Invitation to fixed-parameter algorithms

Jisu Jeong (Dept. of Math, KAIST)

joint work with
Sigve Hortemo Sæther and Jan Arne Telle (Univ. of Bergen, Norway), Eun Jung Kim (CNRS / Univ. Paris-Dauphine) and Sang-il Oum (KAIST)

FWAC16, Yonsei University
Nov. 11, 2016

Fixed-Parameter (Tractable) Algorithm

- P = solve in time poly(n)
- NP = verify in time poly (n)
- One of the Millennium Prize Problems $P \subset N P$ or $P=N P$
- FPT = solve in time $f(k) \cdot \operatorname{poly}(n)$
- k is a parameter

Examples

Dominating Set Problem

Input : a graph G
Question : what is the minimum size of a dominating set in G ?

- Dominating set = a set of vertices that dominates all vertices
- Dominating set problem is NP-hard

Examples

Dominating Set Problem

Input : a graph G
Question : what is the minimum size of a dominating set in G ?
Fixed-Parameter Algorithm for k-Dominating Set Problem
Input : a planar graph G, an integer k
Parameter : an integer k
Outputs : YES if a dominating set of size k exists
NO otherwise
Time : $2^{O(\sqrt{k})} n$

Examples

Planar Vertex Deletion

Input : a graph G, an integer k
Parameter : an integer k
Outputs : YES if a vertex subset X of size k such that $G-X$ is planar

Eulerian Deletion

Input : a graph G, an integer k
Parameter : an integer k
Outputs : YES if an edge subset Y of size k such that $G-Y$ is Eulerian

Examples

Minimum Dominating Set Problem

Input : a graph G having tree-width k
Parameter : an integer k
Outputs : the minimum size of a dominating set in G

Theorem (van Rooij, Bodlaender, Rossmanith 2009)
Minimum Dominating Set Problem can be solved in time $O\left(3^{k}\right) \cdot \operatorname{poly}(n)$ if a graph has tree-width k.

Tree-width

- tree-width (Halin 1976, Robertson and Seymour 1984) A measure of how "tree-like" the graph is.

tree

tree-like

Tree-width

- tree-width (Halin 1976, Robertson and Seymour 1984) A measure of how "tree-like" the graph is.

tree

tree-like

Figures from http://fptschool.mimuw.edu.pl/slides/lec6.pdf

Tree-width

- tree-width (Halin 1976, Robertson and Seymour 1984) A measure of how "tree-like" the graph is.

bad

bad

good

good

Figures from http://fptschool.mimuw.edu.pl/slides/lec6.pdf

Examples

- tree-width $\leq 1 \Leftrightarrow$ a forest \Leftrightarrow no cycle
- tree-width $\leq 2 \Leftrightarrow$ a series-parallel graph \Leftrightarrow no K_{4} minor
- The tree-width of a $k \times k$ grid is k.
- The tree-width of K_{n} is $n-1$.

4×4 grid

K_{5}

Lower bounds for tree-width

Using tree-width

Theorem (van Rooij, Bodlaender, Rossmanith 2009)

Minimum Dominating Set Problem can be solved in time $O^{*}\left(3^{t}\right)$ when a graph has tree-width t.

Theorem (Lokshtanov, Marx, Saurabh 2011)

Minimum Dominating Set Problem cannot be solved in time $O^{*}\left((3-\varepsilon)^{t}\right)$ where t is the tree-width of the given graph.

Maximum Matching width

Theorem (Vatshelle 2012)

For every graph G,

$$
\operatorname{mmw}(G) \leq t w(G)+1 \leq 3 m m w(G)
$$

A graph G has bounded tree-width if and only if G has bounded maximum matching width.

Why Maximum Matching width?

Using maximum matching width

Theorem (J., Sæther, Telle IPEC2015)

Minimum Dominating Set Problem can be solved in time $O^{*}\left(8^{m}\right)$ when a graph has maximum matching width m.

Why Maximum Matching width?

Using tree-width: $O^{*}\left(3^{t}\right)$
Using mm-width: $O^{*}\left(8^{m}\right)$

Our algorithm is faster when $8^{m}<3^{t}$, that is,

$$
1.893 \mathrm{mmw}(G)<t w(G)
$$

Note that for every graph G,

$$
m m w(G) \leq t w(G)+1 \leq 3 \mathrm{mmw}(G)
$$

Consider the linear code C that is generated by (100001), (010100), and (001010).

The generator matrix is $\left(\begin{array}{cccccc}1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0\end{array}\right)$.
Codewords \{(000000), (100001), (010100), (001010), (110101), (101011), (011110), (111111)\}

trellis

Want to make a better (thinner) trellis
Permute the columns of

$$
\begin{aligned}
& \left(\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0
\end{array}\right) \\
& \square \\
& \square \\
& \pi=(1)(4)(5)(2,3,6) \\
& \left(\begin{array}{llllll}
1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1
\end{array}\right)
\end{aligned}
$$

Our Results (J., Kim, Oum SODA2016)

Constructive algorithm for path-width of vectors (SODA2016)

Input: n vectors over F, an integer k
Output : a permutation $v_{1}, v_{2}, \ldots, v_{n}$ of n vectors satisfying that for all i,

$$
\operatorname{dim}\left\langle v_{1}, v_{2}, \ldots, v_{i}\right\rangle \cap\left\langle v_{i+1}, v_{i+2}, \ldots, v_{n}\right\rangle \leq k .
$$

Time : FPT $=f(k) \cdot n^{3}$

$$
\begin{gathered}
v_{1} \\
v_{2} \\
v_{3}
\end{gathered} v_{v_{4}} v_{5} v_{6}
$$

$$
\left.\begin{array}{ccc|ccc}
v_{1} & v_{6} & v_{2} & v_{4} & v_{5} & v_{3} \\
1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1
\end{array}\right)
$$

Actually, we proved a more general statement. 'vectors' \rightarrow `subspaces' (vector $=1$-dimensional subspace)

Constructive algorithm for path-width of subspaces

Input : n subspaces over F, an integer k
Output : a permutation $V_{1}, V_{2}, \ldots, V_{n}$ of n subspaces satisfying that for all i,

$$
\operatorname{dim}\left\langle V_{1}, V_{2}, \ldots, V_{i}\right\rangle \cap\left\langle V_{i+1}, V_{i+2}, \ldots, V_{n}\right\rangle \leq k .
$$

Time : FPT $=f(k) \cdot n^{3}$

Theorem (J., Kim, Oum 2016+)

Roughly speaking, we can extend our algorithm to the treeversion.

Thank you for listening

Proof ideas

1. Dynamic programming 2 . Typical sequences 3 . Subspace analysis (linear algebra)

Constructive algorithm for path-width of vectors (SODA16)

Input : n vectors over F, an integer k
Output : a permutation $v_{1}, v_{2}, \ldots, v_{n}$ of n vectors satisfying that for all i,
$\operatorname{dim}\left\langle v_{1}, v_{2}, \ldots, v_{i}\right\rangle \cap\left\langle v_{i+1}, v_{i+2}, \ldots, v_{n}\right\rangle \leq k$.
Time : FPT $=f(k) \cdot n^{3}$

