots, v_{i}\right\rangle \cap\left\langle v_{i+1}, v_{i+2}, \ldots, v_{n}\right\rangle \leq k .
$$

Time : FPT $=f(k) \cdot n^{3}$

$$
\left.\left.\begin{array}{ccc|ccc}
v_{1} & v_{2} & v_{3} & v_{4} & v_{5} & v_{6} \\
\left(\begin{array}{ccc}
1 & 0 & 0
\end{array}\right. & 0 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0
\end{array}\right) \quad \begin{array}{ccc|ccc}
v_{1} & v_{6} & v_{2} & v_{4} & v_{5} & v_{3} \\
& 3 & \left(\begin{array}{ccc}
1 & 1 & 0
\end{array} 0\right. & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1
\end{array}\right)
$$

- Application to coding theory

Consider the linear code C that is generated by (100001), (010100), and (001010).

The generator matrix is $\left(\begin{array}{cccccc}1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0\end{array}\right)$.
Codewords \{(000000), (100001), (010100), (001010), (110101), (101011), (011110), (111111)\}

trellis

Want to make a better (thinner) trellis
Permute the columns of

$$
\begin{aligned}
& \left(\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0
\end{array}\right) \\
& \sqrt{\square} \pi=(1)(4)(5)(2,3,6) \\
& \left(\begin{array}{llllll}
1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1
\end{array}\right)
\end{aligned}
$$

Proof ideas

1. Dynamic programming 2. Typical sequences 3. Subspace analysis (linear algebra)

Constructive algorithm for path-width of matroids

Input : a n-element matroid (F-representable) with its branch-decomposition of width θ, an integer k
Output : a linear layout of path-width $\leq k$ if it exists
Time : $\operatorname{poly}(\theta,|F|, k) \cdot|F|^{12 \theta^{2}} \cdot 2^{151 \theta k} \cdot n$

Proof ideas

1. Dynamic programming

given branch-decomposition

Proof ideas

2. Typical sequences

$$
3690548562 \quad 390548562 \quad 3908562 \quad 39082
$$

Lemma (Bodlaender and Kloks, 1996).
There are at most $\frac{8}{3} 2^{2 k}$ distinct typical sequences consisting of $\{0,1, \ldots, k\}$.

Proof ideas

3. Subspace analysis (linear algebra)

Let X, Y, Z be subspaces of F^{r}.

1. If $X \subset Y$, then $\operatorname{dim} X-\operatorname{dim} X \cap Z \leq \operatorname{dim} Y-\operatorname{dim} Y \cap Z$.
2. If $(X+Z) \cap(Y+Z)=Z$, then

$$
(X \cap Z)+(Y \cap Z)=(X+Y) \cap Z
$$

Thus, our algorithm works correctly.

- Difficulties

1. A branch-decomposition of a matroid is given instead of a tree-decomposition of a graph.
2. For correctness,
we need some properties (equalities) on subspaces.

- Difficulties

1. A branch-decomposition of a matroid is given instead of a tree-decomposition of a graph.

A tree-decomposition has a bag (vertices). Our boundary is a subspace $\langle\mathrm{X}\rangle \cap<\mathrm{E}-\mathrm{X}\rangle$.

Recall that $\lambda(X)=\operatorname{dim}(<X>\cap<E-X>)$

- Actually, we proved a more general statement. 'vectors' \rightarrow `subspaces' (vector $=1$-dimensional subspace)

Constructive algorithm for path-width of vectors

Input: n vectors over F, an integer k
Output : a permutation $v_{1}, v_{2}, \ldots, v_{n}$ of n vectors satisfying that for all i,

$$
\operatorname{dim}\left\langle v_{1}, v_{2}, \ldots, v_{i}\right\rangle \cap\left\langle v_{i+1}, v_{i+2}, \ldots, v_{n}\right\rangle \leq k
$$

Time : FPT $=f(k) \cdot n^{3}$

- Actually, we proved a more general statement.
'vectors' \rightarrow `subspaces' (vector $=1$-dimensional subspace)

Constructive algorithm for path-width of subspaces

Input : n subspaces over F, an integer k
Output : a permutation $V_{1}, V_{2}, \ldots, V_{n}$ of n subspaces satisfying that for all i,

$$
\operatorname{dim}\left\langle V_{1}, V_{2}, \ldots, V_{i}\right\rangle \cap\left\langle V_{i+1}, V_{i+2}, \ldots, V_{n}\right\rangle \leq k .
$$

Time : FPT $=f(k) \cdot n^{3}$

Constructive algorithm for path-width of subspaces

Input : n subspaces over F, an integer k
Output : a permutation $V_{1}, V_{2}, \ldots, V_{n}$ of n subspaces satisfying that for all i,

$$
\operatorname{dim}\left\langle V_{1}, V_{2}, \ldots, V_{i}\right\rangle \cap\left\langle V_{i+1}, V_{i+2}, \ldots, V_{n}\right\rangle \leq k .
$$

Time : FPT $=f(k) \cdot n^{3}$

- Let G be a graph and $e_{1}, e_{2}, \ldots, e_{n}$ be the standard basis.
- Let

$$
v_{i}=\sum_{j \text { is adjacent to } i \text { in } G} e_{j} .
$$

- Let $V_{i}=\left\langle v_{i}, e_{i}>\right.$.

Constructive algorithm for linear rank-width of graphs
Input : a graph, an integer k
Output : a linear layout of linear rank-width at most k Time : FPT $=f(k) \cdot n^{3}$

- Let G be a graph and $e_{1}, e_{2}, \ldots, e_{n}$ be the standard basis.
- Let

$$
v_{i}=\sum_{j \text { is adjacent to } i \text { in } G} e_{j} .
$$

- Let $V_{i}=\left\langle v_{i}, e_{i}>\right.$.

Our results (summary)

Constructive algorithm for path-width of n vectors

Input : n vectors
Output : a linear layout of path-width $\leq k$ if it exists
Time : $f(k) \cdot n^{3}$

Our results

Constructive algorithm for path-width of n subspaces

Input : n subspaces
Output : a linear layout of path-width $\leq k$ if it exists
Time : $f(k) \cdot n^{3}$

Constructive algorithm for path-width of matroids

Input : matroid(F-representable)
Output : a linear layout of path-width $\leq k$ if it exists
Time : $f(k) \cdot n^{3}$

$$
\begin{gathered}
V_{1}, V_{2}, \cdots, V_{n} \\
\text { where } V_{i}=\operatorname{span}\left(v_{1}, v_{2}, \cdots, v_{j}\right)
\end{gathered}
$$

Matroid represented by

$$
v_{1}, v_{2}, \cdots, v_{n}
$$

Our results

Constructive algorithm for path-width of n subspaces

> Input : n subspaces
> Output : a linear layout of path-width $\leq k$ if it exists
> Time : $f(k) \cdot n^{3}$

Constructive algorithm for path-width of matroids

Input : matroid(F-representable)
Output : a linear layout of path-width $\leq k$ if it exists Time : $f(k) \cdot n^{3}$

Constructive algorithm for linear rank-width of graphs
Input : graph
Output : a linear layout of linear rank-width $\leq k$ if it exists Time : $f(k) \cdot n^{3}$

Linear code whose
generator matrix is

$$
\left(\begin{array}{llll}
v_{1} & v_{2} & \cdots & v_{n}
\end{array}\right)
$$

Rank-width is a width-parameter introduced by Oum and Seymour, which is equivalent to clique-width.

Constructive algorithm for trellis-width of linear codes

Input : linear code Output : a linear layout of trellis-width $\leq k$ if it exists Time : $f(k) \cdot n^{3}$

Exact algorithm for

 path-width of matroidsInput : matroid (F-representable, bounded branch-width)
Output : path-width of given matroid
Time : poly(n)

Constructive algorithm for path-width of matroids
Input : matroid(F-representable)
Output : a linear layout of path-width $\leq k$ if it exists Time : $f(k) \cdot n^{3}$

Exact algorithm for

 linear rank-width of graphsInput : graph of bounded rw Output : linear rank-width of given graph
Time : $\operatorname{poly}(\mathrm{n})$

Constructive algorithm for linear rank-width of graphs
Input : graph
Output : a linear layout of linear rank-width $\leq k$ if it exists
Time : $f(k) \cdot n^{3}$

Approximation algorithm for linear clique-width of graphs
Input : graph
Output : linear $\left(2^{k}+1\right)$ -
expression of given graph
Time : $f(k) \cdot n^{3}$

Output : a linear layout of path-width $\leq k$ if it exists Time : $f(k) \cdot n^{3}$

```
Constructive algorithm for
path-width of matroids
Input : matroid(F-representable)
Output : a linear layout of
path-width }\leqk\mathrm{ if it exists
Time : }f(k)\cdot\mp@subsup{n}{}{3
```


Further questions

1. FPT algorithms for path-width of general matroids
2. Can $O\left(n^{3}\right)$ factor in the running time improved? for example, $O\left(n^{w}\right)$? ($\mathrm{w}=$ matrix multiplication exponent)
