SIMULTANEOUS MAJ STATISTICS

DoNGSsU KiIM AND DENNIS STANTON

ABSTRACT. The generating function for words with several simultaneous
mayj weights is given. New maj-like Mahonian statistics result. Some appli-
cations to integer partitions are given.

1. Introduction.
The usual maj statistic [2] on words w is defined by adding the location
of the descents of the word w,

maj(w) = Z i

LW > Wi

This definition presumes that the alphabet for the letters of w have been
linearly ordered, for example 2 > 1 > 0,

maj(1102201) = 2+ 5 = 7 = maj210(1102201).

However a similar definition can be made assuming any linear ordering o;
here we take 1 > 2 >0, 0 =120, and 2 >0 > 1, 0 = 201

majia0(1102201) =2+ 5 =7,  magae1 (1102201) = 5 + 6 = 11.

In this paper we consider the generating function for several such simulta-
neous maj statistics (see Corollary 1). A more general generating function is
given (Theorem 3), and some applications to Mahonian statistics (Corollary
2) and integer partitions (Theorem 4) are stated.

We first give a 3 letter theorem, which motivates the general result (The-
orem 3). Let W(m,n, k) be the set of words of length m +n + k with m 0’s,
n 1’s and k 2’s.
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Theorem 1. For any non-negative integers m, n, and k we have

Z zmajlgo(w)ymajgm(w)zmajmg('w) — $n+kyk |:mm+_nl—|—f; ;11 I
weW (m,n,k) »T Yz

Y

If—i—mzm m+n+k—1 +Zm+nxn m+n+k—1 )
m,n—1,k m,n, k—1
Yz Yz

Proof. We prove a stronger statement, that the three terms in Theorem 1
are the generating functions for the words in W (m,n, k) ending in 0, 1, and
2 respectively.

We proceed by induction on m +n + k. If w ends in a 0, the penultimate
letter must be either 0, 1 or 2. Using induction we must verify that

ntk k |Mtn+k—1 _ otk k|MAEN+k—2
vy [m—l,n,k Ty m-—2,n, k +
TYZ TYz

m—l—kz—lzm—1|:m+n+k_2

m+n+k—1
v m—1,n—1, k} +
TYZz

Y

(xy)m+n+k—1zm+n—1xn |: m+n+k—2 :| ,
TYz

m—1,n, k-1

which is the well-known recurrence formula [1] for the zyz-trinomial coeffi-
cient.
The other two cases are verified similarly. [J

It should be noted that if any two of z,y, z are set equal to 1, then the
usual maj generating function as a g-trinomial coefficient results.

2. A T7-variable theorem.

Theorem 1 contains three free variables, z,y and z. In this section we
generalize Theorem 1 to Theorem 2, which contains seven free variables.
Then we indicate how to specialize Theorem 2 to obtain new explicit classes
of Mahonian statistics on words of 0’s, 1’s, and 2’s.

Suppose that the weights of the various possible ascents and descents in
position m +n + k — 1 of a word w of m 0’s, n 1’s, and k 2’s are given by
wt10) af' *a}ak for a descent 10,

) bbbk for a descent 21,
) g terek for a descent 20,
wt01) drd}~'d5 for an ascent 01,
) eprelel™! for an ascent 12,
)
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Also suppose that the generating function for all such words w has the form

m+n+k—1 m+n+k—1

po(n,k)[ m-—1,n, k }B—Fpl(k,m){ m,n—1,k ]B

m+n+k—1

(2.1) +p2(m,n){ m.n k-1 L

for some base B, and po(n,k) = pyphs, pi(k,m) = pkpt, pe(m,n) =

pYiph,. We also assume that the three terms in (2.1) correspond to the w
which end in 0, 1, and 2 respectively.

Thus we have 25 free variables

UZ_o{ai, bi, i, diy ei, fiypir, pia} U {B}.

These 25 variables are related by the three equations which we require by
induction

m+n+k—-1 (m+n+k—2
el ok o [mAn+k-2
+ag'ayay pi(k,m—1) _m—l,n—l,k]B
el B [ m+n+k—2
(2.2a) +cg' ey pa(m —1,n) |m—1, n,k’—l}B,
m+n+k—1 _ ‘m+n+k—2
pl(kz,m){ m.n—1, k 1B—pl(k,m) | om,n -2,k ]B
S [ m4n+k—2
+by" b} Y05 po(m,n —1) m,n—l,k—l]B
S [ m4n+k—2
(2.2D) +dg'di ™ dy po(n — 1, k) m—1,n—1,k]3’
(m, n) m+n+k—-1] (m,n) [m+n+k—2
2N m,n, k—1 B—pz L myn k=2 |
HOA T po(na k= 1) _m—l,n,k—l]B
. fm4+n+k—2
(2.2¢) +egetes ™ pi(k —1,m) _m,n—Lk—l]B.

We do not know the general solution to the equations (2.2a-c). However, we
will give the general solution to (2.2a-c) if we make another assumption. If
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we specify that the coefficient of the second term on the the right side of
(2.2a) is B™~1 times the coefficient of the first term, and the coefficient of
the third term is B™T"~! times the coefficient of the first term, then the
B-trinomial recurrence relation verifies (2.2a). These two equations are

m—1 k. k m—1_ pm—1_n _k
Qp ayaspipls = =B DPo1Po2,

m—1 n k m—1 _n Bm+n 1
p01p02

o C1C2P21 P22 =
Similarly, we assume the B-trinomial recurrence for (2.2b) and (2.2¢), which
become

(2.3a)

bmbn ! b2p21p22 :Bnilplflpga

(2.3b) L b

dg'dy ™ dypg; ' pge =BT Pl pt.
and
2,30 TS eyt =B s,

n k—1_k—1 k+m—1
eperes Py pis =B P51 Do

Since these equations should hold for all m, n and k, each of these 6
equations contains 3 equations (one each in m, n, and k). Thus we have 18
equations in the 25 free variables, which are written in a matrix form, where
the first column comes from the equations in (2.3a):

pi2ao  p21bo  fo B P12 P21
ai p22b1  poifi DPo1 B D22
puaz bz poaf2 | _ | po2z  pu B
p21co do  Ppi2eg B P12  pa1B
p22c1  poidi el ponB B P22
c2  po2da  prie2 po2 pubB B

One may find the general solution to these 18 equations, leaving 7 free
variables
{CLO, ai, az, bOa bla b27 B}

The explicit solutions for the remaining 18 variables are given below. The
weights (wt) become (W):

W10) ag''ayal  for a descent 10,

W21) bbbk for a descent 21,

(agbo)™ (aib)™(azby)®  for a descent 20,

(B/ag)™(B/a1)" 1(B/ag)*  for an ascent 01,
(B/by)™(B/by1)™(B/by)k~1  for an ascent 12,
(

B/aobo)™(B/aib1)"(B/agbg)*~1  for an ascent 02,

(

(W21)
(W20)
(Wo1)
(W12)
(W02)

po(n, k) = al(azbs)*,  pi(k,m) = b5(B/ag)™,
p2(m,n) = (B/agby)™ (B/b1)".



SIMULTANEOUS MAJ STATISTICS 5

Theorem 2. The generating function of all words w € W(m,n,k) with
weights given by (W) is

" m+4+n+k—1 m|lm+n+k—1
al(ang)k[ m—1n,k } + b5(B/ao) [ m,n—1k } t
) 9 B ) ) B

(B/aghe)™ (B/b1)" {m tntk- 1} ~

m,n, k—1

Theorem 1 is the special case of Theorem 2 for which B = zyz,
ap = a1 = az = x, and by = by = by = y hold.

There are 7 other versions of Theorem 2. These 8 theorems arise by inde-
pendently replacing the pair of factors (B™~!, Bm+n—1) by (Bm+k-1 pm-1)
in equation (2.3a), (B"~ 1, B"t*~1) by (B"*™~1 B"~1) in equation (2.3b),
and (B*—1 Bktm=1) by (Bk+n=1 Bk=1)in (2.3c). The B-trinomial recur-
rence still holds. For instance if we make a replacement in (2.3a),

m—1 k_k _Bm+k 1

ay’ayaspyiply P01p027
m—1 n k m—1_n

(2.3a) S
Co C1CaDyy Pag =B p01p027

then the explicit solutions to (2.3a’) and (2.3b-c) give the weight (W’):

10) a* 'atal  for a descent 10,

(W

(W’Zl) bmb” bk for a descent 21,

(W’20) (aobo)m 1(a1b1/B) (agby/B)*  for a descent 20,
(W'01) (B/ag)™(B/a1)"~*(B%/a3)¥ for an ascent 01,
(W'12) (B/bo)™(B/by)"(B/b2)k~1  for an ascent 12,
(W'02) (B/agbo)™(B/a1by)"(B?/asbe)*~1  for an ascent 02,

and the corresponding theorem is the following:

Theorem 2'. The generating function of all words w € W{(m,n, k) with
weights given by (W) is

" m4+n+k—1 mlm+n+k—1
al(ang/B)k[ 1 m k } + b5(B/ag) { o1k } +
Y Y B Y B

m+n+k-—1
m,n, k—1 |5°

(B /agho)™ (B/b,)" [

We do not state the remaining 6 variations here.

We can find Mahonian statistics by requiring that the generating function
in Theorem 2 is the B-trinomial via the B-trinomial recurrence. There are
six choices for this recurrence, one for each ordering of the 3 terms. So
Theorem 2 gives a total of 6 possible Mahonian statistics, one of which
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(majo12), is found by setting ag = a3 = as = bg = by = by = 1. Theorem 2’
also gives a total of 6 possible Mahonian statistics, one of which is found by
setting ag = a1 = bg = by = by = 1, as = B. Similarly there are 6 possible
Mahonian statistics for each of other 6 versions of Theorem 2, for a total of
6 x 8 = 48. Six of them are the six possible maj, statistics, the remaining
42 come in 7 classes of six each, and they are all variations on maj. Each
class of size 6 consists of a maj variation, and 5 others which correspond to
5 non-trivial reorderings of {0,1,2} of that maj variation. We give below
one member of each class, eight in total.

We start with an example from Theorem 2'. If we set ag = a1 = by =
b1 =by =1, ay = B in Theorem 2’ the weight (W’) reduces to
(W’10) B*  for a descent 10,
(W’21) 1 for a descent 21,
(W’20) B~™  for a descent 20,
(W’01) B™+ntk=1 " for an ascent 01,
(W’12) B™tntk=1  for an ascent 12,
(W'02) B™+n+tk=1 " for an ascent 02.

Note that the above weight (W’) is a perturbation of majgi2 involving the
descents 10 and 20. We write it as majo12 + Sg, where sg is defined in the
following way. We define sy by giving the non-zero values at adjacent letters.
One then adds these values to find sg. It is assumed that if w is truncated
after the adjacent letters, w has m 0’s, n 1’s, and k 2’s.
So(w):

(1) £ for an adjacent 10,

(2) —n  for an adjacent 20.

For example,
50(22012110201) = -0+3 -3 =0.

It turns out (we do not write down the details here) that the eight statis-
tics (including majpi2) can be defined by three independent perturbations
of majoi2: so, s1, and sy. For any subset A C {0,1,2} put

sa(w) = Zsi(w).

€A

Then the eight Mahonian statistics are majoi2 + sa4. In fact the set A
indicates which replacements are made in (2.3a-c). For instance the above
(W’) is magjo12 + 510y and if we make replacements, say in (2.3b) and (2.3c),
then the corresponding statistics will be majoi2 + s{1,21, and so on. We
define s1, so analogously by giving the non-zero values at adjacent letters.
One then adds these values to find the statistic. It is assumed that if w is
truncated after the adjacent letters, w has m 0’s, n 1’s, and k 2’s.

s1(w):

(1) m  for an adjacent 21,
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(2) —k  for an adjacent 01.
So(w):

(1) n for an adjacent 02,

(2) —m  for an adjacent 12.

For example,
51(22012110201) = -2+ 1 -4 = =5, $2(22012110201) = -1 +3 = 2.

Below is a table evaluating majoi2, So, 1, and s, at the 6 permutations of
012. Note that the majo2 generating function is 1+ 2B + 2B2 + B3, which
is also the generating function for majoi2 + sa, for any subset A C {0, 1, 2}.

word majoi2 So S1  S2

012 3 0 0 -1
021 1 0 1 0
102 2 0 0 1
120 1 -1 0 0
201 2 0 -1 0
210 0 1 0 0

We repeat that all 48 Mahonian statistics may be found from these 8 by
permuting the letters 0, 1, and 2. In this case majg12 becomes maj,, and
each s; is found by applying o to 0, 1, and 2 in the definition of s;.

3. N letters.

In this section we briefly generalize Theorem 2 to words with N letters
in Theorem 3. We state the N letter version of Theorem 1 in Corollary
1. There are N!2N Mahonian statistics, which come in 2V families each
of size N!. We explicitly give the corresponding 2V Mahonian statistics in
Corollary 2.

Let W(ag,a1, - ,an—1) be the set of all words w with a; i’s, 0 < i <
N —1.

If the words w have N letters instead of 3 letters, then each adjacent pair
17, 1@ # 7, could be weighted by N variables, instead of 3 variables. Also the
coefficients p;, 0 < ¢ < N — 1 would have N — 1 variables. Together with
the base B, we have a total of N(N? — N) + N(N —1)+1=N3-N+1
variables. Each of the N recurrences required by induction gives N (NN — 1)
equations in these variables. So N(N — 1) + 1 variables will be free in the
multivariable version of Theorem 2.

In order to fully describe the resulting theorem, some care must be taken
with notation.

The N(N — 1) + 1 free variables may be taken to be the base B along
with the N weights of the adjacent pairs (i + 1)i, for i = 0,--- , N — 2, for
which we use the variables

(zio, i1, - ,TiN—1), 0<i< N —2.
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Suppose that w ends in an adjacent pair ij, ¢ # j, and that there are ny
k’s preceding the last letter j of w. The weight of the pair ij is given by

N—-1 1—1

[INIEDE if j <,

k=0 I=j
N-1
1] (B/
k=0

As usual, we multiply the weights of adjacent pairs to find the weight of the
word w.

(4.2) o
:L‘lk)nk ifi < 7-
=1

Theorem 3. The generating function of all words w € W (ag, a1, ,an—1)
with weights given by (4.2) is

ap+---+ay-1—1 }
pilag,ai, -+ ,AN-1
; 1( ’ ’ ’ )|:CL0,"',(17;—1,"‘,GN_1 B
where
i—1 i—l N—-1 1—i—1
pi(ao,ar, -+ ,an-1) = (H(B/ Hﬂci—k,z)al)< IT (11 $i+k,l)al)~
1=0 k=1 l=i+1 k=0
Note that p; in Theorem 3 is independent of a;.
The multivariable version of Theorem 1 occurs if
Tio=Tj1 =+ =Tin-1 =T, 0Z1<N -2,
and B = xgz1 - n—1. Then the weights (4.2) become
(xj e xifl)n0+m+nN_1 lfj <1,

(mo...xi_lxj...xN_l)n0+"'+nN—1 lf'l/ <j7

and the next corollary holds.

Corollary 1. We have

N-1

Z H x?"«jiﬁ»lm(Nfl)Olmi(w) _

weW (ag, -, an—1) =0

= ao+- +a 1
Zpi(a07a17'“ 7aN—1) |: 0 N—1
i=0

Qg, -, Q5 — 17 y AN—1 To TN _1
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where

1—1

pi(ag,ai, -+ ,an—1) = (H(Io R IRT IR -a:N_1)“l)(1ﬁ1 (- -xz—1)“l)-

=0 l=i+1

We next give the 2V Mahonian statistics which follow from Theorem 3.
Again they may be classified by perturbations of majoi...xy—1. For any subset
Ac{0,1,--- N — 1}, define

sa(w) = Zsi(w).

i€EA

The individual statistics s;(w) only depend upon the subwords of w ending
in 4, as in §2. For any given ¢ € w, suppose that ¢ is preceded by n; j’s,
0 <j < N-—1. Extend the definition of n; to be periodic mod N: njyy = n;
for all j. If the letter preceding i is i+ k, the contribution to s;(w) is positive
on the circular interval [i + k + 1,7 — 1] and negative on the circular interval
i+ 1,01+ k—1],

(3.1)  (Migrgr FNigppo + - Fngo1y) — (g1 F g2+ F Ngyppo1).

We add the contributions of (3.1) over all ¢ € w to find s;(w). There is
no contribution if £ = 0; that is, for a repeated 7i. For example,

51(41241012411312301) = 0+ (—1) + (=3) + (1 = 2) + (4 — 2) + (—8) = —11.

Corollary 2. For any set A C {0,1,--- , N —1}, the statistic major...N—1+
sa is Mahonian on W(ag, a1, -+ ,an—_1).

These Mahonian statistics are examples of splittable statistics [3].
One may also allow weights on the adjacent letters 00, 11, and 22 for a
more general version of Theorem 3.

4. Applications to partitions.
In this section we apply Theorem 1 and Theorem 3 to integer partitions.
The special case k =0, z =1, x = y = q of Theorem 1 is

: : m+n| q¢"+q"
(41) qmaJIO(W)+maJ01(w) = |: :| min f(m7 n, Q)‘
wEW%,mO) m qa? I+q i

MacMahon [4, p. 139] previously gave (4.1).
The following generating function (using standard notation found in [1])
follows from (4.1),

()™ (ya)" _ (294 ¢*)oc
2 m%of(m’”’” (@ Dmin (20,98 0)oc’
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One way to see (4.2) is to consider the generating function for pairs of par-
titions (A, u) with distinct parts, weighted by

of parts of A of parts of A+
pH#ofp y# p uql [+|pl

which is

O k k 2. .2
T TYqe;
H<1+ ¢y ):(yq oo

P 1—xg"  1-yq (26,99 @)oo

To prove (4.1), we must find a weight preserving bijection ¢ from the set
of such (A, u), # parts of A = m, # parts of u = n, to the set of ordered
pairs (w,~), where w € W(m,n,0), and v is a partition with m + n parts.

To define w, order the m 4+ n parts of A U p into a partition 6, and let
w; =0if §; € A, w; = 1if 6; € pu. This is well defined since the parts of A
and p are distinct. To define v, let ¢; be the number of descents or ascents
to the right of position ¢ in the word w. Then we let v = 8 —t. For example
if

A=T742, = 88661,

then

0 = 887766421, w = 110011001, ¢ = 443322110, v = 444444311.

This correspondence is the desired bijection ¢.

The natural analog of ¢ on triples (A, u,#) without pairwise common
parts produces a word w € W (m,n, k) and a partition . The g-statistic on
the word w again counts all ascents and descents of w by their positions.
However, in Theorem 1, we see that the six possible ascents/descents in w
are weighted differently by position:

01 by yz,
02 by z,
10 by z,
12 by zz,
20 by xy,
21 by y.

So if we choose x = ¢%, y = ¢°, z = ¢¢, an occurrence of 01 in positions
j and j + 1 of w contributes a weight of ¢7/(®*¢). This in turn implies that
the bijection ¢ must be modified so that the part in A corresponding to w;
must be at least b+ ¢ larger than the part in u corresponding to wjyi. We
need six different inequalities for the six possible juxtapositions of parts. Let
®a.b,c be the modified bijection.



SIMULTANEOUS MAJ STATISTICS 11

For example, if m=k =2, n=1,a =2, b=c =1, then the juxtaposed
parts sizes must differ by

2 for A\,
1 for A0,
2 for pA,
3 for ub,
3 for O\,
1 for Hp.

The three possible triples (A, u1, 8) whose weight is ¢'2? are given below, along
with result of the bijection ¢ 1 1:

(22,6,11) — (10022, 31111),
(32,5,11) — (10022, 22111),
(43,1,22) — (00221, 21111).

Corollary 3. Let a, b and c be positive integers. The generating function
for all triples of partitions (A, u, 0) without pairwise common parts, such that
A has m parts, p has n parts, and 6 has k parts, and any adjacent parts in
the partition AU pU 0 of type

(1) Aw differ by b+ c,
(2) M@ differ by c,
(3) pX differ by a,
(4) pb differ by a + c,
(5) OX differ by a + b,
(6) Ou differ by b,

s given by

gk <qa(n+kz)+bk [m +n+k— 1]
qa+b+c

3
4
)
6

_|_
(@ Dmtnik m—1,n,k
qb(m—i-k)—l—cm [m +n+k—1

m+n+k—1
+ qc(n+m)+an |: :| ) .
m? n— 17 k a+b+4c

:|qa+b+c m? n? k - 1

In Theorem 3, if all x; = ¢, the following theorem results. All subscripts
are taken mod N.

Theorem 4. The generating function for all N-tuples of integer partitions
(A1, -+, AN) without pairwise common parts, such that
(a) A; has a; parts, 1 <i < N,
(b) if the partition Ay U Ao U --- U Ay has adjacent parts bc, for b € \;
and c € A\j, then b—c > (i —j) mod N,
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s given by
¢/ [a1+~~+aN} iy g
(q); | a1, an [ on Zi\:olqif,
where f =a; +as+---+an, and e; = a; +2a;41 + -+ (N — Da;n_2.
5. Remarks.

MacMahon [5, §30] defined a statistic related to maj, denoted here by
M AJ, which weights each descent by the amount of the descent. For exam-
ple,

MAJ(20211201) =21+ 1%x3+2x6 =17,

because the descent 20 in positions 1,6 are weighted by 2 — 0 = 2, while
the descent 21 in position 3 is weighted by 2 — 1 = 1. Let MIN denote the
analogous statistic using the ascents. Then MacMahon alludes [5, §40] to
the following theorem for words with three letters.

Theorem 5. For any non-negative integers m, n, and k we have

Z gMAT () MIN(w) _ pn-+2k {m+n+k—1} [m+k—1}
zy (zy)?

n m—1
weW (m,n,k)
m—k |Mm+n+k—1 m+ k (zy)?* + (zy)™t*
+y n—1 m 1+ (zy)mtk
zy (zy)? Y
+y2m+n{m+n+k—1} [m—l—k—l] .
n m
xy (zy)?

If x =y, y=1o0r x =1, the three terms in Theorem 5 sum to a single
product (see [5, §38, §40]). The proof of Theorem 5 is identical to the proof
of Theorem 1. We do not know a multivariable version of Theorem 5.
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