
SIMULTANEOUS MAJ STATISTICS

Dongsu Kim and Dennis Stanton

Abstract. The generating function for words with several simultaneous
maj weights is given. New maj-like Mahonian statistics result. Some appli-
cations to integer partitions are given.

1. Introduction.
The usual maj statistic [2] on words w is defined by adding the location

of the descents of the word w,

maj(w) =
∑

i:wi>wi+1

i.

This definition presumes that the alphabet for the letters of w have been
linearly ordered, for example 2 > 1 > 0,

maj(1102201) = 2 + 5 = 7 = maj210(1102201).

However a similar definition can be made assuming any linear ordering σ;
here we take 1 > 2 > 0, σ = 120, and 2 > 0 > 1, σ = 201

maj120(1102201) = 2 + 5 = 7, maj201(1102201) = 5 + 6 = 11.

In this paper we consider the generating function for several such simulta-
neous maj statistics (see Corollary 1). A more general generating function is
given (Theorem 3), and some applications to Mahonian statistics (Corollary
2) and integer partitions (Theorem 4) are stated.

We first give a 3 letter theorem, which motivates the general result (The-
orem 3). Let W (m,n, k) be the set of words of length m+n+ k with m 0’s,
n 1’s and k 2’s.

The first author is partially supported by KOSEF: 971–0106–038–2.
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Theorem 1. For any non-negative integers m, n, and k we have

∑

w∈W (m,n,k)

xmaj120(w)ymaj201(w)zmaj012(w) = xn+kyk

[
m + n + k − 1
m− 1, n, k

]

xyz

+

yk+mzm

[
m + n + k − 1
m, n− 1, k

]

xyz

+ zm+nxn

[
m + n + k − 1
m, n, k − 1

]

xyz

.

Proof. We prove a stronger statement, that the three terms in Theorem 1
are the generating functions for the words in W (m,n, k) ending in 0, 1, and
2 respectively.

We proceed by induction on m + n + k. If w ends in a 0, the penultimate
letter must be either 0, 1 or 2. Using induction we must verify that

xn+kyk

[
m + n + k − 1
m− 1, n, k

]

xyz

= xn+kyk

[
m + n + k − 2
m− 2, n, k

]

xyz

+

xm+n+k−1ym+k−1zm−1

[
m + n + k − 2
m− 1, n− 1, k

]

xyz

+

(xy)m+n+k−1zm+n−1xn

[
m + n + k − 2
m− 1, n, k − 1

]

xyz

,

which is the well-known recurrence formula [1] for the xyz-trinomial coeffi-
cient.

The other two cases are verified similarly. ¤

It should be noted that if any two of x, y, z are set equal to 1, then the
usual maj generating function as a q-trinomial coefficient results.

2. A 7-variable theorem.
Theorem 1 contains three free variables, x, y and z. In this section we

generalize Theorem 1 to Theorem 2, which contains seven free variables.
Then we indicate how to specialize Theorem 2 to obtain new explicit classes
of Mahonian statistics on words of 0’s, 1’s, and 2’s.

Suppose that the weights of the various possible ascents and descents in
position m + n + k − 1 of a word w of m 0’s, n 1’s, and k 2’s are given by

(wt10) am−1
0 an

1ak
2 for a descent 10,

(wt21) bm
0 bn−1

1 bk
2 for a descent 21,

(wt20) cm−1
0 cn

1 ck
2 for a descent 20,

(wt01) dm
0 dn−1

1 dk
2 for an ascent 01,

(wt12) em
0 en

1 ek−1
2 for an ascent 12,

(wt02) fm
0 fn

1 fk−1
2 for an ascent 02.
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Also suppose that the generating function for all such words w has the form

p0(n, k)
[
m + n + k − 1
m− 1, n, k

]

B

+p1(k, m)
[
m + n + k − 1
m, n− 1, k

]

B

+ p2(m,n)
[
m + n + k − 1
m, n, k − 1

]

B

(2.1)

for some base B, and p0(n, k) = pn
01p

k
02, p1(k, m) = pk

11p
m
12, p2(m, n) =

pm
21p

n
22. We also assume that the three terms in (2.1) correspond to the w

which end in 0, 1, and 2 respectively.
Thus we have 25 free variables

∪2
i=0{ai, bi, ci, di, ei, fi, pi1, pi2} ∪ {B}.

These 25 variables are related by the three equations which we require by
induction

p0(n, k)
[

m + n + k − 1
m− 1, n, k

]

B

= p0(n, k)
[

m + n + k − 2
m− 2, n, k

]

B

+am−1
0 an

1ak
2 p1(k, m− 1)

[
m + n + k − 2
m− 1, n− 1, k

]

B

+cm−1
0 cn

1 ck
2 p2(m− 1, n)

[
m + n + k − 2
m− 1, n, k − 1

]

B

,(2.2a)

p1(k,m)
[

m + n + k − 1
m, n− 1, k

]

B

= p1(k, m)
[

m + n + k − 2
m, n− 2, k

]

B

+bm
0 bn−1

1 bk
2 p2(m,n− 1)

[
m + n + k − 2
m, n− 1, k − 1

]

B

+dm
0 dn−1

1 dk
2 p0(n− 1, k)

[
m + n + k − 2
m− 1, n− 1, k

]

B

,(2.2b)

p2(m,n)
[

m + n + k − 1
m, n, k − 1

]

B

= p2(m,n)
[

m + n + k − 2
m, n, k − 2

]

B

+fm
0 fn

1 fk−1
2 p0(n, k − 1)

[
m + n + k − 2
m− 1, n, k − 1

]

B

+em
0 en

1 ek−1
2 p1(k − 1,m)

[
m + n + k − 2
m, n− 1, k − 1

]

B

.(2.2c)

We do not know the general solution to the equations (2.2a-c). However, we
will give the general solution to (2.2a-c) if we make another assumption. If



4 DONGSU KIM AND DENNIS STANTON

we specify that the coefficient of the second term on the the right side of
(2.2a) is Bm−1 times the coefficient of the first term, and the coefficient of
the third term is Bm+n−1 times the coefficient of the first term, then the
B-trinomial recurrence relation verifies (2.2a). These two equations are

(2.3a)
am−1
0 an

1ak
2pk

11p
m−1
12 =Bm−1pn

01p
k
02,

cm−1
0 cn

1 ck
2pm−1

21 pn
22 =Bm+n−1pn

01p
k
02.

Similarly, we assume the B-trinomial recurrence for (2.2b) and (2.2c), which
become

(2.3b)
bm
0 bn−1

1 bk
2pm

21p
n−1
22 =Bn−1pk

11p
m
12,

dm
0 dn−1

1 dk
2pn−1

01 pk
02 =Bn+k−1pk

11p
m
12.

and

(2.3c)
fm
0 fn

1 fk−1
2 pn

01p
k−1
02 =Bk−1pm

21p
n
22,

em
0 en

1 ek−1
2 pk−1

11 pm
12 =Bk+m−1pm

21p
n
22.

Since these equations should hold for all m, n and k, each of these 6
equations contains 3 equations (one each in m, n, and k). Thus we have 18
equations in the 25 free variables, which are written in a matrix form, where
the first column comes from the equations in (2.3a):




p12a0 p21b0 f0

a1 p22b1 p01f1

p11a2 b2 p02f2

p21c0 d0 p12e0

p22c1 p01d1 e1

c2 p02d2 p11e2




=




B p12 p21

p01 B p22

p02 p11 B
B p12 p21B

p01B B p22

p02 p11B B




.

One may find the general solution to these 18 equations, leaving 7 free
variables

{a0, a1, a2, b0, b1, b2, B}.
The explicit solutions for the remaining 18 variables are given below. The
weights (wt) become (W):
(W10) am−1

0 an
1ak

2 for a descent 10,
(W21) bm

0 bn−1
1 bk

2 for a descent 21,
(W20) (a0b0)m−1(a1b1)n(a2b2)k for a descent 20,
(W01) (B/a0)m(B/a1)n−1(B/a2)k for an ascent 01,
(W12) (B/b0)m(B/b1)n(B/b2)k−1 for an ascent 12,
(W02) (B/a0b0)m(B/a1b1)n(B/a2b2)k−1 for an ascent 02,
and

p0(n, k) = an
1 (a2b2)k, p1(k, m) = bk

2(B/a0)m,

p2(m,n) = (B/a0b0)m(B/b1)n.
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Theorem 2. The generating function of all words w ∈ W (m,n, k) with
weights given by (W) is

an
1 (a2b2)k

[
m + n + k − 1
m− 1, n, k

]

B

+ bk
2(B/a0)m

[
m + n + k − 1
m, n− 1, k

]

B

+

(B/a0b0)m(B/b1)n

[
m + n + k − 1
m, n, k − 1

]

B

.

Theorem 1 is the special case of Theorem 2 for which B = xyz,
a0 = a1 = a2 = x, and b0 = b1 = b2 = y hold.

There are 7 other versions of Theorem 2. These 8 theorems arise by inde-
pendently replacing the pair of factors (Bm−1, Bm+n−1) by (Bm+k−1, Bm−1)
in equation (2.3a), (Bn−1, Bn+k−1) by (Bn+m−1, Bn−1) in equation (2.3b),
and (Bk−1, Bk+m−1) by (Bk+n−1, Bk−1) in (2.3c). The B-trinomial recur-
rence still holds. For instance if we make a replacement in (2.3a),

(2.3a′)
am−1
0 an

1ak
2pk

11p
m−1
12 =Bm+k−1pn

01p
k
02,

cm−1
0 cn

1 ck
2pm−1

21 pn
22 =Bm−1pn

01p
k
02,

then the explicit solutions to (2.3a′) and (2.3b-c) give the weight (W′):

(W′10) am−1
0 an

1ak
2 for a descent 10,

(W′21) bm
0 bn−1

1 bk
2 for a descent 21,

(W′20) (a0b0)m−1(a1b1/B)n(a2b2/B)k for a descent 20,
(W′01) (B/a0)m(B/a1)n−1(B2/a2)k for an ascent 01,
(W′12) (B/b0)m(B/b1)n(B/b2)k−1 for an ascent 12,
(W′02) (B/a0b0)m(B/a1b1)n(B2/a2b2)k−1 for an ascent 02,
and the corresponding theorem is the following:

Theorem 2′. The generating function of all words w ∈ W (m,n, k) with
weights given by (W′) is

an
1 (a2b2/B)k

[
m + n + k − 1
m− 1, n, k

]

B

+ bk
2(B/a0)m

[
m + n + k − 1
m, n− 1, k

]

B

+

(B/a0b0)m(B/b1)n

[
m + n + k − 1
m, n, k − 1

]

B

.

We do not state the remaining 6 variations here.
We can find Mahonian statistics by requiring that the generating function

in Theorem 2 is the B-trinomial via the B-trinomial recurrence. There are
six choices for this recurrence, one for each ordering of the 3 terms. So
Theorem 2 gives a total of 6 possible Mahonian statistics, one of which
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(maj012), is found by setting a0 = a1 = a2 = b0 = b1 = b2 = 1. Theorem 2′

also gives a total of 6 possible Mahonian statistics, one of which is found by
setting a0 = a1 = b0 = b1 = b2 = 1, a2 = B. Similarly there are 6 possible
Mahonian statistics for each of other 6 versions of Theorem 2, for a total of
6× 8 = 48. Six of them are the six possible majσ statistics, the remaining
42 come in 7 classes of six each, and they are all variations on maj. Each
class of size 6 consists of a maj variation, and 5 others which correspond to
5 non-trivial reorderings of {0, 1, 2} of that maj variation. We give below
one member of each class, eight in total.

We start with an example from Theorem 2′. If we set a0 = a1 = b0 =
b1 = b2 = 1, a2 = B in Theorem 2′, the weight (W′) reduces to
(W′10) Bk for a descent 10,
(W′21) 1 for a descent 21,
(W′20) B−n for a descent 20,
(W′01) Bm+n+k−1 for an ascent 01,
(W′12) Bm+n+k−1 for an ascent 12,
(W′02) Bm+n+k−1 for an ascent 02.
Note that the above weight (W′) is a perturbation of maj012 involving the
descents 10 and 20. We write it as maj012 + s0, where s0 is defined in the
following way. We define s0 by giving the non-zero values at adjacent letters.
One then adds these values to find s0. It is assumed that if w is truncated
after the adjacent letters, w has m 0’s, n 1’s, and k 2’s.
s0(w):

(1) k for an adjacent 10,
(2) −n for an adjacent 20.

For example,
s0(22012110201) = −0 + 3− 3 = 0.

It turns out (we do not write down the details here) that the eight statis-
tics (including maj012) can be defined by three independent perturbations
of maj012: s0, s1, and s2. For any subset A ⊂ {0, 1, 2} put

sA(w) =
∑

i∈A

si(w).

Then the eight Mahonian statistics are maj012 + sA. In fact the set A
indicates which replacements are made in (2.3a-c). For instance the above
(W′) is maj012 + s{0} and if we make replacements, say in (2.3b) and (2.3c),
then the corresponding statistics will be maj012 + s{1,2}, and so on. We
define s1, s2 analogously by giving the non-zero values at adjacent letters.
One then adds these values to find the statistic. It is assumed that if w is
truncated after the adjacent letters, w has m 0’s, n 1’s, and k 2’s.
s1(w):

(1) m for an adjacent 21,
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(2) −k for an adjacent 01.
s2(w):

(1) n for an adjacent 02,
(2) −m for an adjacent 12.
For example,

s1(22012110201) = −2 + 1− 4 = −5, s2(22012110201) = −1 + 3 = 2.

Below is a table evaluating maj012, s0, s1, and s2 at the 6 permutations of
012. Note that the maj012 generating function is 1 + 2B + 2B2 + B3, which
is also the generating function for maj012 + sA, for any subset A ⊂ {0, 1, 2}.

word maj012 s0 s1 s2

012 3 0 0 −1
021 1 0 1 0
102 2 0 0 1
120 1 −1 0 0
201 2 0 −1 0
210 0 1 0 0

We repeat that all 48 Mahonian statistics may be found from these 8 by
permuting the letters 0, 1, and 2. In this case maj012 becomes majσ, and
each si is found by applying σ to 0, 1, and 2 in the definition of si.

3. N letters.
In this section we briefly generalize Theorem 2 to words with N letters

in Theorem 3. We state the N letter version of Theorem 1 in Corollary
1. There are N ! 2N Mahonian statistics, which come in 2N families each
of size N !. We explicitly give the corresponding 2N Mahonian statistics in
Corollary 2.

Let W (a0, a1, · · · , aN−1) be the set of all words w with ai i’s, 0 ≤ i ≤
N − 1.

If the words w have N letters instead of 3 letters, then each adjacent pair
ij, i 6= j, could be weighted by N variables, instead of 3 variables. Also the
coefficients pi, 0 ≤ i ≤ N − 1 would have N − 1 variables. Together with
the base B, we have a total of N(N2 −N) + N(N − 1) + 1 = N3 −N + 1
variables. Each of the N recurrences required by induction gives N(N − 1)
equations in these variables. So N(N − 1) + 1 variables will be free in the
multivariable version of Theorem 2.

In order to fully describe the resulting theorem, some care must be taken
with notation.

The N(N − 1) + 1 free variables may be taken to be the base B along
with the N weights of the adjacent pairs (i + 1)i, for i = 0, · · · , N − 2, for
which we use the variables

(xi0, xi1, · · · , xiN−1), 0 ≤ i ≤ N − 2.
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Suppose that w ends in an adjacent pair ij, i 6= j, and that there are nk

k’s preceding the last letter j of w. The weight of the pair ij is given by

(4.2)

N−1∏

k=0

(i−1∏

l=j

xlk

)nk if j < i,

N−1∏

k=0

(
B/

j−1∏

l=i

xlk

)nk if i < j.

As usual, we multiply the weights of adjacent pairs to find the weight of the
word w.

Theorem 3. The generating function of all words w ∈ W (a0, a1, · · · , aN−1)
with weights given by (4.2) is

N−1∑

i=0

pi(a0, a1, · · · , aN−1)
[

a0 + · · ·+ aN−1 − 1
a0, · · · , ai − 1, · · · , aN−1

]

B

where

pi(a0, a1, · · · , aN−1) =
(i−1∏

l=0

(B/

i−l∏

k=1

xi−k,l)al

)( N−1∏

l=i+1

(
l−i−1∏

k=0

xi+k,l)al

)
.

Note that pi in Theorem 3 is independent of ai.
The multivariable version of Theorem 1 occurs if

xi0 = xi1 = · · · = xiN−1 = xi, 0 ≤ i ≤ N − 2,

and B = x0x1 · · ·xN−1. Then the weights (4.2) become

(xj · · ·xi−1)n0+···+nN−1 if j < i,

(x0 · · ·xi−1xj · · ·xN−1)n0+···+nN−1 if i < j,

and the next corollary holds.

Corollary 1. We have

∑

w∈W (a0,··· ,aN−1)

N−1∏

i=0

x
maji+1···(N−1)01···i(w)

i =

N−1∑

i=0

pi(a0, a1, · · · , aN−1)
[

a0 + · · ·+ aN−1 − 1
a0, · · · , ai − 1, · · · , aN−1

]

x0···xN−1
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where

pi(a0, a1, · · · , aN−1) =
(i−1∏

l=0

(x0 · · ·xl−1xi · · ·xN−1)al

)( N−1∏

l=i+1

(xi · · ·xl−1)al

)
.

We next give the 2N Mahonian statistics which follow from Theorem 3.
Again they may be classified by perturbations of maj01···N−1. For any subset
A ⊂ {0, 1, · · · , N − 1}, define

sA(w) =
∑

i∈A

si(w).

The individual statistics si(w) only depend upon the subwords of w ending
in i, as in §2. For any given i ∈ w, suppose that i is preceded by nj j’s,
0 ≤ j ≤ N−1. Extend the definition of nj to be periodic mod N : nj+N = nj

for all j. If the letter preceding i is i+k, the contribution to si(w) is positive
on the circular interval [i + k + 1, i− 1] and negative on the circular interval
[i + 1, i + k − 1],

(3.1) (ni+k+1 + ni+k+2 + · · ·+ n(i−1))− (ni+1 + ni+2 + · · ·+ ni+k−1).

We add the contributions of (3.1) over all i ∈ w to find si(w). There is
no contribution if k = 0; that is, for a repeated ii. For example,

s1(41241012411312301) = 0 + (−1) + (−3) + (1− 2) + (4− 2) + (−8) = −11.

Corollary 2. For any set A ⊂ {0, 1, · · · , N−1}, the statistic maj01···N−1 +
sA is Mahonian on W (a0, a1, · · · , aN−1).

These Mahonian statistics are examples of splittable statistics [3].
One may also allow weights on the adjacent letters 00, 11, and 22 for a

more general version of Theorem 3.

4. Applications to partitions.
In this section we apply Theorem 1 and Theorem 3 to integer partitions.
The special case k = 0, z = 1, x = y = q of Theorem 1 is

(4.1)
∑

w∈W (m,n,0)

qmaj10(w)+maj01(w) =
[

m + n
m

]

q2

qm + qn

1 + qm+n
:= f(m,n, q).

MacMahon [4, p. 139] previously gave (4.1).
The following generating function (using standard notation found in [1])

follows from (4.1),

(4.2)
∑

m,n≥0

f(m,n, q)
(xq)m(yq)n

(q; q)m+n
=

(xyq2; q2)∞
(xq, yq; q)∞

.
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One way to see (4.2) is to consider the generating function for pairs of par-
titions (λ, µ) with distinct parts, weighted by

x# of parts of λy# of parts of µq|λ|+|µ|

which is ∞∏

k=1

(
1 +

xqk

1− xqk
+

yqk

1− yqk

)
=

(xyq2; q2)∞
(xq, yq; q)∞

.

To prove (4.1), we must find a weight preserving bijection φ from the set
of such (λ, µ), # parts of λ = m, # parts of µ = n, to the set of ordered
pairs (w, γ), where w ∈ W (m,n, 0), and γ is a partition with m + n parts.

To define w, order the m + n parts of λ ∪ µ into a partition θ, and let
wi = 0 if θi ∈ λ, wi = 1 if θi ∈ µ. This is well defined since the parts of λ
and µ are distinct. To define γ, let ti be the number of descents or ascents
to the right of position i in the word w. Then we let γ = θ− t. For example
if

λ = 7742, µ = 88661,

then

θ = 887766421, w = 110011001, t = 443322110, γ = 444444311.

This correspondence is the desired bijection φ.
The natural analog of φ on triples (λ, µ, θ) without pairwise common

parts produces a word w ∈ W (m,n, k) and a partition γ. The q-statistic on
the word w again counts all ascents and descents of w by their positions.
However, in Theorem 1, we see that the six possible ascents/descents in w
are weighted differently by position:

01 by yz,

02 by z,

10 by x,

12 by xz,

20 by xy,

21 by y.

So if we choose x = qa, y = qb, z = qc, an occurrence of 01 in positions
j and j + 1 of w contributes a weight of qj(b+c). This in turn implies that
the bijection φ must be modified so that the part in λ corresponding to wj

must be at least b + c larger than the part in µ corresponding to wj+1. We
need six different inequalities for the six possible juxtapositions of parts. Let
φa,b,c be the modified bijection.
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For example, if m = k = 2, n = 1, a = 2, b = c = 1, then the juxtaposed
parts sizes must differ by

2 for λµ,

1 for λθ,

2 for µλ,

3 for µθ,

3 for θλ,

1 for θµ.

The three possible triples (λ, µ, θ) whose weight is q12 are given below, along
with result of the bijection φ2,1,1:

(22, 6, 11) → (10022, 31111),

(32, 5, 11) → (10022, 22111),

(43, 1, 22) → (00221, 21111).

Corollary 3. Let a, b and c be positive integers. The generating function
for all triples of partitions (λ, µ, θ) without pairwise common parts, such that
λ has m parts, µ has n parts, and θ has k parts, and any adjacent parts in
the partition λ ∪ µ ∪ θ of type

(1) λµ differ by b + c,
(2) λθ differ by c,
(3) µλ differ by a,
(4) µθ differ by a + c,
(5) θλ differ by a + b,
(6) θµ differ by b,

is given by

qm+n+k

(q; q)m+n+k

(
qa(n+k)+bk

[
m + n + k − 1
m− 1, n, k

]

qa+b+c

+

qb(m+k)+cm

[
m + n + k − 1
m, n− 1, k

]

qa+b+c

+ qc(n+m)+an

[
m + n + k − 1
m, n, k − 1

]

qa+b+c

)
.

In Theorem 3, if all xi = q, the following theorem results. All subscripts
are taken mod N .

Theorem 4. The generating function for all N -tuples of integer partitions
(λ1, · · · , λN ) without pairwise common parts, such that

(a) λi has ai parts, 1 ≤ i ≤ N ,
(b) if the partition λ1 ∪ λ2 ∪ · · · ∪ λN has adjacent parts bc, for b ∈ λi

and c ∈ λj, then b− c ≥ (i− j) mod N ,
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is given by
qf

(q; q)f

[
a1 + · · ·+ aN

a1, · · · , aN

]

qN

∑N
i=1 qei

∑N−1
i=0 qif

,

where f = a1 + a2 + · · ·+ aN , and ei = ai + 2ai+1 + · · ·+ (N − 1)ai+N−2.

5. Remarks.
MacMahon [5, §30] defined a statistic related to maj, denoted here by

MAJ , which weights each descent by the amount of the descent. For exam-
ple,

MAJ(20211201) = 2 ∗ 1 + 1 ∗ 3 + 2 ∗ 6 = 17,

because the descent 20 in positions 1, 6 are weighted by 2 − 0 = 2, while
the descent 21 in position 3 is weighted by 2− 1 = 1. Let MIN denote the
analogous statistic using the ascents. Then MacMahon alludes [5, §40] to
the following theorem for words with three letters.

Theorem 5. For any non-negative integers m, n, and k we have

∑

w∈W (m,n,k)

xMAJ(w)yMIN(w) = xn+2k

[
m + n + k − 1

n

]

xy

[
m + k − 1

m− 1

]

(xy)2

+ ym−k

[
m + n + k − 1

n− 1

]

xy

[
m + k

m

]

(xy)2

(xy)2k + (xy)m+k

1 + (xy)m+k

+ y2m+n

[
m + n + k − 1

n

]

xy

[
m + k − 1

m

]

(xy)2
.

If x = y, y = 1 or x = 1, the three terms in Theorem 5 sum to a single
product (see [5, §38, §40]). The proof of Theorem 5 is identical to the proof
of Theorem 1. We do not know a multivariable version of Theorem 5.
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